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GENERALIZATIONS OF THE FIBONACCI

AND LUCAS POLYNOMIALS

Gospava B. Djordjević∗

Abstract

In this note we consider two sequences of polynomials, which are denoted
by {U (k)

n,m} and {V (k)
n,m}, where k, m, n are nonnegative integers, and m ≥

2. These sequences represent generalizations of the well-known Fibonacci
and Lucas polynomials. For example, if m = 2, then we obtain exactly the
Fibonacci and Lucas polynomials. If m = 3, then polynomials U

(k)
n,3 and V

(k)
n,3

were considered in papers (G. B. Djordjević, Fibonacci Quart. 39.2(2001),
and G. B. Djordjević, Fibonacci Quart. 43.4(2005)).

1 Introduction

The Fibonacci and Lucas polynomials are well-known and widely investigated. In
this paper we consider a more general situation, by investigating polynomials Un,m

and Vn,m, where all polynomials are polynomials in a real variable x, and m, n are
nonnegative integers, m ≥ 2. Recall that polynomials Un,m and Vn,m, respectively,
are defined by recurrence relations (see [1, 2]):

Un,m = xUn−1,m + Un−m,m, n ≥ m, (1.1)

with U0,m = 0, Un,m = xn−1, n = 1, 2, . . . , m− 1, and

Vn,m = xVn−1,m + Vn−m,m, n ≥ m, (1.2)

with V0,m = 2, Vn,m = xn, n = 1, . . . ,m − 1, m ≥ 2 and x is a real variable. In
this case corresponding generating functions are given by:

Um(t) =
t

1− xt− tm
=

∞∑
n=0

Un,m tn (1.3)
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V m(t) =
2− xt

1− xt− tm
=

∞∑
n=0

Vn,m tn. (1.4)

It is easy to obtain the equality

Vn,m = Un+1,m + Un+1−m,m, n ≥ m− 1.

We denote by U
(k)
n,m and V

(k)
n,m, respectively, derivatives of the kth order of polyno-

mials Un,m and Vn,m, i.e.

U (k)
n,m =

dk

dxk
{Un,m} and V (k)

n,m =
dk

dxk
{Vn,m}.

For given real x, we take complex numbers α1, α2, . . . , αm, such that they satisfy:
m∑

i=1

αi = x,
∑

i<j

αiαj = 0,
∑

i<j<k

αiαjαk = 0, . . . , α1 · · ·αm = (−1)n−1, (1.5)

where i, j, k ∈ {1, 2, . . . ,m}. For m = 4, equalities (1.5) yield:

4∑

i=1

αi = x,
∑

i<j

αiαj = 0,
∑

i<j<k

αiαjαk = 0, α1α2α3α4 = −1, (1.6)

for i, j, k ∈ {1, 2, 3, 4}.
If m = 2, then we obtain exactly the Fibonacci and Lucas polynomials. If m = 3,

then polynomials U
(k)
n,3 and V

(k)
n,3 were considered in papers [1] and [2]. In Section 2

we investigate polynomials U
(k)
n,4 , and in Section 3 we consider the general case of

polynomials U
(k)
n,n. In Section 4 we prove some related identities.

2 Polynomials U
(k)
n,4

In this section we investigate polynomials U
(k)
n,4 , which are a special case of polyno-

mials U
(k)
n,m. From (1.1), for m = 4, we get

Un,4 = xUn−1,4 + Un−4,4, n ≥ 4, (2.1)

with initial values U0,4 = 0, U1,4 = 1, U2,4 = x, U3,4 = x2. Hence, by (1.3), we
have that U4(t) is the corresponding generating function

U4(t) =
t

1− xt− t4
=

∞∑
n=0

Un,4 tn. (2.2)

Differentiating both sides of (2.2) k times with respect to x, we obtain

U4
k (t) =

k! tk+1

(1− xt− t4)k+1
=

∞∑
n=0

U
(k)
n,4 tn. (2.3)

Now, we prove the following result.
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Theorem 2.1. For a nonnegative integer k the following holds:

U4
k (t) =

k!
(α1A1

10)k+1

k∑

i=0

a1
k,i

(1− α1t)k+1−i
(2.4)

+
k!

