Incomplete Generalized Jacobsthal and Jacobsthal-Lucas Numbers

G. B. Djordjević
Department of Mathematics
Faculty of Technology
University of Niš
YU-16000 Leskovać, Serbia and Montenegro, Yugoslavia
ganedj@eunet.yu
H. M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4, Canada
harimsri@math.uvic.ca

(Received and accepted October 2004)

Abstract

In this paper, we present a systematic investigation of the incomplete generalized Jacobsthal numbers and the incomplete generalized Jacobsthal-Lucas numbers. The main results, which we derive here, involve the generating functions of these incomplete numbers. (c) 2005 Elsevier Ltd. All rights reserved.

Keywords-Incomplete generalized Jacobsthal numbers, Incomplete generalized JacobsthalLucas numbers, Generating functions.

1. INTRODUCTION AND DEFINITIONS

Recently, Djordjević $[1,2]$ considered four interesting classes of polynomials: the generalized Jacobsthal polynomials $J_{n, m}(x)$, the generalized Jacobsthal-Lucas polynomials $j_{n, m}(x)$, and their associated polynomials $F_{n, m}(x)$ and $f_{n, m}(x)$. These polynomials are defined by the following recurrence relations (cf., [1-3]):

$$
\begin{align*}
J_{n, m}(x) & =J_{n-1, m}(x)+2 x J_{n-m, m}(x) \\
\left(n \geqq m ; m, n \in \mathbb{N} ; \quad J_{0, m}(x)\right. & \left.=0, J_{n, m}(x)=1, \text { when } n=1, \ldots, m-1\right), \tag{1.1}\\
j_{n, m}(x) & =j_{n-1, m}(x)+2 x j_{n-m, m}(x) \\
\left(n \geqq m ; m, n \in \mathbb{N} ; j_{0, m}(x)\right. & \left.=2, j_{n, m}(x)=1, \text { when } n=1, \ldots, m-1\right), \tag{1.2}\\
F_{n, m}(x) & =F_{n-1, m}(x)+2 x F_{n-m, m}(x)+3 \\
\left(n \geqq m ; m, n \in \mathbb{N} ; F_{0, m}(x)\right. & \left.=0, F_{n, m}(x)=1, \text { when } n=1, \ldots, m-1\right), \tag{1.3}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
& f_{n, m}(x)=f_{n-1, m}(x)+2 x f_{n-m, m}(x)+5 \\
&\left(n \geqq m ; m, n \in \mathbb{N} ; \quad f_{0, m}(x)=0 ; f_{n, m}(x)=1, \text { when } n=1, \ldots, m-1\right) \tag{1.4}
\end{align*}
$$
\]

\mathbb{N} being the set of natural numbers and

$$
\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}=\{0,1,2, \ldots\}
$$

Explicit representations for these four classes of polynomials are given by

$$
\begin{gather*}
J_{n, m}(x)=\sum_{r=0}^{[(n-1) / m]}\binom{n-1-(m-1) r}{r}(2 x)^{r}, \tag{1.5}\\
j_{n, m}(x)=\sum_{k=0}^{[n / m]} \frac{n-(m-2) k}{n-(m-1) k}\binom{n-(m-1) k}{k}(2 x)^{k}, \tag{1.6}\\
F_{n, m}(x)=J_{n, m}(x)+3 \sum_{r=0}^{[(n-m+1) / m]}\binom{n-m+1-(m-1) r}{r+1}(2 x)^{r}, \tag{1.7}
\end{gather*}
$$

and

$$
\begin{equation*}
f_{n, m}(x)=J_{n, m}(x)+5 \sum_{r=0}^{[(n-m+1) / m]}\binom{n-m+1-(m-1) r}{r+1}(2 x)^{r} \tag{1.8}
\end{equation*}
$$

respectively. Tables for $J_{n, m}(x)$ and $j_{n, m}(x)$ are provided in [2].
By setting $x=1$ in definitions (1.1)-(1.4), we obtain the generalized Jacobsthal numbers

$$
\begin{equation*}
J_{n, m}:=J_{n, m}(1)=\sum_{r=0}^{[(n-1) / m]}\binom{n-1-(m-1) r}{r} 2^{r} \tag{1.9}
\end{equation*}
$$

