Binomial Self-Inverse Sequences and Tangent Coefficients

Robert Donaghey

Department of Mathematics, Baruch College, CUNY, New York, New York 10010 Communicated by the Managing Editors

Received June 9, 1975

This paper treats the class of sequences $\left\{a_{n}\right\}$ that satisfy the recurrence relation $a_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a_{k} d^{n-k}$, with d constant, and shows that there is a relationship between the odd and even terms of $\left\{a_{n}\right\}$ that involves the coefficients of $\tan (t)$, namely

$$
a_{2 n+1}=\sum_{k=0}^{n}(-1)^{k}\binom{2 n+1}{2 k+1} T_{k}(d / 2)^{2 k+1} a_{2 n-2 k}
$$

A combinatorial setting is then provided to elucidate the appearance of the tangent coefficients in this equation.

I. Introduction

Two sequences f_{n} and g_{n} are binomial inverses (cf. [4, p. 43]), if they satisfy the inverse relations

$$
\begin{equation*}
f_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} g_{k}, \quad g_{n}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f_{k} ; \tag{1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
f_{n}=(1-g)^{n}, \quad g_{n}=(1-f)^{n}, \quad f^{n} \equiv f_{n}, \text { and } g^{n} \equiv g_{n} \tag{2}
\end{equation*}
$$

The sequence f_{n} is then its own binomial inverse if it satisfies

$$
\begin{equation*}
f_{n}=\sum_{k=0}^{n}(-1)^{n}\binom{n}{k} f_{k}=(1-f)^{n}, \quad f^{n}=f_{n} . \tag{3}
\end{equation*}
$$

It will be convenient to generalize this slightly and say that if $a_{n}=d^{n} f_{n}$ for some constant d, so that

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a_{t} d^{n-k}=(d-a)^{n}, \quad a^{n} \equiv a_{n}, \tag{4}
\end{equation*}
$$

then a_{n} is self-inverse of degree d.

With the sequence T_{k} defined by $e^{T t}=\tan (t), T^{2 n+1} \equiv T_{n}$, Eq. (4), with $d=2 \delta$, implies the relations between even and odd terms:

$$
a_{2 n+1}=\sum_{k=0}^{n}(-1)^{k}\binom{2 n+1}{2 k+1} T_{k} \delta^{2 k+1} a_{2 n-2 k}
$$

and

$$
a_{2 n}-\frac{a_{2 n+1}}{(2 n+1) \delta}+\sum_{k=0}^{n-1}(-1)^{k}\binom{2 n}{2 k+1}\left[\frac{T_{k} \delta^{2 k+1}}{2^{2 k+2}-1}\right] a_{2 n-2 k-1}
$$

It is shown that every self-inverse sequence of degree d satisfies the generating function relation

$$
e^{a t}=e^{a t} e^{-a t}
$$

and as a consequence a_{n} is self-inverse of degree $d=2 \delta$ if it satisfies the relation

$$
a_{n}=\sum_{k=0}\binom{n}{2 k} f_{k} \delta^{n-2 k}
$$

for any arbitrary sequence f_{k}.
The particular instance

$$
e_{n}=\sum_{k=0}\binom{n}{2 k}
$$

the number of even-subsets of a set, which satisfies the weighted inclusionexclusion identity

$$
e_{2 n+1}=\sum_{k=0}(-1)^{k}\binom{2 n+1}{2 n-2 k} T_{k} e_{2 n-2 k}
$$

is used to determine the T_{k} 's combinatorially as the weightings required to insure that every even subset is counted exactly once in this summation.

The paper concludes with a number of examples of self-inverse sequences to give the subject some concreteness.

II. Characterization of the Odd Terms

Expanding Eq. (4) and solving for the highest coefficient yields, for $n=0(1) 3$:

$$
\begin{array}{rll}
a_{0}=a_{0} & \rightarrow & \text { no information }, \\
a_{1}=d a_{0}-a_{1} & \rightarrow & 2 a_{1}=d a_{0} \\
a_{2}=d^{2} a_{0}-2 d a_{1}+a_{2} & \rightarrow & \text { no new information } \\
a_{3}=d^{3} a_{0}-3 d^{2} a_{1}+3 d a_{2}-a_{3} & \rightarrow & 4 a_{3}=-d^{3} a_{0}+6 d a_{2} .
\end{array}
$$

In general Eq. (4), the defining identity for self-inverse sequences, imposes no constraints on the even terms but completely specifies the odd terms. Setting $d=2 \delta$, these specifying equations can be written, for $n=1(2) 7$, as:

$$
\begin{aligned}
& a_{1}=1\binom{1}{0} \delta a_{0}, \\
& a_{3}=-2\binom{3}{0} \delta^{3} a_{0}+1\binom{3}{2} \delta a_{2}, \\
& a_{5}=16\binom{5}{0} \delta^{5} a_{0}-2\binom{5}{2} \delta^{3} a_{2}+1\binom{5}{4} \delta a_{4}, \\
& a_{7}=-272\binom{7}{0} \delta^{7} a_{0}+16\binom{7}{2} \delta^{5} a_{2}-2\binom{7}{4} \delta^{3} a_{4}+1\binom{7}{6} \delta a_{6} .
\end{aligned}
$$

