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ON THE FUNDAMENTAL PERIODS
OF HILBERT MODULAR FORMS

ZE-LI DOU

Abstract. The main purpose of this paper is to establish the existence of fun-

damental periods of primitive cusp forms of Hilbert modular type of several

variables, as well as the relationship between those fundamental periods and

the special values of the associated Z,-functions. These results, together with

some recent results of Shimura, give us the means of translating with ease re-

sults concerning periods of automorphic forms derived from various points of

view. We also verify several conjectures of Shimura on the properties of such

fundamental periods.

Introduction

The concept of periods of an automorphic form has been studied from var-
ious points of view by many authors. It frequently appears in at least the

following three contexts: integrals over cycles of the differential form attached

to an automorphic form; special values of the L-function associated to a form;

and coefficients of the Fourier expansion of a form. In a recent work [Sh3],
Shimura formulated a sequence of very precise conjectures on the properties of

the periods of automorphic forms, as well as the relationship among the periods
arising from the several contexts mentioned above. Furthermore, he was able to

establish a result relating certain special values of the L-function associated to a

primitive form to the Fourier coefficients of a suitably defined Hilbert modular
form. Shimura then proved some of his own conjectures, in the division algebra
case, in a subsequent paper [Sh4]. The purpose of this work, then, is to show

the following:
1. The so-called fundamental periods, enjoying the same properties stipulated

in [Sh4], can be defined in the Hilbert modular case as well, and

2. A relation between these fundamental periods and the L-values can be

established.
Therefore, the fundamental periods can now be defined for primitive forms
defined with respect to any quaternion algebra over a totally real algebraic num-

ber field. Moreover, properties of those periods, derived from any of the above

described viewpoints, can now be translated with ease to any other.

In order to keep a sharp focus on our main ideas, and also to keep this paper
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as short as possible, we shall assume on the reader's part certain familiarity

with Shimura's paper [Sh4]. We have tried to conform to the notations adopted

there. A very brief review of the background material can also be found in the

first section of this paper. The main results are then explained in the second

section in a more detailed fashion.

The author wishes to thank Professor G. Shimura for suggesting the problem

to him, and for the encouragement he received while this work was in progress.

1. Background

1.1. Cusp forms on Ha and Ga . Throughout this paper we write B = M2{F)

and G = GL2{F), where F is a totally real algebraic number field of degree

n . We denote the archimedean and finite parts of F by a and f, respectively.

Also, r and 5 denote the ring of integers and the different of F, respectively.
The adelization of B and G, and their respective archimedean and finite parts,

are denoted by fiA, Ba, Bt, G\, Ga, and G{. We identify Ba with Af2(R)a by
fixing a suitable isomorphism, and then identify Ga with C7L2(R)a. Here the

notation X* means n copies of X indexed by a. Finally we define

(1.1) C7a+ = t7Lj(R)a, andC7Q+ = Ga+f)G.

The cusp forms can be defined as functions either on H* or (ja . Given a

congruence subgroup T, a weight k e Za, and sea, the space of cusp forms

on H*, of weight k with respect to F and e, denoted by ^(T), consists of

functions / satisfying the following conditions:

(1.2a)  f\\ky = f, VyeT;
(1.2b)   f{z) is holomorphic in zv for every v £ a — e and antiholomorphic

in zv for every v £ e ;

(1.2c)   / is fast decreasing at every cusp; i.e., f\\kP is a holomorphic Hilbert
cusp form for every p £ GC\GE.

We denote by S^ke{B) the union of ^(T) for all congruence subgroups T.

(The symbol f\\k is defined in [Sh4].) We shall assume throughout that kv>2
for all v .

To define cusp forms on Ga , we fix notations as follows. Given a finite prime

v £ f, we denote Af2(t„) by ov for notational simplicity. For two fractional

ideals o and b such that abet, put Dv[a, b] - GL2(rbvv ""). Fix an integral

ideal ra in F. We define

(1.3) W=Wm = Ga+]lDv[V-x,m<)],
vet

and

(1.4) Wx = W^ = {x£ Wm\av{x) - 1 £ mv , Vw|m}.

