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Abstract

The generalized harmonic numbers H
(k)
n =

∑n
j=1 j−k satisfy the well-known

congruence H
(k)
p−1 ≡ 0 (mod p) for all primes p ≥ 3 and integers k ≥ 1. We derive

q-analogs of this congruence for two different q-analogs of the sum H
(k)
n . The results

can be written in terms of certain determinants of binomial coefficients which have
interesting properties in their own right. Furthermore, it is shown that one of the
classes of determinants is closely related to degenerate Bernoulli numbers, and new
properties of these numbers are obtained as a consequence.

1 Introduction

The harmonic numbers Hn are defined by

Hn :=
n∑

j=1

1

j
, n ≥ 0,

where by convention H0 = 0. These numbers have been studied extensively (see, e.g., [10,
p. 272 ff.]), and they have important applications in combinatorics, number theory, and
the analysis of algorithms. The harmonic numbers have also been generalized in various
different ways; for a recent summary of generalizations, see [5]. In this paper we will be
concerned with the generalized harmonic numbers defined by

H(k)
n :=

n∑

j=1

1

jk
, n ≥ 0,
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where we restrict our attention to positive integer parameters k. Obviously, H
(1)
n = Hn,

and limn→∞ H
(k)
n = ζ(k) for k ≥ 2, where ζ(k) is the Riemann zeta function. See, e.g.,

[10] for some further properties.
Many special functions, sequences, and identities have interesting and meaningful

q-analogs. For a general discussion of q-series, q-analogs, and their importance in combi-
natorics, analysis, number theory, and other areas, see, e.g., [2, Ch. 10–12]. A q-analog of
Hn is given by the q-harmonic numbers

Hn(q) :=

n∑

j=1

1

[j]q
, n ≥ 0, |q| < 1,

where

[j]q :=
1 − qj

1 − q
= 1 + q + . . . + qj−1, (1.1)

A different q-analog of Hn is

H̃n(q) :=

n∑

j=1

qj

[j]q
.

One of the most remarkable properties of the harmonic numbers is the congruence of
Wolstenholme [17] which states that for primes p ≥ 5,

Hp−1 ≡ 0 (mod p2). (1.2)

This, by the way, is closely related to another famous congruence due to Wolstenhome,
namely (

2p − 1

p − 1

)
≡ 1 (mod p3).

for primes p ≥ 5. See, e.g., [1] for this connection, and [14] for a well-known conjecture
related to this.

Andrews [1] proved a q-analog of the weaker version (mod p) of the congruence (1.2),
namely

Hp−1(q) ≡
p − 1

2
(1 − q) (mod [p]q), (1.3)

as well as

H̃p−1(q) ≡ −
p − 1

2
(1 − q) (mod [p]q), (1.4)

for primes p ≥ 3. More recently Shi and Pan [16] extended (1.3) to

Hp−1(q) ≡
p − 1

2
(1 − q) +

p2 − 1

24
(1 − q)2[p]q (mod [p]2q),

for primes p ≥ 5. These congruences, and all others to come, are to be understood
as congruences in the polynomial ring Z[q]. Note that by (1.1) it is clear that [p]q, as
pth cyclotomic polynomial, is irreducible; hence the demominator of Hp−1(q), seen as a
rational function of q, is relatively prime to [p]q.
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As far as the generalized harmonic numbers are concerned, the analog of Wolsten-
holme’s congruence (1.2) is in general true only modulo p. In fact, Glaisher [8] showed
that

H
(k)
p−1 ≡ 0 (mod p) (1.5)

for all integers k ≥ 1. A little later, Glaisher himself proved refinements of this congruence;
see [9] or [13, p. 353].

It is the main purpose of this paper to find q-analogs of the congruence (1.5). We will
derive congruences (mod [p]q) for the generalized (or higher-order) q-harmonic numbers

H(k)
n (q) :=

n∑

j=1

1

[j]kq
(1.6)

and

H̃(k)
n (q) :=

n∑

j=1

qj

[j]kq
, (1.7)

for all integers k ≥ 1. The case k = 1 is given by (1.3) and (1.4), and the lemma in [16]
states that

H
(2)
p−1(q) ≡ −

(p − 1)(p − 5)

12
(1 − q)2 (mod [p]q), (1.8)

H̃
(2)
p−1(q) ≡ −

p2 − 1

12
(1 − q)2 (mod [p]q). (1.9)

The main results of this paper will be presented in the next section, followed by their
proofs in Sections 3 and 4. In Section 5 we study some properties of the polynomials
in p that occur in these results, and a connection with degenerate Bernoulli numbers is
investigated in Section 6.