The numbers $T_{0}=1, T_{1}=2, T_{2}=16, T_{3}=272, \ldots$ [5, Sequence 829] appearing in these equations are the coefficients of

$$
\begin{equation*}
\tan (t)=\sum_{n=0}^{\infty} T_{n} t^{2 n+1} /(2 n+1)! \tag{5}
\end{equation*}
$$

This result is stated generally as
Theorem 1 (Main Theorem). If a_{n} is self-inverse of degree $d=2 \delta$, then with T_{k} defined by Eq. (5),

$$
\begin{equation*}
a_{2 n+1}=\sum_{k=0}^{n}(-1)^{k}\binom{2 h+1}{2 k+1} T_{k} \delta^{2 k+1} a_{2 n-2 k} \tag{6}
\end{equation*}
$$

Proof.

$$
\begin{align*}
& a^{\eta}=(d-a)^{n}, \quad a^{*}=a_{k} \\
\Rightarrow & e^{a t}=e^{(d-a) t}, \\
\Rightarrow & e^{(a-\delta) t}=e^{(\delta-a) t}, \quad d=2 \delta \\
\Rightarrow & e^{i a t} e^{-i \delta t}=e^{i \delta t} e^{-i \Delta t}, \quad i^{2}=-1 \\
\Rightarrow & \cos (\delta i) \sin (a t)=\sin (\delta t) \cos (d t), \\
\Rightarrow & \sin (a t)=\tan (\delta t) \cos (a t) . \tag{7}
\end{align*}
$$

Equating the coefficients of $i^{2 r+1}$ in (7) gives Eq. (6).
Corollary.

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n}\binom{2 n+1}{2 k+1} T_{k}==1 \tag{8}
\end{equation*}
$$

Proof. Eq. (8) is Eq. (6) with $a_{n}=\delta=1$; and for this sequence Eq. (4) reduces to $1-(2-1)^{n}$. In addition, Eq. (7) reduces to $\sin (t)=$ $\tan (t) \cos (t)$.

III. Extensions and Inverse of the Main Theorem

Let b_{n} satisfy

$$
\begin{equation*}
b_{n}=-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} b_{k} d^{n-k}=-(d-b)^{n}, \quad b^{k} \equiv b_{k} \tag{9}
\end{equation*}
$$

Then b_{n} can be said to be anti-self-inverse since Eq. (9) differs from Eq. (4) only by a minus sign.

Theorem 2. If b_{n} is anti-self-inverse of degree $d=2 \delta$, then with T_{k} defined by Eq. (5),

$$
\begin{equation*}
b_{2 n+2}=\sum_{k=0}^{n}(-1)^{k}\binom{2 n+2}{2 k+1} T_{k} \delta^{2 k+1} b_{2 n+1-2 k} \tag{10}
\end{equation*}
$$

Proof. Paralleling the proof of Theorem 1,

$$
\begin{array}{rrr}
& b^{n}=-(d-b)^{n}, \quad b^{h} \equiv b_{k} \\
\Rightarrow \quad & e^{i b t} e^{-i \delta t}=-e^{i \delta t} e^{-i b t}, \quad i^{2}=-1 \\
\Rightarrow \quad & -\cos (\delta t) \cos (b t)=\sin (\delta t) \sin (b t), \\
\Rightarrow & \quad-\cos (b t)=\tan (\delta t) \sin (b t) .
\end{array}
$$

Corollary. If b_{n} satisfies

$$
b_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n+r}{k+r} b_{k} d^{n-k}
$$

for any positive integer r, then with $d=2 \delta$,

$$
b_{2 n+1}=\sum_{l k=0}^{n}(-1)^{k c}\binom{2 n+1+r}{2 k+1} T_{k} \delta^{2 k+1} b_{2 n-2 k}
$$

Proof. Relabeling $b_{n} \rightarrow b_{n+r}$ and $0 \rightarrow b_{i}, i=0(1) r-1$, makes b_{n} self-inverse for r even and anti-self-inverse for r odd.

The following theorem is the inverse of Theorem 1 , and defines the even terms of a_{n} as sums over the odd terms. It is included for completeness although it is perhaps too cumbersome to be of computational value.