Here av is the first entry of xv . Writing h = [Ga+Gf: Gq+W], we have theLicense or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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following decompositions:

h h

(1.5a) GA = \}GxAW = \}Gx^W,

h h

(1.5b) GA = {\GxxWx = ]\Gx?Wx,
X=l X=l

h

(1.5c) F*=\}F*txN{W).
x=i

Here we have chosen Xx £ Gf, tx £ Ffx for k = 1.h such that N{xx) — h

and also that Xx = (q t° ) for u|m. We further define

(1.6) Wx = XxWxlx,        IF,1 = xA^V,

(i.7) n = GnWx,        r\ = onwxl.

We now let <P be a Hecke character of F (of finite order) such that

c<D|m    and    <J>a(x) = sgn(x)fc ,    Vx € Fax.

Here c<d is the conductor of <X>. Then the set of cusp forms on Ga of weight

k and level m, denoted by S^kc{m, Om), consists of functions g: GA -» C such

that the following conditions are satisfied:

(1.8a)     g{axu) = ®m{du)g{x),    VaGG, Vw e W{, andVxeGA;

(1.8b)     for every x e Gf, there is an element gx of S^k{B) such that

Ito0 = (&ll!j0(i),    VveGa+.
Here i = (j, ..., i) € C", dM is the element of Ft* whose v-component is the

last entry of uv if v\m, and 1 otherwise.

The cusp forms defined on H* and Ga can be related as follows. For each

Tx we let

(1.9) ^{Tx, <Dm) = {/ e 5?{B)\ f\\%y = d>m{ay)f, Vy e Yx).

Given g e <5^£(m, <Dm), we define fk £ ^(Tx, <t>m) for each k € {1,.... h}
by

(1-10) fx(z) = g(x/l-y)7|(y, i)Om(^)-',

where y £ W and v(i) = z .

Conversely, given {f, ... , fh)£ nLi ^£(r/i, Om), we define

(1.11) g{ax;*u) = <t>m{du){fx\\lu){i),    Ma£G,u£W.

Then (1.10) and (1.11) give a canonical isomorphism

h

^{m,^m)^Y[sf{rx,^m).
X=l

Finally we define

(1.12) Sf{m, <D) = {g€ Sf{m, Om)|g(sx) = <D(s)g(x), Vs £ Fx}.

For the definitions of the Petersson inner product and other details, we refer
the reader to [Sh4].License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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1.2. Cohomology theories and operators. The fundamental periods of cusp

forms will be defined via cohomology theory. Therefore, we start by recalling

the equivalency of three different kinds of cohomology theory under certain

conditions to be specified below.

The symbol {p, E) will denote a linear representation p: Ga —> GL{E),

where E is a finite-dimensional vector space over C. We note that, if T is

a congruence subgroup of Gq+ , then the restriction of p to T gives a linear
representation of T. For every 0 < q £ Z, let A9{H*; E) be the space of

smooth ^-valued differential g-forms on Ha . We define

(1.13) A«{H*; Ef = {co£ A«{H*;E)\co o y = p{y)co,Vy £ F} ,

where co o y denotes the transform of to under the action of y . This is the

space of r-invariant <?-forms on H* . We set A{H*; E)T = £~ 0 ̂ «(//a; E)v.

This complex, together with the exterior differentiation of differential forms,

then gives a cohomology theory which we denote by

(1.14) H*{A{Ha;Ef) = J2H"{A{Ha;E)r).

To define the singular cohomology, we assume p(TnF) = 1. Let S{H*) =
52qSq(Ha) be the complex of singular chains on 7/a. Then T acts naturally

on S{Ha). We denote by C${T; E) the set of all ^-valued g-cochains that

are T-equivariant. Then the complex C*{T; E) = J2q C/(r; E), together with

the usual differentiation 8 defined by 8<p = tpd , gives the singular cohomology

theory

(1.15) H;(r;E) = Y,H?(T;E).

Finally, we have the group cohomology of T with respect to {p, E) which
we shall denote simply by

(1.16) H*{r;E) = J2H«{r;E).