(α2A2
10)k+1

k∑

i=0

a2
k,i

(1− α2t)k+1−i
(2.5)

+
k!

(α3A3
10)k+1

k∑

i=0

a3
k,i

(1− α3t)k+1−i
(2.6)

+
k!

(α4A4
10)k+1

k∑

i=0

dk,i

(1− α4t)k+1−i
, (2.7)

where

Ar
10 = Ar

10(αr) =
3α4

r − 2α3
rx + 1

α4
r

, Ar
11 = Ar

11(αr) =
3α3

rx− 3α4
r − 3

α4
r

,

Ar
12 = Ar

12(αr) =
α4

r − α3
rx + 3

α4
r

, Ar
13 = Ar

13(αr) = − 1
α4

r

,

ar
k,i = (−1)i(Ar

10)
i

(
k + 1

i

)
−

i∑

j=1

[j/2]∑

l=0

j−2l∑
s=0

(
k + 1

j

)(
j − l − s

l

)(
l

s

)
(Ar

10)
l+s(Ar

11)
j−2l(Ar

12)
l−s(Ar

13)
sak,i−j ,

r = 1, 2, 3, 4.

Proof. Using the equality (1.6), we get

tk+1

(1− xt− t4)k+1
(2.8)

=
tk+1

(1− α1t)k+1(1− α2t)k+1(1− α3t)k+1(1− α4t)k+1
(2.9)

=
k∑

i=0

a1
k,i

(1− α1t)k+1−i
+

k∑

i=0

a2
k,i

(1− α2t)k+1−i
(2.10)

+
k∑

i=0

a3
k,i

(1− α3t)k+1−i
+

k∑

i=0

a4
k,i

(1− α4t)k+1−i
. (2.11)

Multiplying both sides of (2.8)– (2.11) with

αk+1
1 (1− α2t)k+1(1− α3t)k+1(1− α4t)k+1 (2.12)
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we get the following equality

(α1t)k+1

(1− α1t)k+1
= αk+1

1

(
A1

10 + A1
11(1− α1t) + A1

12(1− α1t)2 (2.13)

+A1
13(1− α1t)3

)k+1
k∑

i=0

A1
k,i

(1− α1t)k+1−i
+ Φ1(t), (2.14)

(Φ1(t) is an analytic function at the point t = α−1
1 , t is a complex variable and x is

a real constant.) On the other hand, we see that:

(α1t)k+1

(1− α1t)k+1

(
(1− α1t)−1 − 1

)k+1
=

k+1∑

i=0

(
k + 1

i

)
(−1)i(1− α1t)−(k+1−i), (2.15)

so

k+1∑

i=0

(
k + 1

i

)
(−1)i(1− α1t)−(k+1−i)

= αk+1
1

(
A1

10 + A1
11(1− α1t) + A1

12(1− α1t)2 + A1
13(1− α1t)3

)k+1 ×

×
k∑

i=0

A1
k,i

(1− α1t)k+1−i
+ Φ1(t)

= αk+1
1

k+1∑

j=0

j∑

l=0

l∑
s=0

(
k + 1

j

)(
j

l

)(
l

s

)
(A1

10)
k+1−j(A1

11)
j−l(A1

12)
l−sAs

13 ×

×(1− α1t)l+j+s
k∑

i=0

A1
k,i

(1− α1t)k+1−i
+ Φ1(t).