Theorem 3. If a_{n} is self-inverse of degree $d=2 \delta$, then with T_{k} defined by Eq. (5),

$$
a_{2 n}=\frac{a_{2 n+1}}{(2 n+1) \delta}+\sum_{k=0}^{n-1}(-1)^{k}\binom{2 n}{2 k+1}\left[\frac{T_{k} \delta^{2 k+1}}{2^{2 k+2}-1}\right] a_{2 n-2 k-1} .
$$

Proof. From Eq. (7), $\cos (a t)=\cot (\delta t) \sin (a t)$. The coefficients of $\cot (t)$ are expressed here in terms of the T_{k} 's rather than the more usual Bernoulli numbers.

IV. Characterizing Self-Inverse Functions

Theorem 4. (Exponential generating function): The sequence a_{n} is self-inverse of degree d if and only if

$$
\begin{equation*}
e^{a t}=e^{d t} e^{-a t}, \quad a^{n} \equiv a_{n} \tag{11}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
a^{n} & =(d-a)^{n}, \quad a^{k} \equiv a_{k} \\
\Leftrightarrow \quad e^{a t} & =e^{(\hat{d}-a) t} \\
& =e^{a t} e^{-a t}
\end{aligned}
$$

Corollary. Every generating function of the form $e^{a t}=e^{\Delta t} L\left(t^{2}\right)$, with $L(t)$ any formal Laurent series, is the generating function of a self-inverse sequence of degree $d=2 \delta$.

Proof.

$$
\begin{aligned}
e^{a t} & =e^{\delta t} L\left(t^{2}\right) \\
\Rightarrow \quad e^{2 \delta t} e^{-a t} & =e^{2 \delta t} e^{-\delta t} L\left((-l)^{2}\right) \\
& =e^{\delta t} L\left(t^{2}\right)=e^{a t}
\end{aligned}
$$

which is Eq. (11).

THEOREM 5. (Conthuchon): If fis is any seguence of numbers, and δ any tonstant, then

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{m}\binom{n}{2 k} f_{k} \delta^{n-2 k}, \quad m=[n / 2] \tag{12}
\end{equation*}
$$

is selfinverse of degree $a-2 \delta$.

Proof. If

$$
a_{n}=\sum_{k=0}^{m}\binom{n}{2 k} f_{k} \delta^{n-2 k}, \quad m=[n / 2],
$$

then

$$
e^{a t}=e^{\delta t} \cosh (f t), \quad f^{2 k} \equiv f_{k}
$$

and the result follows by the Corollary to Theorem 4 above.

V. Combinatorial Setting of T_{k}

Let a_{n} and f_{n} be any two sequences related by Eq. (12) with $\delta=1$, i.e., let a_{n} and f_{n} satisfy

$$
\begin{equation*}
a_{n}=\sum_{k=0}^{m}\binom{n}{2 k} f_{k}, \quad m=[n / 2] . \tag{13}
\end{equation*}
$$

Similarly define the particular instance

$$
\begin{equation*}
e_{n}=\sum_{k=0}^{m}\binom{n}{2 k}, \quad f_{k} \equiv 1 \tag{14}
\end{equation*}
$$

Then e_{n} counts the number of even cardinality subsets of an n element set. Letting T_{k} be defined by Eq. (8), then,

$$
\begin{align*}
e_{2 n+1} & =\sum_{k=0}^{n}\binom{2 n+1}{2 k} \\
& \left.=\sum_{i=0}^{n}\binom{2 n+1}{2 k}\left[\begin{array}{l}
n-k \\
j=0
\end{array}-1\right)^{j}\binom{2 n+1-2 k}{2 j+1} T_{j}\right] \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{2 n+1}{2 n-2 j} T_{j}\left[\sum_{k k=0}^{n-j}\binom{2 n-2 j}{2 k}\right] \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{2 n+1}{2 n-2 j} T_{j} e_{2 n-2 j}, \tag{15}
\end{align*}
$$

which is an instance of Theorem 1 with $\delta=1$.
The bottom equation in (15) asserts that the number of even cardinality subsets of an odd cardinality set U can be found by inclusion-exclusion on the even-subset enumerators of the even subsets of U, appropriately weighted. The weighting factors $T_{k c}$, defined by Eq. (8), ensure that every
even cardinality subset of U is counted in the inclusion-exclusion (15), exactly once.

The same method applied in general to a_{n}, defined in Eq. (13) with f_{k} arbitrary, yields

$$
\begin{aligned}
a_{2 n+1} & =\sum_{k=0}^{n}\binom{2 n+1}{2 k} f_{l k} \\
& =\sum_{k=0}^{n}\binom{2 n+1}{2 k} f_{k}\left[\sum_{j=0}^{n-k}(-1)^{j}\binom{2 n+1-2 k}{2 j+1} T_{j}\right] \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{2 n+1}{2 n-2 j} T_{j}\left[\sum_{k=0}^{n-j}\binom{2 n-2 j}{2 k} f_{k}\right] \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{2 n+1}{2 n-2 j} T_{j} a_{2 n-2 j}
\end{aligned}
$$

which is Theorem 1 with $\delta=1$, and which provides an alternative proof of the theorem.