We now recall that, under the conditions specified above, those three coho-

mology theories are canonically isomorphic to one another. See the book by

Borel and Wallach [B-W] for details.
Let E = <S>t)eaC^-1. We recall that to each cusp form / e ^k(F) an

element of A"{H*; E)r can be attached. We recall the definition as follows. For

z £ C" and e c a, define z' £ Ca to be the element such that z'v = ~zv for all

v £e and z'v = zv otherwise. Put [z]k = ^^(f)*"-2 and dEz = p\veadz'v .

(Fix an arbitrary order among the places »ea.) Then an ^-valued differential

/i-form [f] is given by

(1.17) [f] = [z]%®fdtz.

We also recall that a linear representation pk can be defined as in [Sh4]. The
differential form [/] is square integrable, harmonic, and hence also closed with

respect to the exterior differentiation. (See [M-S] and also a correction in [Sh4,

pp. 411-412].) Therefore we have a natural mapping

(1.18) H^{r)^H"{r;E).
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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In the division algebra case, the well-known Eichler-Shimura theorem implies

that (1.18) is an embedding. However, the following results, due to Borel [B],

show that we have an embedding in our case as well.

Proposition 1.1. The cohomology H*{A{H*;E)T) is generated by closed forms

of moderate growth.
Let <%fd denote the space of harmonic fast decreasing differential forms con-

tained in A{Ha; E)r. Then the natural mapping ^fj —> H*(T; E) is infective.
Furthermore, if co £ %?fd, then co can be written in the form co = p + dv, where

p has compact support modulo T and v is fast decreasing.

The injectivity of (1.18) follows from the fact that the cusp forms are fast

decreasing.

Let us now state the following structure theorem for H"{F; E), which cap-

tures the image of (1.18) precisely. See the paper by Harder [Ha] for a proof.

Proposition 1.2. We have

(1.19) H"{T; E) = H2AT; E) ® Hgh{F; E),

where H^{F; E) is the space of cohomology classes which can be represented

by square integrable differential forms, and Hgis(F; E) can be constructed by

means of Eisenstein series. Hgis{F;E) = 0 when F is co-compact. The image

o/(1.18) is a subspace of H^{F; E) and we have

'ILc-W, ifk* 2-1,

(1.20) H?q{F;E)*\ ^^^(^ „\       .,.      ,   ,
n£Ca^fc (H ©   E ccm   Cwc    ,    ifk = 2 • 1,

where 1 = (1, ... , 1) £ Za and cor. = Awg{ lm{zv)~2{dzv A d~zv).

We note that if a cusp form / belongs to <5"k(Fx, Om), then obviously

f e «5^(rj) also. Therefore we have an injection

(1.21) ^(m,<Dm)-n^(r{).
x=i

We check easily that the requisite conditions in the discussion of the cohomology
theories are all satisfied, if we take the F there to be F\, k = 1, 2, ... , h . Thus
the injectivity of (1.18) and (1.21) yields an embedding

(1.22) II^(m> •») - niW(rJ) ^ i\H»{F\;E).
{Ca £CaA=l X=l

The product of cohomology groups on the right-hand side of (1.22) can also be

replaced by F[x=i Hs"(rx > E) or itLi Hn{A{Ha; Efl), because of the equiv-

alency we pointed out before. We shall use these cohomology theories inter-

changeably without further remarks. If g = {fx, ... , fh) £ ^(m, Om), then

the image of g in F[Li H"{A{H*; E)Tl) will be written as [g] = {[fx], ... ,
[fh]) ■ That is, we shall identify [fx] with the cohomology class represented by

it.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



152 ZE-LIDOU

The Hecke operators on S^k{m, Om) can be defined as usual and will be

denoted by Tv and Sv (which are generalizations of the operators T{p) and

T{p,p) in [Shi]). Hecke operators can also be defined on the cohomology

groups via (1.22), and are denoted by the same symbols. We refer to [Sh4] for
the details. The following equality holds:

(1.23) S*(m, 4>) = {g £ S*(m, <Dm)| g\Sv = ®{nv)g, \/v £ f, v fm}.

Finally, an operator sending 5^k (m, <J>m) onto S^k+e{m, Om) can be defined

in the same way as in [Sh4]. The image of g under this operator will be denoted

simply by g£. Its analogue in the cohomology groups will be denoted by R{e).