and the generalized Jacobsthal-Lucas numbers

$$
\begin{equation*}
j_{n, m}:=j_{n, m}(1)=\sum_{r=0}^{[n / m]} \frac{n-(m-2) r}{n-(m-1) r}\binom{n-(m-1) r}{r} 2^{r} \tag{1.10}
\end{equation*}
$$

and their associated numbers

$$
\begin{equation*}
F_{n, m}:=F_{n, m}(1)=J_{n, m}(1)+3 \sum_{r=0}^{[(n-m+1) / m]}\binom{n-m+1-(m-1) r}{r+1} 2^{r} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n, m}:=f_{n, m}(1)=J_{n, m}(1)+5 \sum_{r=0}^{[(n-m+1) / m]}\binom{n-m+1-(m-1) r}{r+1} 2^{r} \tag{1.12}
\end{equation*}
$$

Particular cases of these numbers are the so-called Jacobsthal numbers J_{n} and the JacobsthalLucas numbers j_{n}, which were investigated earlier by Horadam [4]. (See also a systematic investigation by Raina and Srivastava [5], dealing with an interesting class of numbers associated with the familiar Lucas numbers.)

Motivated essentially by the recent works by Filipponi [6], Pintér and Srivastava [7], and Chu and Vicenti [8], we aim here at introducing (and investigating the generating functions of) the analogously incomplete version of each of these four classes of numbers.

2. GENERATING FUNCTIONS OF THE INCOMPLETE GENERALIZED JACOBSTHAL
 AND JACOBSTHAL-LUCAS NUMBERS

We begin by defining the incomplete generalized Jacobsthal numbers $J_{n, m}^{k}$ by

$$
\begin{equation*}
J_{n, m}^{k}:=\sum_{r=0}^{k}\binom{n-1-(m-1) r}{r} 2^{r} \quad\left(0 \leqq k \leqq\left[\frac{n-1}{m}\right] ; m, n \in \mathbb{N}\right), \tag{2.1}
\end{equation*}
$$

so that, obviously,

$$
\begin{gather*}
J_{n, m}^{[(n-1) / m(n-1) / m]}=J_{n, m}, \tag{2.2}\\
J_{n, m}^{k}=0 \quad(0 \leqq n<m k+1), \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
J_{m k+l, m}^{k}=J_{m k+l-1, m} \quad(l=1, \ldots, m) . \tag{2.4}
\end{equation*}
$$

The following known result (due essentially to Pintér and Srivastava [7]) will be required in our investigation of the generating functions of such incomplete numbers as the incomplete generalized Jacobsthal numbers $J_{n, m}^{k}$ defined by (2.1). For the theory and applications of the various methods and techniques for deriving generating functions of special functions and polynomials, we may refer the interested reader to a recent treatise on the subject of generating functions by Srivastava and Manocha [9].

Lemma 1. (See [7, p. 593].) Let $\left\{s_{n}\right\}_{n=0}^{\infty}$ be a complex sequence satisfying the following nonhomogeneous recurrence relation:

$$
\begin{equation*}
s_{n}=s_{n-1}+2 s_{n-m}+r_{n} \quad(n \geqq m ; m, n \in \mathbb{N}), \tag{2.5}
\end{equation*}
$$

where $\left\{r_{n}\right\}$ is a given complex sequence. Then the generating function $S(t)$ of the sequence $\left\{s_{n}\right\}$ is

$$
\begin{equation*}
S(t)=\left(s_{0}-r_{0}+\sum_{l=1}^{m-1} t^{l}\left(s_{l}-s_{l-1}-r_{l}\right)+G(t)\right)\left(1-t-2 t^{m}\right)^{-1}, \tag{2.6}
\end{equation*}
$$

where $G(t)$ is the generating function of the sequence $\left\{r_{n}\right\}$.
Our first result on generating functions is contained in Theorem 1 below.
Theorem 1. The generating function of the incomplete generalized Jacobsthal numbers $J_{n, m}^{k}$ ($k \in \mathbb{N}_{0}$) is given by

$$
\begin{align*}
R_{m}^{k}(t)= & \sum_{r=0}^{\infty} J_{k, m}^{r} t^{r} \\
= & t^{m k+1}\left(\left[J_{m k, m}+\sum_{l=1}^{m-1} t^{l}\left(J_{m k+l, m}-J_{m k+l-1, m}\right)\right](1-t)^{k+1}-2^{k+1} t^{m}\right) \tag{2.7}\\
& \cdot\left[\left(1-t-2 t^{m}\right)(1-t)^{k+1}\right]^{-1} .
\end{align*}
$$