2 The Main Results

In terms of the q-analog of the congruence (1.5) it turns out that the sum H̃
(k)
n (q) is a

somewhat more natural q-extension of H
(k)
n than is H

(k)
n (q). We therefore begin with a

result concerning the former sum.
For any integer k ≥ 1 we define the following determinant of binomial coefficients:

D̃k(p) := det




(
p
2

) (
p
1

)
0 . . . 0(

p
3

) (
p
2

) (
p
1

)
. . . 0

...
...

...
. . .

...(
p
k

) (
p

k−1

) (
p

k−2

)
. . .

(
p
1

)
(

p
k+1

) (
p
k

) (
p

k−1

)
. . .

(
p
2

)




, (2.1)

so that in particular

D̃1(p) = det
((

p
2

))
=

p(p − 1)

2
, (2.2)
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and

D̃2(p) = det

((
p
2

) (
p
1

)
(

p
3

) (
p
2

)
)

=
p2(p2 − 1)

12
. (2.3)

The fact that −p−1D̃1(p) and −p−2D̃2(p) occur in (1.4) and (1.9), respectively, is no
coincidence. In fact, we have the following result.

Theorem 1. If p ≥ 3 is a prime, then for all integers k ≥ 1 we have

H̃
(k)
p−1(q) ≡ −

1

pk
D̃k(p)(1 − q)k (mod [p]q). (2.4)

The first few determinants D̃k(p) are listed in Table 1 below.

For our second main result, concerning the other type, H
(k)
n (q), of q-harmonic sums,

we define the determinants

Dk(p) := det




(
p+1
2

)
p 0 . . . 0(

p+1
3

) (
p+1
2

)
p . . . 0

...
...

...
. . .

...(
p+1
k

) (
p+1
k−1

) (
p+1
k−2

)
. . . p(

p+1
k+1

) (
p+1
k

) (
p+1
k−1

)
. . .

(
p+1
2

)




. (2.5)

In analogy to (2.2) and (2.3) we have

D1(p) = det
((

p+1
2

))
=

p(p + 1)

2
,

and

D2(p) = det

((
p+1
2

)
p(

p+1
3

) (
p+1
2

)
)

=
p2(p + 1)(p + 5)

12
,

and as before we see that −p−1D1(−p) and −p−2D2(−p) occur in (1.3) and (1.8), respec-
tively. In fact, we have

Theorem 2. If p ≥ 3 is a prime, then for all integers k ≥ 1 we have

H
(k)
p−1(q) ≡

(−1)k−1

pk
Dk(−p)(1 − q)k (mod [p]q). (2.6)

Note that in contrast to (2.4) the argument of the polynomials Dk is −p. The first
few determinants Dk(p) are listed in Table 2 below.
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k d̃k Ãk(p)
1 2 p − 1
2 12 p2 − 1
3 24 p2 − 1
4 720 −(p2 − 1)(p2 − 19)
5 480 −(p2 − 1)(p2 − 9)
6 60 480 (p2 − 1)(2p4 − 145p2 + 863)
7 24 192 (p2 − 1)(p2 − 25)(2p2 − 11)
8 3 628 800 −(p2 − 1)(3p6 − 497p4 + 9247p2 − 33953)
9 1 036 800 −(p2 − 1)(p2 − 49)(3p4 − 50p2 + 167)

10 479 001 600 (p2 − 1)(10p8 − 2993p6 + 114597p4 − 1184767p2 + 3250433)
11 21 288 960 (p2 − 1)(p2 − 9)(p2 − 81)(2p4 − 49p2 + 173)

Table 1: D̃k(p) = d̃−1
k pkÃk(p), k = 1, . . . , 11.

k dk Ak(p)
1 2 1
2 12 p + 5
3 8 p + 3
4 720 −(p3 − p2 − 109p − 251)
5 288 −(p + 5)(p2 − 6p − 19)
6 60 480 2p5 − 2p4 − 355p3 + 355p2 + 11153p + 19087)
7 17 280 (p + 7)(2p4 − 16p3 − 33p2 + 376p + 751)
8 3 628 800 −(3p7 − 3p6 − 917p5 + 917p4 + 39697p3 − 39697p2

−744383p − 1070017)
9 268 800 −(p + 3)(p + 9)(p5 − 13p4 + 10p3 + 350p2 − 851p − 2857)

Table 2: Dk(p) = d−1
k pk(p + 1)Ak(p), k = 1, . . . , 9.