Again we omit the details for the economy of space.

2. The fundamental periods of cusp forms

2.1. The definition of fundamental periods. Consider a primitive form h e

5*k°{m, O). That is, h is a common eigenform of the Hecke operators Tv , and

a nonzero form with the same eigenvalues cannot appear at a lower level. We

denote the system of eigenvalues by x • The set of all primitive forms is one-
dimensional. Therefore, h is uniquely determined up to a constant factor (in

C) and hence is also uniquely determined, up to a constant factor, as an element

of Sf(m, <Pm) such that h\Tv = x(v)h for all v £ f and h\Sv = ®{nv)h for
v \ m, where Sv = Wnv W. Therefore we have, for every e c a,

(2 I) Ch£ = {g€ ^(m' °m)l 8|7; = X{v)g' VU e f' and

To avoid notational confusion, let us use the symbol A to denote the index

set {I, ... ,h}. Now if we write h = {hx)xe\, and he = (he,x)xe\ >then K,x e

^(rj). Therefore, by (1.22), the images of h£ in, say, X\xeKHs^\ \ E), are
linearly independent. Thus they form a basis of the image space, which we
naturally denote by ^ca^th6] • In particular,

(2.2) dim(£C[h£])=2".
VeCa /

Denote the space of Q-rational elements in ^°(m, <J>m) by <5^°(m, Om , Q).

Then it is well known that

(2.3) ^°(m,<Dm)=^°(m,<Dm,Q)®QC.

In particular, we may now assume that h is Q-rational.

As for the Q-rational structure of the cohomology group, we note that E =

<8>weaC^_1 obviously has a Q-rational structure E = E{Q) ®qC. Therefore,

for any congruence subgroup F, we may consider £'(Q)-valued elements of

C/(T; E) and the resulting cohomology groups H?{T; E; Q). We then have

(2.4) H?{F;E) = H«{F;E;Q)®^C,    VO < q £ Z.

Let / £ S*ke{Fx, 0>m) for any le A. A simple computation shows that

Pk(y)~l[f] ° V = ®m(ay)[f], for all y £ Fx. Therefore, given q £ E£CaCin£l

and writing q - (qx)x=x € U.x=\ ̂ "(H ; E), the following properties hold:

(2.5a)    q\Tv=x(v)q,Vv ef,      and    q\Sv = ®{nv)q, Vv £ f, v fm,

(2.5b) Pk(y)-lqx°y = <t>m(ay)qx,    Vy £ Fx.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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We observe that the eigenvalues x certainly do not occur in H^{i{r\ ', E) ■
They also do not occur in the space spanned by the cor in (1.20) (when k =

2 • 1). Therefore, by Proposition 1.2, Z^ca^W] *s actually characterized by

the properties (2.5a,b). Now these properties define a Q-rational structure on

2^eCaC[he]. (Recall that the eigenvalues x(v) are algebraic numbers.) There-

fore, it is meaningful to take the intersection

(2.6) kx = \y, crh£])n n H"(rl;E; Q)>
VcCa     /  X=l

and we have

(2.7) ^C[h£]=^®5C.
eCa

We define an element of GL{E) by &k = <8>j,ea^,-2 • (F°r the definition

of Pm see [Sh4].) If co £ A«{H*;E)r and v £ Ar{H*; E)T, then 'co AGkv is

easily seen to be meaningful as an element of A9+r{H*; C)r. In particular, if

we take co-[f] and v = [g] where / £ ^(F) and g £ t9^{F) , respectively,

then '[f] A ek[g] e A2"{H*; C)r. When e + C # a, it is obviously 0. In
the remaining case, we compute easily that for f,g £ S^k{B) (and hence

7 e ^a_£(£)), the following formula holds:

(2.8) '[7]AeAr[^] = (-l)l|fc-fc£+£|l+2"("-1)(2z)ll/c"-'!.7^Im(z)^a/z,

where

dffZ = {2i)~n JJ lm{zv)~2d~zv A dzv.
u£a

Consider a pairing of coefficients P: E x E —> C defined by P{a, b) —

'aQkb. Since F\ acts on E via pk and on C via p2.\, which is the trivial
representation, we have P{y • a, y • b) = y • P{a, b). Therefore we have a cup
product

~: ///(Tj; E) x H!(Tl; E) - Hrr(F\ ; C).