Proof. From (1.1) (with $x=1$) and (2.1), we get

$$
\begin{align*}
& J_{n, m}^{k}-J_{n-1, m}^{k}-2 J_{n-m, m}^{k}=\sum_{r=0}^{k}\binom{n-1-(m-1) r}{r} 2^{r} \\
& -\sum_{r=0}^{k}\binom{n-2-(m-1) r}{r} 2^{r}-\sum_{r=0}^{k}\binom{n-1-m-(m-1) r}{r} 2^{r+1} \\
& =\sum_{r=0}^{k}\binom{n-1-(m-1) r}{r} 2^{r}-\sum_{r=0}^{k}\binom{n-2-(m-1) r}{r} 2^{r} \\
& -\sum_{r=1}^{k+1}\binom{n-2-(m-1) r}{r-1} 2^{r} \\
& =\sum_{r=0}^{k}\binom{n-1-(m-1) r}{r} 2^{r}-\sum_{r=1}^{k}\binom{n-2-(m-1) r}{r} 2^{r-1} \\
& -\sum_{r=1}^{k}\binom{n-2-(m-1) r}{r-1} 2^{r}-\binom{n-2-(m-1)(k+1)}{k} 2^{k+1} \\
& =-\sum_{r=1}^{k}\left[\binom{n-2-(m-1) r}{r}+\binom{n-2-(m-1) r}{r-1}\right] 2^{r} \tag{2.8}\\
& -1-\binom{n-2-(m-1)(k+1)}{k} 2^{k+1}+\sum_{r=0}^{k}\binom{n-1-(m-1) r}{r} 2^{r} \\
& =\sum_{r=1}^{k}\binom{n-1-(m-1) r}{r} 2^{r}+1-\sum_{r=1}^{k}\binom{n-1-(m-1) r}{r} 2^{r} \\
& -1-\binom{n-2-(m-1)(k+1)}{k} 2^{k+1} \\
& =-\binom{n-1-m-(m-1) k}{k} 2^{k+1} \\
& =-\binom{n-1-m-(m-1) k}{n-1-m-m k} 2^{k+1} \quad\left(n \geqq m+1+m k ; k \in \mathbb{N}_{0}\right) .
\end{align*}
$$

Next, in view of (2.3) and (2.4), we set

$$
s_{0}=J_{m k+1, m}^{k}, s_{1}=J_{m k+2, m}^{k}, \ldots, s_{m-1}=J_{m k+m, m}^{k}
$$

and

$$
s_{n}=J_{m k+n+1, m}^{k}
$$

Suppose also that

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0 \quad \text { and } \quad r_{n}=2^{k+1}\binom{n-m+k}{n-m}
$$

Then, for the generating function $G(t)$ of the sequence $\left\{r_{n}\right\}$, we can show that

$$
G(t)=\frac{2^{k+1} t^{m}}{(1-t)^{k+1}}
$$

Thus, in view of the above lemma, the generating function $S_{m}^{k}(t)$ of the sequence $\left\{s_{n}\right\}$ satisfies the following relationship:

$$
S_{m}^{k}(t)\left(1-t-2 t^{m}\right)+\frac{2^{k+1} t^{m}}{(1-t)^{k+1}}=J_{m k, m}(k)+\sum_{l=1}^{m-1} t^{l}\left(J_{m k+l, m}-J_{m k+l-1, m}\right)+\frac{2^{k+1} t^{m}}{(1-t)^{k+1}}
$$