3 Proof of Theorem 1

Following some of the arguments in the proof of Lemma 2 in [16], we use (1.1) to rewrite
(1.7) as

H̃(k)
n (q) = (1 − q)kG̃k(q),

where

G̃k(q) :=

p−1∑

j=1

qj

(1 − qj)k
. (3.1)

With ζ = e2πi/p and using (1.1) again, we have

[p]q =

p−1∏

m=1

(q − ζm),
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and this means that in order to prove (2.4) it suffices to show that

G̃k(ζ
m) =

−1

pk
D̃k(p), m = 1, 2, . . . , p − 1. (3.2)

However, since p is prime, all ζm, m = 1, 2, . . . , p−1, are primitive pth roots of unity, and
thus

G̃k(ζ
m) =

p−1∑

j=1

ζmj

(1 − ζmj)k
=

p−1∑

j=1

ζj

(1 − ζj)k
= G̃k(ζ). (3.3)

Therefore we are done if we can prove (3.2) for m = 1. We do this by evaluating the
coefficients of a certain power series in two different ways.

Lemma 1. For any positive integer p and for |z| < 1 we have

p

1 − zp
−

1

1 − z
=

∞∑

n=0

(−1)n+1G̃n+1(ζ)(z − 1)n. (3.4)

Proof. It is easy to check that the left-hand side of (3.4) is a holomorphic function for
|z| < 1, and that we have the partial fraction expansion

p

1 − zp
=

1

1 − z
+

p−1∑

j=1

ζj

ζj − z
. (3.5)

Writing t = ζj for simplicity, we expand

t

t − z
=

t

t − 1

1

1 − z−1
t−1

= t
∞∑

n=0

(−1)n+1

(1 − t)n+1
(z − 1)n.

This, with (3.5) and (3.1), gives (3.4).

The connection with the determinants D̃n(p) is given by the next result.

Lemma 2. For |z| < 1 and a complex parameter p we have

p

1 − zp
−

1

1 − z
=

∞∑

n=0

(−1)n

pn+1
D̃n+1(p)(z − 1)n. (3.6)

By equating coefficients in (3.4) and (3.6), we immediately obtain (3.2) for m = 1.
This completes the proof of Theorem 1, provided we can prove Lemma 2.

For the proof of Lemma 2 we require a basic recurrence relation for the determinants
D̃n(p); more properties will be derived in Section 5.
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Lemma 3. For any real or complex parameter p the determinants D̃n(p) satisfy the re-

currence relation

D̃n(p) =
n∑

j=1

(−1)j−1

(
p

j + 1

)
pj−1D̃n−j(p), (3.7)

where D̃0(p) = 1 by convention. In other words,

n∑

j=0

(−1)j

(
p

j + 1

)
pjD̃n−j(p) = 0. (3.8)

Proof. If we expand the determinant D̃n(p) (see (2.1)) by the first column, we see that

the minors immediately reduce to pj−1D̃n−j(p); this gives (3.7). The identity (3.8) is then
obtained by multiplying both sides of (3.7) by p.

Proof of Lemma 2. We use the general binomial theorem

zp − 1 =
(
(z − 1) + 1

)p
− 1 =

∞∑

j=1

(
p

j

)
(z − 1)j, (3.9)

where (
p

j

)
=

p(p − 1) . . . (p − j + 1)

j!
, j = 1, 2, . . . (3.10)

are the generalized binomial coefficients. Now let

p

1 − zp
−

1

1 − z
= c̃0 + c̃1(z − 1) + c̃2(z − 1)2 + . . . , (3.11)

and multiply both sides by zp − 1. Then with (3.9) we get

−p +

∞∑

j=1

(
p

j

)
(z − 1)j−1 =

∞∑

n=0

c̃n

∞∑

j=1

(
p

j

)
(z − 1)n+j.