If co £ Ai{H*;E)rii and a £ Ar{H'; E)^ are both closed, then [co] — [a]

corresponds to the exterior product 'coASka under the de Rham isomorphism.
We now define the fundamental periods of h as follows. Since Kx is stable

under the operators R{Q for all £ c a, we can define a regular representation

of the additive group (Z/2Z)a on the space Kx (and also on ££Ca ^[h£], of

course) by sending £ c a to R{Q . Moreover, we have a nondegenerate pairing

(Z/2Z)a x (Z/2Z)a - Z/2Z defined by (e, Q = (-l)"8*^ . Therefore, we can

find a basis of Kx over Q, denoted by {yc}ec*, sucn that

(2.9) ye\R(0 = (e,Z)ye,    Ve,Cca.

These ye are uniquely determined up to factors in Q. Of course, they also

form a basis of zZeca^V^] over C. However, {[he]}£Ca is also a basis of

l]£CaC[h£]. Thus we may write

(2-10) [h] = Y/P(X,e;B)ye,
£CaLicense or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



154 ZE-LIDOU

where p{x, e; B) £ C. The coefficients of [hf ] as a linear combination of the

yE are given by

(2.11) [tf] = J2(£,0P(X,e;B)yE,    Ve c a.
£Ca

The complex numbers p{x, £', B) are called the fundamental periods of h.

They are uniquely determined up to algebraic factors since the yE are. From

now on we shall regard them as elements of Cx/Q . Clearly p{x, e; B) ± 0

for every e c a, since {yE}E and {[h£]}£ are both bases.

Theorem 2.1. For each e c a, we have

(2.12) p{X,e;B)=p{x,e;B).

The proof of Theorem 4.4, (1) in [Sh4] goes through here without change.

Theorem 2.2. For every sea, we have

(2.13) p{x,s; B)p{x, k + a + s;B)~ n"{h, h).

Proof. The proof is a modification of that of Theorem 4.4, (2)of[Sh4]. Namely,

writing h** — (hn,x)xe\ f°r every n c a, we have by (2.8)

f[QAe,[^,A] = (-l)^(20W-"-V7-^,/lIm(z)^a/z,

where we have written for notational simplicity b{n) = \\k-kn+t]\\+n{n-\)l2.

Integrating both sides over Fx = F[\Ha , we obtain on the right-hand side (by

definition of the Petersson inner product)

{-l)b^{2i)^-".yol{Fx)-{ht,j, hntX),

and on the left-hand side

JFx

We explain this integral as follows. Recall that [hn>/] and [hnx] are both

fast decreasing harmonic forms; i.e., they belong to flffd of Proposition 1.1.

Thus we can write [h^x] = p + dv , where p has compact support mod F\

and v is fast decreasing, and similarly for [hnx] • Also they are closed forms.

Therefore we may approximate Fk by cycles and hence it is meaningful to speak

of the integral JF '[h,,^] A &k[hr,,x] ■ Furthermore, its value depends only on

the cohomology classes of [h^tx] and [hn<x]. Therefore we may denote this

integral by {[hn x] w [hn x)(Ex) ■ The rest of the computation is the same as in

[Sh4].   □

Finally we recall the concept of equivariant cycles. Given F and {pk, E),

an equivariant g-cycle is an element u £ E ®z Sq{Ha) such that du is a finite

sum of the form du = Yl[v ® y(c) ~ 'Pk(y)v <8> c], where u £ E, y £ F, and

c € Sq-X{H*). Here d acts trivially on E. If u £ E{Q) <g>z Sq{Ha), then u

is called Q-rational. For cp £ C/(T; E) and w = Y.v ®c £ E®z Sq{H*), we
define <p{w) = J2 lvcp{c). Now we can easily check that if cp is a cocycle and u

is an equivariant cycle, then cp{u) depends only on the cohomology class of cp .