Hence, we conclude that

$$
R_{m}^{k}(t)=t^{m k+1} S_{m}^{k}(t)
$$

This completes the proof of Theorem 1.
Corollary 1. The incomplete Jacobsthal numbers $J_{n}^{k}\left(k \in \mathbb{N}_{0}\right)$ are defined by

$$
\begin{gathered}
J_{n}^{k}:=J_{n, 2}^{k}=\sum_{r=0}^{k}\binom{n-1-r}{r} 2^{r} \\
\left(0 \leqq k \leqq\left[\frac{n-1}{2}\right] ; n \in \mathbb{N} \backslash\{1\}\right)
\end{gathered}
$$

and the corresponding generating function is given by (2.7) when $m=2$, that is, by

$$
\begin{equation*}
R_{2}^{k}(t)=t^{2 k+1}\left[J_{2 k}+t\left(J_{2 k+1}-J_{2 k}\right)(1-t)^{k+1}-2^{k+1} t^{2}\right] \cdot\left[\left(1-t-2 t^{2}\right)(1-t)^{k+1}\right]^{-1} \tag{2.9}
\end{equation*}
$$

3. INCOMPLETE GENERALIZED JACOBSTHAL-LUCAS NUMBERS

For the incomplete generalized Jacobsthal-Lucas numbers $j_{n, m}^{k}$ defined by [cf. equation (1.10)]

$$
\begin{align*}
j_{n, m}^{k}:= & \sum_{r=0}^{k} \frac{n-(m-2) r}{n-(m-1) r}\binom{n-(m-1) r}{r} 2^{r} \tag{3.1}\\
& \left(0 \leqq k \leqq\left[\frac{n}{m}\right] ; m, n \in \mathbb{N}\right)
\end{align*}
$$

we now prove the following generating function.
Theorem 2. The generating function of the incomplete generalized Jacobsthal-Lucas numbers $j_{n, m}^{k}\left(k \in \mathbb{N}_{0}\right)$ is given by

$$
\begin{align*}
W_{m}^{k}(t)= & \sum_{r=0}^{\infty} j_{k, m}^{r} t^{r} \\
= & t^{m k}\left[\left(j_{m k-1, m}+\sum_{l=1}^{m-1} t^{l}\left(j_{m k+l-1, m}-j_{m k+l-2, m}\right)\right)(1-t)^{k+1}-2^{k+1} t^{m}(2-t)\right] \tag{3.2}\\
& \cdot\left[\left(1-t-2 t^{m}\right)(1-t)^{k+1}\right]^{-1}
\end{align*}
$$

Proof. First of all, it follows from definition (3.1) that

$$
\begin{gather*}
j_{n, m}^{[n / m]}=j_{n, m}, \tag{3.3}\\
j_{n, m}^{k}=0 \quad(0 \leqq n<m k), \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
j_{m k+l, m}^{k}=j_{m k+l-1, m} \quad(l=1, \ldots, m) . \tag{3.5}
\end{equation*}
$$

Thus, just as in our derivation of (2.8), we can apply (1.2) and (1.10) (with $x=1$) in order to obtain

$$
\begin{equation*}
j_{n, m}^{k}-j_{n-1, m}^{k}-2 j_{n-m, m}^{k}=-\frac{n-m+2 k}{n-m+k}\binom{n-m+k}{n-m} 2^{k+1} . \tag{3.6}
\end{equation*}
$$

Let

$$
s_{0}=j_{m k-1, m}, \quad s_{1}=j_{m k, m}, \ldots, s_{m-1}=j_{m k+m, m}
$$

and

$$
s_{n}=j_{m k+n+1, m}
$$

Suppose also that

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0 \quad \text { and } \quad r_{n}=\frac{n-m+2 k}{n-m+k}\binom{n-m+k}{n-m} 2^{k+1}
$$

Then, the generating function $G(t)$ of the sequence $\left\{r_{n}\right\}$ is given by

$$
G(t)=\frac{2^{k+1} t^{m}(2-t)}{(1-t)^{k+1}}
$$

Hence, the generating function of the sequence $\left\{s_{n}\right\}$ satisfies relation (3.2), which leads us to Theorem 2.