We now equate coefficients of (z − 1)j, j = 0, 1, 2, . . ., and see that for the constant
coefficient we have −p + p = 0 as required, while the other coefficients lead to the system
of linear equations

(
p

2

)
= c̃0

(
p

1

)
,

(
p

3

)
= c̃0

(
p

2

)
+ c̃1

(
p

1

)
,

(
p

4

)
= c̃0

(
p

3

)
+ c̃1

(
p

2

)
+ c̃2

(
p

1

)
,

...
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so for any positive integer n we have the matrix equation




(
p
1

)
0 . . . 0(

p
2

) (
p
1

)
. . . 0

...
...

. . .
...(

p
n

) (
p

n−1

)
. . .

(
p
1

)







c̃0

c̃1
...
c̃n


 =




(
p
2

)
(

p
3

)
...(
p

n+1

)


 . (3.12)

If M̃n denotes the (lower triangular) matrix on the left, then we can show that its inverse
is

M̃−1
n =




p−1 0 . . . 0

−p−2D̃1(p) p−1 . . . 0

p−3D̃2(p) −p−2D̃1(p) . . . 0
...

...
. . .

...

(−1)n−1p−nD̃n−1(p) (−1)n−2p−n+1D̃n−2(p) . . . p−1




. (3.13)

Indeed, it is obvious that the product of the two matrices is again lower triangular, and
that the diagonal elements are 1. Now, if we multiply the jth column of An with the kth
row of the matrix in (3.13), 1 ≤ j < k ≤ n, we obtain

(−1)k−j−1p−(k−j)D̃k−j−1(p)

(
p

1

)
+ (−1)k−j−2p−(k−j)+1D̃k−j−2(p)

(
p

2

)
+

. . . + p−1D̃0(p)

(
p

k − j

)
.

By (3.8) with n = k − j − 1, this last expression vanishes, which shows that the matrix

in (3.13) is indeed the inverse of M̃n in (3.12).

Finally, we multiply M̃−1
n with the column vector

(
(2), (3), . . . , (n + 1)

)T
, and we get,

again with (3.8),

c̃j =
(−1)j

pj+1
D̃j+1(p), (3.14)

and this completes the proof of Lemma 2.

4 Proof of Theorem 2

The proof is similar to that of Theorem 1, and therefore we leave out some of the more
obvious details. In analogy to Section 3 we rewrite (1.6) as

H(k)
n (q) = (1 − q)kGk(q),

where

Gk(q) :=

p−1∑

j=1

1

(1 − qj)k
,
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and once again it suffices to show that

Gk(ζ) =

p−1∑

j=1

1

(1 − ζj)k
=

(−1)k−1

pk
Dk(−p). (4.1)

We begin with the following lemma which is analogous to Lemma 1.

Lemma 4. For any positive integer p and for |z| < 1 we have

pzp−1

1 − zp
−

1

1 − z
=

∞∑

n=0

(−1)n+1Gn+1(ζ)(z − 1)n. (4.2)

Proof. The only difference to the proof of Lemma 1 lies in the partial fraction expansion

pzp−1

1 − zp
=

1

1 − z
+

p−1∑

j=1

1

ζj − z
,

which is again easy to verify.

The following result is analogous to Lemma 2.

Lemma 5. For |z| < 1 and a complex parameter p, we have

p

z(1 − zp)
−

1

1 − z
=

∞∑

n=0

(−1)n

pn+1
Dn+1(p)(z − 1)n. (4.3)

If we replace p by −p, it is easily seen that the left-hand side of (4.3) becomes the
left-hand side of (4.2). Equating coefficients of the powers of z − 1 in (4.2) and (4.3),
we then obtain (4.1). This completes the proof of Theorem 2, provided we can prove
Lemma 5.

As in the proof of Lemma 2, we need a recurrence for the determinants in question.
We skip the proof which is almost identical to that of Lemma 3.

Lemma 6. For any real or complex parameter p the determinants Dn(p) satisfy the re-

currence relation

Dn(p) =
n∑

j=1

(−1)j−1

(
p + 1

j + 1

)
pj−1Dn−j(p), (4.4)

where D0(p) = 1 by convention.

Proof of Lemma 5. Using the binomial theorem, we have

z(zp − 1) =
(
(z − 1) + 1

)p+1
− (z − 1) − 1 =

∞∑

j=0

(
p + 1

j

)
(z − 1)j − (z − 1) − 1,
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or

z(zp − 1) =

∞∑

j=1

(
p + 1

j

)∗

(z − 1)j, (4.5)

where
(

p+1
1

)∗
= p, while

(
p+1

j

)∗
=

(
p+1

j

)
for j ≥ 2. Now let

p

z(1 − zp)
−

1

1 − z
= c0 + c1(z − 1) + c2(z − 1)2 + . . . , (4.6)

and multiply both sides by z(zp − 1). Then with (4.5) we get

−p +

∞∑

j=1

(
p + 1

j

)∗

(z − 1)j−1 =

∞∑

n=0

cn

∞∑

j=1

(
p + 1

j

)∗

(z − 1)n+j.