Because the Laurent series is unique at the point t = α−1
1 for the function

(α1t)−(k+1) (1− α1t)
−(k+1), from the last equality, and l + j + s := j, j − l :=

j − 2l − s, we get:

k+1∑

i=0

(−1)i

(
k + 1

i

)
(1− α1t)

−(k+1−i)

= αk+1
1

k+1∑

j=0

j∑

l=0

j−2l∑
s=0

(
k + 1

i

)(
j − l − s

l

)(
l

s

)
(A1

10)
k+1−j+l+s(A1

11)
j−2l−s ×

×(A1
12)

l−s(A1
13)

s
k∑

i=0

A1
k,i

(1− α1t)k+1−i
+ Φ1(t).
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Comparing coefficients with respect to (1− α1t)−(k+1−i), we find that:

(−1)i(A1
10)

i

(
k + 1

i

)
= αk+1

1

i∑

j=0

j∑

l=0

j−2l∑
s=0

(
k + 1

j

)(
j − l − s

l

)(
l

s

)
×

×(A1
10)

k+1+i−j(A1
10)

l+s(A1
11)

j−2l−s(A1
12)

l−s(A1
13)

sA1
k,i−j .

Hence, for
αk+1

1 (A1
10)

k+1+i−jA1
k,i−j = a1

k,i−j ,

we get

(−1)i(A1
10)

i

(
k + 1

i

)
=

i∑

j=0

[j/2]∑

l=0

j−2l∑
s=0

(
k + 1

j

)(
j − l − s

l

)(
l

s

)
(A1

10)
l+s(A1

11)
j−2l(A1

12)
l−s(A1

13)
sa1

k,i−j .

It follows that

a1
k,i = (−1)i(A1

10)
i

(
k + 1

i

)
−

i∑

j=1

[j/2]∑

l=0

j−2l∑
s=0

(
k + 1

j

)(
j − l − s

l

)(
l

s

)
(A1

10)
l+s(A1

11)
j−2l(A1

12)
l−s(A1

13)
sa1

k,i−j .

In a similar way, we find the remaining coefficients ar
k,i, r = 1, 2, 3, 4:

ar
k,i = (−1)i(Ar

10)
i

(
k + 1

i

)

−
i∑

j=1

[j/2]∑

l=0

j−2l∑
s=0

(
k + 1

j

)(
j − l − s

l

)(
l

s

)
(Ar

10)
l+s(Ar

11)
j−2l(Ar

12)
l−s(Ar

13)
sar

k,i−j .

Coefficients A1
10, A1

11, A1
12, A1

13 can be computed from the following equalities

A1
10+A1

11(1−α1t)+A1
12(1−α1t)2+A1

13(1−α1t)3 = (1−α2t)(1−α3t)(1−α4t) (2.16)

and using (1.6).
In a similar way, we find the remaining coefficients Ar

10, Ar
11, Ar

12, Ar
13,

r = 2, 3, 4.

3 Polynomials U
(k)
n,m

In this section we investigate polynomials U
(k)
n,m. Differentiating (1.3), k-times with

respect to x, we obtain

Uk
m(t) =

k!tk+1

(1− xt− tm)k+1
=

∞∑
n=0

U (k)
n,m tn. (3.1)
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Theorem 3.1. Let k be a nonnegative integer, and let m be a positive integer,
m ≥ 2. Then

Um
k (t) =

m∑

j=1

k!
(αjA

j
10)k+1

k∑

i=0

aj
k,i

(1− αjt)k+1−i
, (3.2)

where:

Aj
10+ Aj

11(1− αjt) + Aj
12(1− αjt)2 + · · ·+ Aj

1,m−1(1− αjt)m−1

= (1− α1t)(1− α2t) · · · (1− αj−1t)(1− αj+1t) · · · (1− αmt),

and α1, . . . , αm satisfy equalities (1.5);

aj
k,i = (−1)i(Aj

10)
i

(
k + 1

i

)
− (3.3)

i∑

j1=1

j1∑

j2=0

· · ·
jm−2∑

jm−1=0

(
k + 1

j1

)(
j1
j2

)
· · ·

(
jm−2

jm−1

)
(Aj

10)
j2+···+jm−1 × (3.4)

