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This paper treats the class of sequences {a,,} that satisfy the recurrence relation 
a, = j$=, (- l)QakPk, with d constant, and shows that there is a relationship 
between the odd and even terms of {a,} that involves the coefficients of tan(t), 
namely 

A combinatorial setting is then provided to elucidate the appearance of the 
tangent coefficients in this equation. 

1. INTRODUCTION 

Two sequences j;E and g, are binomial inverses (cf. [La, p. 43]), if they 
satisfy the inverse relations 
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With the sequence Tk defined by eTt = tan(t), T2”f1 = T, , Eq. (4), 
with d = 26, implies the relations between even and odd terms: 

and 

a - a2n+l I_-- + z; (- 1)” (,2; 1) [gq] a2n~..2k-l . 2n - (2n + 1) 6 

It is shown that every self-inverse sequence of degree d satisfies the 
generating function relation 

eat = edte-at 

and as a consequence a, is self-inverse of degree d = 26 if it satisfies the 
relation 

a, = Jf Tk fk 8n-2k 
k=O ( 1 

for any arbitrary sequence fk . 
The particular instance 

the number of even-subsets of a set, which satisfies the weighted inclusion- 
exclusion identity 

e an+1 = z. C-1)" (tJTik) Tke2n-21c2 

is used to determine the Tk’s combinatorially as the weightings required 
to insure that every even subset is counted exactly once in this summation. 

The paper concludes with a number of examples of self-inverse sequences 
to give the subject some concreteness. 

II. CHARACTERIZATION OF THE ODD TERMS 

Expanding Eq. (4) and solving for the highest coefficient yields, for 
n = 0(1)3: 

a, = a, + no information, 

a, = da, - a, + 2a, = da,, , 

a2 = d2ao - 2da, + a2 -+ no new information, 

a3 = d3ao - 3d2a, + 3da2 - a3 -+ 4a3 = -d3a, + 6da, . 
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In general Eq. (4), the defining identity for self-inverse sequences, imposes 
no constraints on the even terms but completely specifies the odd terms. 
Setting d y. 26, these specifying equations can be written, for M : 1(2)7, 
as: 

The numbers T,, = 1, T, = 2, T, = 16, T, = 272,... [5, Sequence 8291 
appearing in these equations are the coefficients of 

tan(t) = f  T,t2n+1/(2n -}- I)!. 
n=0 

This result is stated generally as 

THEOREM 1 (MAIN THEOREM). %f a,rL is self-inoerse of degree d 
then with T,, defined by Eq. (5), 

a 2ni1 = 
k=O 

(-I)” (f; i : ) T,c 82k+1aSn--2k . 

&ROLLARY. 
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Proof. Eq. (8) is Eq. (6) with a, = 6 = 1; and for this sequence Eq. (4) 
reduces to 1 = (2 - 1)“. In addition, Eq. (7) reduces to sin(t) = 
tan(t) cos(t). 

III. EXTENSIONS AND INVERSE OF THE MAIN THEOREM 

Let 6, satisfy 

b, = - gO (-1)” (;) b,dn-” = -(d - b)“, b” = bk . (9) 

Then b, can be said to be anti-self-inverse since Eq. (9) differs from 
Eq. (4) only by a minus sign. 

THEOREM 2. If b, is anti-self-inverse of degree d = 28, then with T, 
defined by Eq. (5), 

b - 2nt2 - j .  C-1)” ( ;; : :) T7c 82k+1L+1--2k . 

Proof. Paralleling the proof of Theorem 1, 

b” = -(d - b)“, bk E b k 
* eibte--i8t = wei8te-ibt, i2 = -1 

=t- -cos(&) cos(bt) = sin@) sin(bt), 
=+ ’ -cos(bt) = tan(&) sin(bt). 

COROLLARY. If b, satisfies 

b, = i (-I)” (;I ; ;) bkd”-L 
k=O 

for any positive integer r, then with d = 26, 

b Wil = go t- 1)” (Zn2; : f r, Tk S2k+1bZn--27~ . 

Proof. Relabeling b, -+ b,+, and 0 + b, , i = O(l)r - 1, makes b, 
self-inverse for r even and anti-self-inverse for r odd. 

The following theorem is the inverse of Theorem 1, and defines the 
even terms of a, as sums over the odd terms. It is included for completeness 
although it is perhaps too cumbersome to be of computational value. 
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THEOREM 3. If a, is selj?nuerse of degree d = 28, then with T, d@ned 

by Eq- (51, 

YroojI From Eq. (7), cos(at) = cot(&) sin(at). The coefficients of 
cot(t) are expressed here in terms of the Tk’s rather than the more usual 

ernoulli numbers. 