As before, equating coefficients of (z − 1)j, j = 0, 1, 2, . . ., we obtain for any integer n the
matrix equation 



p 0 . . . 0(
p+1
2

)
p . . . 0

...
...

. . .
...(

p+1
n

) (
p+1
n−1

)
. . . p







c0

c1
...
cn


 =




(
p+1
2

)
(

p+1
3

)
...(

p+1
n+1

)


 . (4.7)

If Mn denotes the matrix on the left, then I claim that its inverse is the same as the matrix
in (3.13), with Dj(p) instead of D̃j(p) for all j. This can be verified in the same way as
in the proof of Lemma 2, using Lemma 6 in this case. Thus we obtain cj, j = 1, 2, . . . , n,
by multiplying the column vectors on the right of (4.7) by the jth row of M−1

n . Applying
Lemma 6 again, we finally get

cj =
(−1)j

pj+1
Dj+1(p), (4.8)

which holds for all j ≥ 0 since n is an arbitrary positive integer. This completes the proof
of Lemma 5.

5 Further properties of the determinants

Tables 1 and 2 give rise to some questions and conjectures about the determinants D̃n(p)
and Dn(p) as functions of p. In this section we derive a number of properties of these
functions.

Proposition 1. (a) The functions D̃n(p) are polynomials of degree at most 2n.

(b) For n ≥ 1, D̃n(p) is divisible by pn.

(c) For n ≥ 2, p−nD̃n(p) is a polynomial in p2.

(d) For n ≥ 2, p−nD̃n(p) is divisible by p2 − 1.
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Proof. (a) This follows by induction from (3.7). Indeed, D̃1(p) is a polynomial of degree 2.

Suppose the statement is true for all D̃j(p) for j ≤ n−1. Then since
(

p
j+1

)
is a polynomial

of degree j + 1, each term on the right of (3.7) has degree at most 2n, which proves the
claim.

(b) In each of the n columns in the determinant in (2.1) we can factor p out of all
entries.

(c) Given the expression (3.6), it suffices to show that

p

1 − zp
−

1

2
(p − 1)

is an even function in p. But this is easy to verify.
(d) In the first column of the determinant in (2.1) all entries are divisible by p − 1,

and therefore p−nD̃n(p) is divisible by p − 1. By part (c), p−nD̃n(p) is divisible also by
p + 1 for n ≥ 2.

We continue with some further factorization properties.

Proposition 2. (a) If p is an odd positive integer, then D̃n(p) = 0 for all n = (2k+1)p+2,
k = 0, 1, 2, . . ..

(b) If n ≥ 3 is odd and m is a divisor of n− 2, then p−nD̃n(p) is divisible by p2 −m2.

Proof. We combine (3.2) with (3.3) (for m = 1) and rewrite it as

1

pn
D̃n(p) = −

(
i

2

)n p−1∑

j=1

e(2−n)πij/p

sinn(πj/p)
. (5.1)

When n ≡ p + 2 (mod 2p), then

e(2−n)πij/p = eπij = (−1)j,

so the sum in (5.1) becomes
p−1∑

j=1

(−1)j

sinn(πj/p)
,

which vanishes for odd p since sin(πj/p) = sin(π(p − j)/p) for j = 1, 2, . . . , p − 1, and
j 6= p − j for odd p.

To prove (b), we note that by (a), m is a zero of D̃n(p), so it is divisible by p−m. By
Proposition 1(c) it is also divisible by p + m.

As an illustration of this last result see, e.g., the case k = 11 in Table 1.
The next result uses the Bernoulli numbers Bn which can be defined by the generating

function
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
, |x| < 2π; (5.2)
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for properties and further details see, e.g., [10, p. 283 ff.]. One property we are going to
use below is the most basic recurrence relation

n∑

j=0

(
n + 1

j

)
Bj = 0, n ≥ 1. (5.3)

Along with B0 = 1, this allows for a quick evaluation of the first few values B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 = 1

42
, B8 = − 1

30
, B10 = 5

66
, B12 = − 691

2730
, and it can be shown that

B2k+1 = 0 for all k ≥ 1.