Interpreting the numbers T_{k} as weighting factors for an inclusionexclusion enumeration of even cardinality subsets of an odd cardinality set, Eq. (15), defines the T_{k} 's combinatorially. This is the way I originally computed their values. Only after I found, by using Sloan [5], that they were the coefficients of $\tan (t)$ did I search for a proof of this fact using generating functions.

VI. Examples of Self-1nverse Sequences

1. $a_{n}=k^{n}, k$ constant. $[d=2 k] . e^{a t}=e^{k t}$.
2. $a_{0}=1, a_{n}=2^{n-1} k^{n}, n \geqslant 1$. [d=2k]. The case $k=1$ is the sequence e_{n} defined by Eq. (14): $e_{n}=\sum_{k}\binom{n}{2 k}=2^{n-1} \cdot e^{\alpha t}=\frac{1}{2}+e^{2 k t} / 2=$ $e^{k i t} \cosh (k i)$.
3. $a_{n}=\binom{n}{2 k}, k$ an integer. $[d=2] \cdot e^{a t} \cdots e^{t} t^{2 k} /(2 k)$!. Replacing $2 k$ by $2 k+1$ makes the sequence anti-self-inverse.
4. $a_{n}=c_{n+2}=\binom{(2 n+2}{n+1} /(n+2)$, the Catalan numbers [4]. $[d=4]$. Equation (4) for the Catalan numbers is due to Touchard [6] (cf. also [4, p. 156]), and was my starting point for this work.
5. $a_{n}=m_{n}=\sum_{k b}\binom{n}{2 k} c_{k}, c_{k}$ the Catalan numbers (m is for Th. Motzkin). [$d=2]$. These numbers, as posed in [1], are the number of ways of selecting n points on a circle either singly or in noncrossing pairs.
6. $\left.\quad a_{0}=1, a_{n}=a_{n-1}+(n-1) a_{n-2} \cdot[d \pm 2] . e^{a t \cdot}=e^{\left(t+t^{2} / 2\right.}\right)$. The first terms are $1,1,2,4,10,26,76,232,764, \ldots$. This sequences enumerates the self-conjugate permutations of $\{1,2, \ldots, n\}$, that is, those permutations in which the number i is in position j if and only if j is in position $i[2, \mathrm{p} .6]$. It also enumerates the special switchboard problem; i.e., it enumerates the states of a telephone exchange with n subscribers which is provided with means to connect subscribers in pairs only (no conference circuits and no outside lines) [3, p. 85].
7. $\quad a_{0}=1, \quad a_{n}=2 a_{n-1}+(n-1) a_{n-1} . \quad[d=4] . \quad e^{a t}=e^{\left(2 t+t^{2} / 2\right)}$. The first terms are $1,2,5,14,43,142,499,1850$. (Compare this with example 4 above; to wit: $1,2,5,14,42,132,429,1430$.) This sequence enumerates the general switchboard problem; i.e., it enumerates the states of a telephone exchange with n subscribers which is provided with means to connect subscribers singly to outside lines and in pairs internally (no conference circuits). This result is new.
8. $a_{0}=1, a_{n}=2 a_{n-1}+2(n-1) a_{n-2} .[d=4]$. [5, Sequence 645] $e^{a t}=e^{\left(2 t+t^{2}\right)}$.
9. $a_{n}=H_{n}(x)$, the Hermite polynomials [3, p. 86]. $[d=4 x]$. $e^{\alpha t}=e^{\left(2 x t-t^{2}\right)}$.

Equation (4), and hence Theorem 1, applies to each of these examples, yielding two identities for each. Applying them to Example 9, for example, yields

$$
H_{n}(x)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} H_{k_{k}}(x) 4^{n-k} x^{n-k}
$$

and

$$
H_{2 n+1}(x)=\sum_{k=0}^{n}(-1)^{k}\binom{2 n+1}{2 k+1} T_{k} 4^{2 k+1} x^{2 k+1} H_{2 n-2 k}(x)
$$

Acknowledgment

The author is pleased to acknowledge useful discussion with, and editorial help from John Riordan.

References

1. Th. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for nonassociative products, Bull. Amer. Math. Soc. 54 (1948), 352-360.
2. T. Mure, "A Treatise on the Theory of Determinants," Dover, New York, 1960.
3. J. Riordan, "An Introduction to Combinatorial Analysis," Wiley, New York, 1968.
4. J. Riordan, "Combinatorial Identities," Wiley, New York, 1968.
5. N. J. A. Sloane, "A Handbook of Integer Sequences," Academic Press, New York, 1973.
6. I. Touchard, Sur Certaines Equations Fonctionnelles, Proc. Int. Cong. Math. Toronto 1924, Toronto 1928, 465-472.