IV. CHARACTERIZING SELF-INVERSE FUNCTIONS 

THEOREM 4. (Exponential generating function): The sequence a, is 
self-inverse of degree d if and only if 

@at I edte-at > an E a 12. (11) 

an = (d - a)“, a7c E a tc 
..+ ent ==: e(d-a)t 

@OROLLARY. Every generuting function of the fmm eat = eatL(t’), with 
L(t) any formal Laurent series, is the generating ~1~nct~Q~ of a self-inverse 
sequence cf degree d = 26. 

is self-inverse ?f degree d = 28. 
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Proof. If 

a, = 5 2nk fk 2Pzk, 
( 1 m = [n/2], 

k:=lJ 

then 

eat = eat cosh(ft), f”” -fk, 

and the result follows by the Corollary to Theorem 4 above. 

V. COMBINATORIAL SETTING OF Tk 

Let a, and f* be any two sequences related by Eq. (12) with 6 
let a, andf, satisfy 

a, = 7Eo (2;)h ’ m = w21- 
Similarly define the particular instance 

1, i.e., 

(13) 

(14) 

Then e, counts the number of even cardinality subsets of an n element set. 
Letting T, be defined by Eq. (8), then, 

e 2s+1 = 

which is an instance of Theorem 1 with S = 1. 
The bottom equation in (15) asserts that the number of even cardinality 

subsets of an odd cardinality set U can be found by inclusion-exclusion 
on the even-subset enumerators of the even subsets of U, appropriately 
weighted. The weighting factors Trc , defined by Eq. (8) ensure that every 



even cardinahty subset of U is counted in the inclusion-exclusion (15), 
exactly once. 

The same method applied in general to a, , defined in Eq. (13) with f”” 
arbitrary, yields 

which is Theorem 1 with 6 = 1, and which provides an alternative proof 
of the theorem. 

Interpreting the numbers Tk as weighting factors for an inclusion- 
exclusion enumeration of even cardinality subsets of an odd cardinality 
set, Eq. (15), defines the TTC’s combinatorially. This is the way I originally 
computed their values. Only after I found, by using Sloan [5], that they 
were the coefficients of tan(t) did I sear& for a proof of this fact using 
generating functions. 

1. a,‘ -- k”, k constant. [d -_ 2kJ eat == eLd. 
3 -. a0 =- 1 9 an = 2’-W, n 3 1. [d r. Ilk]. The case k = 1 is the 

defined by Eq. (14): e, = CP (&) = 2’+‘. e”” = 3 + P/2 =: 

3, a, -7. ($), k am integer. [c/ =- 3]- eat ett2p/(2k)!~ 
by 21; j- I makes the sequence a~t~-se~f~~~ver§e~ 

the ~~a~~an number§ 14.1. [cl 1 41. 
ers is due to ~ou~~~ard [6] (cf. also 

]4, p. 1561) and was starting point for this work. 

cR the Catalan numbers (m is for 
IS, as posed in [I], are the number of 

ways of selecting n points on a circle either singly or in ~o~cross~~~ pairs. 
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6. a, = 1, a, = a,-, + (n - ‘1) ane2 . [d + 21. ,eat = cF+~‘/~). The 
first terms are 1, 1, 2, 4, 10,26, 76,232, 764 ,... . This sequences enumerates 
the self-conjugate permutations of {1,2 ,..., n}, that is, those permutations 
in which the number i is in position j if and only if j is in position i [2, p. 61. 
It also enumerates the special switchboard problem; i.e., it enumerates 
the states of a telephone exchange with n subscribers which is provided 
with means to connect subscribers in pairs only (no conference circuits 
and no outside lines) [3, p. 851. 

7. a, = 1, a, = 2anel + (n - 1) a,-, . [d = 41. eat = e(zt-t-t2/2). 
The first terms are I, 2, 5, 14,43, 142,499, 1850. (Compare this with 
example 4 above; to wit: 1, 2, 5, 14,42, 132, 429, 1430.) This sequence 
enumerates the general switchboard problem; i.e., it enumerates the states 
of a telephone exchange with n subscribers tihich is provided with means 
to connect subscribers singly to outside lines and in pairs internally 
(no conference circuits). This result is new. 

8. a, = 1, a, = 2ansl + 2(n - 1) a+2 . [d = 41. [5, Sequence 6451 
,at = e(2t+t2) 

9. ~1, = H,(X), the Hermite polynomials [3, p. 861. [n = 4x]. 
eat zxz em--t’) 

Equation (4), and hence Theorem 1, applies to each of these examples, 
yielding two identities for each. Applying them to Example 9, for example, 
yields 

H,(x) = f (-1)” (2) H,(X) 4+7YP7c 
k=O 

and 

Hzn+&) = 7go (- 1)” ($ ; :, T7~4z~+1X2k+1HZn-21c(X). 
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