(Aj
11)

j1−j2 · · · × (Aj
1,m−1)

jm−1aj
k,i−j1

, j = 1, 2, . . . , m. (3.5)

Proof. From (3.1) and (1.5) we obtain:

tk+1

(1− xt− tm)k+1
=

tk+1

(1− α1t)k+1 · · · (1− αm)k+1
(3.6)

=
k∑

i=0

A1
k,i

(1− α1t)k+1−i
+

k∑

i=0

A2
k,i

(1− α2t)k+1−i
+ . . . (3.7)

+
k∑

i=0

Am
k,i

(1− αmt)k+1
. (3.8)

Multiplying (3.6)–(3.8) with αk+1
1 (1 − α2t)k+1 · · · (1 − αmt)k+1, we have the

following equality

(α1t)k+1

(1− α1t)k+1
= αk+1

1

(
A1

10 + A1
11(1− α1t) + A1

12(1− α1t)2 + . . . (3.9)

+A1
1,m−1(1− α1t)m−1

)k+1
k∑

i=0

A1
k,i

(1− α1t)k+1−i
+ Φ1(t), (3.10)

(Φ1(t) is an analytic function at t = α−1
1 ; t is a complex variable; x is a real

constant.) The left side of the equality (3.9) can be rewritten in the following form:

(α1t)k+1

(1− α1t)k+1
=

(
(1− α1t)−1 − 1

)k+1
=

k+1∑

i=0

(−1)i

(
k + 1

i

)
(1−α1t)−(k+1−i). (3.11)
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The right side of the same equality is

αk+1
1

k+1∑

j1=0

j1∑

j1=0

· · ·
jm−2∑

jm−1

(
k + 1

j1

)(
j1
j2

)
. . .

(
jm−1

jm−2

)
(A1

10)
k+1−j1(A1

11)
j1−j2 · · · (3.12)

×(A1
1,m−1)

jm−1(1− α1t)j1+···+jm−1

k∑

i=0

A1
k,i

(1− α1t)k+1−i
+ Φ1(t). (3.13)

First taking

αk+1
1 (A1

10)
k+1+i−j1A1

k,i−j1 = a1
k,i−j1 , and j1 + j2 + · · ·+ jm−1 := j1,

comparing coefficients with respect to (1−α1t)−(k+1−i), and then using (3.11) and
(3.12), we obtain coefficients a1

k,i. Similarly, we compute other coefficients, aj
k,i,

j = 1, 2, . . . , jm−1.

4 Some identities

In this section we prove some identities, for generalized polynomials U
(k)
n,m and V

(k)
n,m.

For m = 2, these identities correspond to the Fibonacci and Lucas polynomials. For
m = 3, these identities correspond to generalized polynomials, which are considered
in [1] and [2].

Lemma 4.1. For positive integers m, n, such that n ≥ m ≥ 2, the following hold:

n∑

i=0

Ui,m =
1
x




m−1∑

j=0

Un+2−m+j,m − 1


 , (4.1)

n∑

i=0

Vi,m =
1
x




m−1∑

j=0

Vn+2−m+j,m − 1


 , (4.2)
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n∑

i=0

(
n

i

)
xihr+(m−1)i,m = hr+mn,m, (4.3)

n∑

i=0

(
n

i

)
(−1)ihr+mi,m = (−1)nxnhr+(m−1)n,m, (4.4)

where hn,m = Un,m, or hn,m = Vn,m.

Proof. We use the induction on n. It is easy to see that (4.1) is satisfied for n = 1.
Suppose that the equality (4.1) is valid for n, then (for n := n + 1):

n+1∑

i=0

Ui,m =
1
x




m−1∑

j=0

Un+2−m+j,m − 1


 + Un+1,m

=
1
x




m−1∑

j=0

Un+2−m+j,m − 1 + xUn+1,m


 (by (1.1))

=
1
x




m−1∑

j=0

Un+3−m+j,m − 1


 .