This applies in particular to a closed form co £ Aq{Ha; E)T, and in this case

co{u) is called a period of co.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Theorem 2.3. Write hf = (h^x)xeA for every C C a. If u is a Q-rational

equivariant n-cycle with respect to F\ and {pk, E), then the period [h{,x](u)

is a Q-linear combination of the fundamental periods p{x, s; B).

This follows immediately from (2.11).

2.2. Relation to the special values of /.-functions. For the rest of this paper

we assume that k £ 2Za. In order to establish the relationship between the

fundamental periods and the special values of L-functions, we first recall two

theorems, which are due to Shimura and Hida, respectively.

Let g = {fx)xeA € ^°(nr, Om) • Then fx is a Hilbert cusp form for every k.

Recall that fx has a Fourier expansion fx(z) - ^ a^(i*)e(<*z), where £ runs

through all the positive definite elements in t^ = ^t, with the tx defined in

(1.5c). Recall that every integral ideal can be written as £t^' with a unique k

and a totally positive element £ e tx ■ So we may define, for every fractional

ideal a,

0.14) C(a,g, = {fr"2'    J"^
I 0, if a is not integral.

Let co be a Hecke character of finite order defined on _FAX . We define an

L-function associated to g and co by

(2.15) L{s, g, co) = $>(cx, g)co{a)N{a)-s.

a

Now let h be a normalized Q-rational primitive form. (By normalized we

mean c{x, h) = 1.) Then we have c{a, h)N{a) — x(o) ■ Therefore, we may

define

(2.16) L{s,x,to) = Y,X(a)co{a)N{a)-s-x,
a

and the following equality holds:

(2.17) L{s,h,co) = L{s,x,co).

We impose here one last condition.

If ky = 2 for some v £ a and F ± Q, then for every r £

,~ . j,..        (Z/2Z)a and every integral ideal n, there exists a Hecke charac-

ter n such that f7a(x) = sgn(xa)r, n|c,, and such that L(0, X, n)

*0,

Proposition 2.4 ([Sh2]). Under the above conditions, there exists, for every r e

(Z/2Z)a, a complex number V{x, r), such that the following property holds:

If co is a Hecke character on FAX such that coa{x) = sgn(xa)''1+r with t £ Z

and \t\ < ky/2, Vv € a, then

(2.19) L(t,x,co)~7ttnV(X,r).

We shall now briefly explain Hida's work [Hi]. For ease of reference, we shall

first follow some notations and conventions adopted in Hida's paper and then

explain how they correspond to our notations. Let a cusp form / e <9*k (F) beLicense or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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given. We may attach a vector-valued differential form to / in the following

manner. For every v £ a, we define

where Xv, Yv are two indeterminate variables. Furthermore, put n' = k -

2 • 1. We then denote by L{n'; C) the module generated by homogeneous

polynomials in {Xv , Yv) of degree n'v at every v £ a. L{n'; C) becomes a

GL2(F)-module via the action

a ■ P{{xv)v€a) = P{{\ det(a„)|-1/2 • a*vxv)v€a).

For x = (x„)„ea, we define furthermore

mx)=n^+iY^n'v • n (~x»+iY^n'v-
v€e vea-e

Recall that, given /, we may consider the corresponding function fx defined
on SL2(R)a given by

(2.20) /,(x) = /(x(i)).(y|(x,i))-1,    VxeSL2(R)a.

Then the differential form is defined by

(2.21) [f] = j2.i(x,i)t//„>{{x*xv)v€u)'fl{x)dez.

This differential form is related to the one defined in § 1 by the following equa-

tion:

(2.22) [f\^l\(Xv-z'vYv)^-2.f{z)dEz,

def
where z = x(i). Thus a correspondence between (2.21) and (1.17) can obvi-

ously be found. It is for this reason that we have denoted the two differential
forms by the same symbol [/]. We introduce the following notation:

(2.23) [f]=     £    [nm(nm)xn'-mYm,

0<m<n' ^     '

where

(n')=I[(n'V)>      and     Xn'-mYm'^l\X<-mvY^.