Corollary 2. For the incomplete Jacobsthal-Lucas numbers $j_{n, 2}^{k}$, the generating function is given by (3.2) when $m=2$, that is, by

$$
W_{2}^{k}(t)=t^{2 k}\left[\left(j_{2 k-1}+t\left(j_{2 k}-j_{2 k-1}\right)\right)(1-t)^{k+1}-2^{k+1} t^{2}(2-t)\right] \cdot\left[\left(1-t-2 t^{2}\right)(1-t)^{k+1}\right]^{-1}
$$

4. TWO FURTHER PAIRS OF INCOMPLETE NUMBERS

For a natural number k, the incomplete numbers $F_{n, m}^{k}$ corresponding to the numbers $F_{n, m}$ in (1.11) are defined by

$$
\begin{equation*}
F_{n, m}^{k}:=J_{n, m}^{k}+3 \sum_{r=0}^{k}\binom{n-m+1-(m-1) r}{r+1} 2^{r} \quad\left(0 \leqq k \leqq\left[\frac{n-1}{m}\right] ; m, n \in \mathbb{N}\right) \tag{4.1}
\end{equation*}
$$

where

$$
F_{n, m}^{k}=J_{n, m}^{k}=0, \quad(n<m+m k)
$$

Theorem 3. The generating function of the incomplete numbers $F_{n, m}^{k}\left(k \in \mathbb{N}_{0}\right)$ is given by $t^{m k+1} S_{m}^{k}(t)$, where

$$
\begin{gather*}
S_{m}^{k}(t)=\left[F_{m k, m}+\sum_{l=1}^{m-1} t^{l}\left(F_{m k+l, m}-F_{m k+l-1, m}\right)\right]\left(1-t-2 t^{m}\right)^{-1} \tag{4.2}\\
+\frac{3 t^{m}(1-t)^{k+1}-2^{k+1} t^{m}\left(1-t+3 t^{m-1}\right)}{\left(1-t-2 t^{m}\right)(1-t)^{k+2}}
\end{gather*}
$$

Proof. Our proof of Theorem 3 is much akin to those of Theorems 1 and 2 above. Here, we let

$$
\begin{aligned}
s_{0} & =F_{m k+1, m}^{k}=F_{m k}, \\
s_{1} & =F_{m k+2, m}^{k}=F_{m k-1, m}, \ldots, \\
s_{m-1} & =F_{m k+m, m}^{k}=F_{m k+m-1, m},
\end{aligned}
$$

and

$$
s_{n}=F_{m k+n+1, m}^{k}
$$

Suppose also that

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0
$$

and

$$
r_{n}=\binom{n-m+k}{n-m} 2^{k+1}+3\binom{n-m+2+k}{n-m+k} 2^{k+1}
$$

Then, by using the standard method based upon the above lemma, we can prove that

$$
G(t)=\sum_{n=0}^{\infty} r_{n} t^{n}=\frac{2^{k+1} t^{m}\left(1-t+3 t^{m-1}\right)}{(1-t)^{k+2}}
$$

Let $S_{m}^{k}(t)$ be the generating function of $F_{n, m}^{k}$. Then, it follows that

$$
\begin{aligned}
S_{m}^{k}(t) & =s_{0}+t s_{1}+\cdots+s_{n} t^{n}+\cdots \\
t S_{m}^{k}(t) & =t s_{0}+t^{2} s_{1}+\cdots+t^{n} s_{n-1}+\cdots \\
2 t^{m} S_{m}^{k}(t) & =2 t^{m} s_{0}+2 t^{m+1} s_{1}+\cdots+2 t^{n} s_{n-m}+\cdots
\end{aligned}
$$

and

$$
G(t)=r_{0}+r_{1} t+\cdots+r_{n} t^{n}+\cdots
$$

The generating function $t^{m k+1} S_{m}^{k}(t)$ asserted by Theorem 3 would now result easily.
Corollary 3. For the incomplete numbers $F_{n, 2}^{k}$ defined by (4.1) with $m=2$, the generating function is given by

$$
\begin{gather*}
t^{2 k+1} S_{2}^{k}(t)=t^{2 k+1} \\
\left(\frac{\left[F_{2 k}+t\left(F_{2 k+1}-F_{2 k}\right)\right](1-t)^{k+2}+3 t^{2}(1-t)^{k+2}-2^{k+1} t^{2}\left(1-t+3 t^{2}\right)}{\left(1-t-2 t^{2}\right)(1-t)^{k+2}}\right) \tag{4.3}
\end{gather*}
$$