Hence, the equality (4.1) holds for any positive integer n.
The equality (4.2) can be proved in a similar way, using the recurrence relation

(1.2).
Suppose that (4.3) holds for n. Then, taking the value n + 1 instead of n, from

(1.1) and (1.2), we get:

hr+m(n+1),m = xhr+mn+m−1,m + hr+mn,m

=
n∑

i=0

(
n

i

)
xihr+(m−1)i,m + xhr+mn+m−1,m

=
n∑

i=0

(
n

i

)
xihr+(m−1)i,m + x

n∑

i=0

(
n

i

)
xihr+m−1+(m−1)i,m

=
n∑

i=0

(
n

i

)
xihr+(m−1)i,m +

n+1∑

i=1

(
n

i− 1

)
xihr+(m−1)i,m =

n∑

i=1

((
n

i

)
+

(
n

i− 1

))
xihr+(m−1)i,m + hr,m + xn+1hr+(m−1)(n+1),m

=
n∑

i=1

(
n + 1

i

)
xihr+(m−1)i,m +

(
n + 1

0

)
hr,m +

(
n + 1
n + 1

)
hr+(m−1)(n+1),m

=
n+1∑

i=0

(
n + 1

i

)
xihr+(m−1)i,m.
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Now, we have proved the equality (4.3).
Suppose that (4.4) is correct for n. Then

(−1)n+1xn+1hr+(m−1)(n+1),m = (−1)n+1xn(xhr+m−1+(m−1)n,m)

= (−1)n+1xn(hr+m+(m−1)n,m − hr+(m−1)n,m)

= (−1)n+1xnhr+m+(m−1)n,m + (−1)nxnhr+(m−1)n,m

=
n∑

i=0

(−1)i+1

(
n

i

)
hr+m(i+1),m +

n∑

i=0

(−1)i

(
n

i

)
hr+mi,m

=
n∑

i=1

(−1)i

((
n

i− 1

)
+

(
n

i

))
hr+mi,m + hr,m + (−1)n+1hr+m(n+1),m

=
n+1∑

i=0

(−1)i

(
n + 1

i

)
hr+mi,m.

Theorem 4.1. For positive integers m,n, such that n ≥ m ≥ 2, the following
equalities hold:

x

n∑

i=0

U
(k)
i,m =

m−1∑

j=0

U
(k)
n+2−m+j,m − k

n∑

i=0

U
(k−1)
i,m , k ≥ 1. (4.5)

x

n∑

i=0

V
(k)
i,m =

m−1∑

j=0

V
(k)
n+2−m+j,m − k

n∑

i=0

V
(k−1)
i,m , k ≥ 1. (4.6)

n∑

i=0

k∑

j=0

(
n

i

)(
k

j

)
(xi)(j)h(k−j)

r+(m−1)i,m = h
(k)
r+mn,m, (4.7)

n∑

i=0

(−1)i

(
n

i

)
h

(k)
r+mi,m = (−1)n

k∑

j=0

(
k

j

)
(n− j + 1)jx

n−jh
(k−j)
r+(m−1)n,m.(4.8)

where hr,m = Ur,m or hr,m = Vr,m.

Proof. Differentiating both sides of equalities (4.1) and (4.2), on x, k–times, we
obtain equalities (4.5) and (4.6). Using the induction on k, we prove (4.7). If k = 0,
then (4.7) becomes

hr+mn,m =
n∑

i=0

(
n

i

)
xihr+(m−1)i,m,

so, we get the equality (4.7). Suppose that (4.7) holds for k (k ≥ 0). Then, for
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k := k + 1, we get

h
(k+1)
r+mn,m =

n∑

i=0

k∑

j=0

(
n

i

)(
k

j

)
d

dx

(
(xi)(j)h(k−j)