^    ' v6a ^    v' u6a

Then [f]m can be considered as a component of [f] with values in C. For

every £ c a, we define an element of {±l}a by letting the v-component be 1

or -1 according as ve£ or «ea-(. Denote it again by £. Now consider
a j £ Za such that 0 < j < n' and »' - 2j e Z • 1. Since ri £ 2Za, we may

write
n'     r.    n']   „        ,       r.    «'l    „,

; - — =   j - —   • 1,    where   j- —   £ Z.

For such a 7 and a Hecke character <y of finite order, we define, for our

primitive form h,

(2.24) cp[ = Y,o>i:hW(ix*)ln,/2-J]co.(*-C) ■ (a-On'+j+1[hr,x]j-
X£A

By taking a special cycle C, Hida proved thatLicense or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Proposition 2.5 ([Hi]). The integral of cp^ over C satisfies

(2.25) yVc~K-|LM|l-£(/'-y   ,b,<»).

We shall now apply Hida's theorem to relate the fundamental periods to L-

values. By straightforward computations, we see that for e c a and m £ Za,
(a - e)m = {s, m). Note that the a - s on the left-hand side is identified with

an element belonging to {±l}a, and the s on the right-hand side is identified

with an element of (Z/2Z)a. We also have, for any given m £ (Z/2Z)a,

(2.26) '£{Z,m)[hr,x] = 2».pmym>i.
fca

Indeed, by (2.11) we have

£<£> ™>[^,a] = E<£> ™>E<e> Op£y£,x
CCa .      r £

= E IE^'m + £^£>;^'1) •

But 2^{(C, m + s) = 2" only when m + e = 0 and is 0 otherwise. Thus (2.26)

follows.
We now consider

(2.27) 3» ^£>c =Ew(^)^(t^)[B'/2"7'1E£0»(a-0-(a-C)','+7'+I[Ac,A]J'.
CCa AeA CCa

By Proposition 2.5, we again have

|*>~*HU+1».L([7-y] ,h,^.

Since co is of finite order, we may assume that coa{x) = sgn(xa)' for some
/ € Za. Then

wa(a - £) • (a - £)"'+;+1 = (a - £)' • (a - Q"'+J+1 = (£,»' + ; + / + 1>.

Hence we have

& = j2°>(w)N(w)ln',2~J] ■J2tt>n'+j + l + Wi'rf
(2.28) AeA CCa

= pe • E 2" • to{txd)Nm[n'/2-j]yJE>x,
A6A

where e = »'+j + / +1. Since yJe x takes values in Q for any cycle, we obtain

Jc OV: ~ pE. Therefore we have the following proposition:

Proposition 2.6. We adopt the same notations as above. Then

(2.29) L(j-rj   >»*>«)~KIU+1|,A-

It is now an easy matter to relate the p£ to the V{x, £).License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Theorem 2.7. For every £ c a, we have

(2.30) V{X, £) ~ n"kW .p(x,Z + t, M2{F)^ .

Proof. Let us start with a Hecke character co such that <wa(x) = (xa)f+i-1,

where £ C a, s £ Z, and 5 < ky/2 for every v £ a. Then we can find a

unique 0<j<n' = k-2-l such that j - {k - 2 • l)/2 = s • 1. Namely,
7 = fc/2 + (5 — 1) • 1. Now the e in Proposition 2.6 is defined by

n' + j +1 + 1 = (k - 2 • 1) + {k/2 + {s - 1) • 1) + (£ + s • 1) +1 = k/2 + £.

Here we recall that the element belongs to (Z/2Z)a. By Propositions 2.4 and

2.6,
**" • V(x,0~L(s,X,a>)~ n^2+s'^ ■ pE.

Therefore V(x, £) ~ 7tl|/c/211 •p^kj2 , as desired.   □

To relate the fundamental periods to the Fourier coefficients, we recall that

Shimura [Sh3, Theorem 9.4] has already established the precise relationship

between the V and the Fourier coefficients. This together with Theorem 2.7

then settles the problem.

We conclude this paper by remarking that the fundamental periods p in our

work are related to the periods P in [Sh4, §6] by the equation

(2.31) P(X,e;B) = n-"p(x,e + t;B\.
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