Finally, the incomplete numbers $f_{n, m}^{k}\left(k \in \mathbb{N}_{0}\right)$ corresponding to the numbers $f_{n, m}$ in (1.12) are defined by

$$
\begin{equation*}
f_{n, m}^{k}:=J_{n, m}^{k}+5 \sum_{r=0}^{k}\binom{n+1-m-(m-1) r}{r+1} 2^{r} \quad\left(0 \leqq k \leqq\left[\frac{n-1}{m}\right] ; m, n \in \mathbb{N}\right) \tag{4.4}
\end{equation*}
$$

THEOREM 4. The incomplete numbers $f_{n, m}^{k}\left(k \in \mathbb{N}_{0}\right)$ have the following generating function:

$$
\begin{align*}
W_{m}^{k}(t)= & t^{m k+1}\left[f_{m k, m}+\sum_{l=1}^{m-1} t^{l}\left(f_{m k+l, m}-f_{m k+l-1, m}\right)\right]\left(1-t-2 t^{m}\right)^{-1} \tag{4.5}\\
& +t^{m k+1}\left(\frac{5 t^{m}(1-t)^{k+1}-2^{k+1} t^{m}\left(1-t+5 t^{m-1}\right)}{\left(1-t-2 t^{m}\right)(1-t)^{k+2}}\right)
\end{align*}
$$

Proof. Here, we set

$$
\begin{aligned}
& s_{0}=f_{m k+1, m}^{k}=f_{m k, m} \\
& s_{1}=f_{m k+2, m}^{k}=f_{m k+1, m} \\
& \vdots \\
& s_{m-1, m}=f_{m k+m, m}^{k}=f_{m k+m-1, m}
\end{aligned}
$$

and

$$
s_{n}=f_{m k+n+1, m}^{k}=f_{m k+n, m}
$$

We also suppose that

$$
r_{0}=r_{1}=\cdots=r_{m-1}=0
$$

and

$$
r_{n}=2^{k+1}\binom{n-m+k}{n-m}+5 \cdot 2^{k+1}\binom{n-2 m+2+k}{n-2 m+1}
$$

Then, by using the known method based upon the above lemma, we find that

$$
G(t)=\frac{2^{k+1} t^{m}\left(1-t+5 t^{m-1}\right)}{(1-t)^{k+2}}
$$

is the generating function of the sequence $\left\{r_{n}\right\}$. Theorem 4 now follows easily.
In its special case when $m=2$, Theorem 4 yields the following generating function for the incomplete numbers investigated in $[6,7]$.
Corollary 4. The generating function of the incomplete numbers $f_{n, 2}^{k}$ is given by (4.5) when $m=2$, that is, by

$$
\begin{gather*}
W_{2}^{k}(t)=t^{2 k+1} \\
\left(\frac{\left[f_{2 k}+t\left(f_{2 k+1}-f_{2 k}\right)\right](1-t)^{k+2}+5 t^{2}(1-t)^{k+1}-2^{k+1} t^{2}(1+4 t)}{\left(1-t-2 t^{2}\right)(1-t)^{k+2}}\right) \tag{4.6}
\end{gather*}
$$

REFERENCES

1. G.B. Djordjević, Generalized Jacobsthal polynomials, Fibonacci Quart. 38, 239-243, (2000).
2. G.B. Djordjević, Derivative sequences of generalized Jacobsthal and Jacobsthal-Lucas polynomials, Fibonacci Quart. 38, 334-338, (2000).
3. A.F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35, 137-148, (1997).
4. A.F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34, 40-54, (1996).
5. R.K. Raina and H.M. Srivastava, A class of numbers associated with the Lucas numbers, Mathl. Comput. Modelling 25 (7), 15-22, (1997).
6. P. Filipponi, Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (Ser. 2) 45, 37-56, (1996).
7. Á. Pintér and H.M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (Ser. 2) 48, 591-596, (1999).
8. W.-C. Chu and V. Vicenti, Funzione generatrice e polinomi incompleti di Fibonacci e Lucas, Boll. Un. Mat. Ital. B (Ser. 8) 6, 289-308, (2003).
9. H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, (1984).

[^0]: The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