r+(m−1)i,m

)
=

n∑

i=0

k∑

j=0

(
n

i

)(
k

j

) (
(xi)(j+1)h

(k−j)
r+(m−1)i,m + (xi)(j)h(k+1−j)

r+(m−1)i,m

)

n∑

i=0

k+1∑

j=1

(
n

i

)(
k

j − 1

)
(xi)(j)h(k+1−j)

r+(m−1)i,m +
n∑

i=0

k∑

j=0

(
n

i

)(
k

j

)
(xi)(j)h(k+1−j)

r+(m−1)i,m

=
n∑

i=0

k∑

j=1

(
n

i

)(
k + 1

j

)
(xi)(j)h(k+1−j)

r+(m−1)i,m +
n∑

i=0

(
n

i

)
xih

(k+1)
r+(m−1)i,m+

n∑

i=0

(
n

i

)
(xi)(k+1)hr+(m−1)i,m =

n∑

i=0

k+1∑

j=0

(
n

i

)(
k + 1

j

)
(xi)(j)h(k+1−j)

r+(m−1)i,m.

So, we have proved the equality (4.7). Similarly, we can get the equality (4.8).

Further, we prove some equalities, using generating functions (1.3) and (1.4).
Precisely, if we differentiate (1.4) k-times with respect to x, then we obtain

V m
k (t) =

k!tk(1 + tm)
(1− xt− tm)k+1

=
∞∑

n=0

V (k)
n,m tn. (4.9)

Using (3.1) and (4.9), we can easily prove the following theorem.

Theorem 4.2. For integers m, k, r, such that m ≥ 2, and k, r ≥ 0, the following
hold:

Um
k (t)Um

r (t) =
k!r!

(k + r + 1)!
Um

k+r+1(t), (4.10)

Um
k (t)V m(t) =

2t−1 − x

k + 1
Um

k+1(t), (4.11)

V m
k (t)V m

r (t) =
k!r!

(k + r + 1)!
V m

k+r+1(t
−1 + tm−1), (r, k ≥ 1), (4.12)

Um
k (t)V m

r (t) =
k!r!

(k + r + 1)!
V m

k+r+1(t), (r, k ≥ 1), (4.13)

V m
k (t)V (t) =

1
k + 1

(2t−1 − x)V m
k+1(t), (4.14)

V m(t)V m(t) = (2t−1 − x)2Um
1 (t). (4.15)

The following result is an immediate consequence of Theorem 4.2:
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Theorem 4.3. Let m,n, k be integers, such that n ≥ m ≥ 2 and k ≥ 0. Then

n∑

i=0

U
(k)
i,mU

(r)
n−i,m =

k!r!
(k + r + 1)!

U (k+r+1)
n,m , (4.16)

n∑

i=0

U
(k)
i,mVn−i,m =

1
k + 1

(
2U

(k+1)
n+1,m − xU (k+1)

n,m

)
, (4.17)

n∑

i=0

V
(k)
i,mV

(r)
n−i,m =

k!r!
(k + r + 1)!

(
V

(k+r+1)
n+1,m + V

(k+r+1)
n+1−m,m

)
, (4.18)

n∑

i=0

U
(k)
i,mV

(r)
n−i,m =

k!r!
(k + r + 1)!

V (k+r+1)
n,m , (r ≥ 1), (4.19)

n∑

i=0

V
(k)
i,mVn−i,m =

1
k + 1

(
2V

(k+1)
n+1,m − xV (k+1)

n,m

)
, (4.20)

n∑

i=0

Vi,mVn−i,m = 4U
(1)
n+2,m − 4xU

(1)
n+1,m + x2U (1)

n,m. (4.21)

Proof. Comparing coefficients with respect to tn in equalities (4.10)–(4.15), respec-
tively, we obtain equalities (4.16)-(4.21).

Corollary 4.1. Equalities (4.10)–(4.21) for m = 2 and m = 3 correspond to the
Fibonacci and Lucas polynomials, and to those considered in [1] and [2].
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