Proposition 3. The coefficient of p2n in the polynomial D̃n(p) is 1
n!

Bn. For even n ≥ 2,

this is also the leading coefficient of D̃n(p).

Proof. Let an be the coefficient in question. Then, since the leading coefficient in the
polynomial

(
p

j+1

)
pj−1 is 1/(j+1)! for all j, by equating coefficients of p2n in the recurrence

relation (3.8) we get
n∑

j=0

(−1)j 1

(j + 1)!
an−j = 0. (5.4)

Multiplying both sides by (−1)n(n +1)! and changing the order of summation, we obtain

n∑

j=0

(−1)j

(
n + 1

j

)
j!aj = 0. (5.5)

Recall that D̃0(p) = 1 by convention. Hence, comparing (5.5) and (5.3), we get (−1)jj!aj

= Bj for all j ≥ 1, and in particular aj = Bj/j! for all j ≥ 2 since B2k+1 = 0 for k ≥ 1.
This proves both statements of the proposition.

This last proof also shows that the coefficient of p2 in D̃1(p) is −B1 = 1
2
. This

is consistent with D̃1(p) = p(p − 1)/2, and explains why D̃1(p) is the only odd-index

determinant D̃n(p) that has full degree 2n.
Table 2 indicates that the polynomials Dn(p) have properties similar to those of the

D̃n(p), with the main difference that p−nDn(p) is not an even or an odd function in p. I
therefore omit the details of the proofs of the following three results.

Proposition 4. (a) The functions Dn(p) are polynomials of degree at most 2n.

(b) For n ≥ 1, Dn(p) is divisible by pn.

(c) For n ≥ 1, p−nDn(p) is divisible by p + 1.

For part (a) we can use the recurrence relation (4.4), and (b), (c) follow immediately
from (2.5). The next result, which is analogous to Proposition 2, uses (4.1).

Proposition 5. If n ≥ 1 is odd and m is a divisor of n, then p−nDn(p) is divisible by

p + m.

As an illustration of this, see the case k = 9 in Table 2.
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Proposition 6. The coefficient of p2n in Dn(p) is 1
n!

Bn, which is also the leading coeffi-

cient of Dn(p) for even n ≥ 2.

The proof of this result is almost identical to that of Proposition 3 since the recurrence
relation (4.4) leads to the same relation (5.4) as before for the coefficients in question.

We have seen that Dn(p) is neither an even nor an odd function of p. However, we
have the following property; it is not difficult to obtain by manipulating the generating
function (4.3).

Proposition 7. For all n ≥ 1 we have

(−1)n

(
Dn(−p) −

1

2
(−p)n+1

)
= Dn(p) −

1

2
pn+1. (5.6)

The two determinant sequences studied in this paper are connected by the following
two easy identities.

Proposition 8. For all n ≥ 1 we have

D̃n(p) = Dn(p) − pDn−1(p) (5.7)

and

p−nDn(p) =
n∑

m=0

p−mD̃m(p), (5.8)

where D0(p) = D̃0(p) = 1.

Proof. We use the simple identity

p

1 − zp
=

(
(z − 1) + 1

) p

z(1 − zp)
(5.9)

with (3.11) and (4.6). Then, equating coefficients of the powers of z − 1, we easily obtain

c̃n = cn + cn−1

for n ≥ 0, with c−1 = −1. The identity (5.7) then follows from (3.14) and (4.8). Finally
we replace n by m in (5.7), multiply both sides by p−m and sum from m = 0 to m = n.
This sum “telescopes”, giving us (5.8).

Remark 1. The identity (5.8) could be derived directly, using a slight variant of
(5.9). Also, (5.7) could be derived directly from the defining determinants (2.1) and (2.5)
as follows. In the determinant (2.1), add the second column to the first, the third column
to the second, etc., until the last column is added to the second-last one, always using
the identity

(
p

j+1

)
+

(
p
j

)
=

(
p+1
j+1

)
. This does not change the determinant, but gives us

a new matrix that is identical to the one in (2.5) with the exception of the lower right
entry which remains

(
p
2

)
instead of

(
p+1
2

)
. Using the summation rule for determinants,

we note that Dn(p) − D̃n(p) is the determinant of a similar matrix again, only this time
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with
(

p+1
2

)
−

(
p
2

)
= p in the lower right corner as the only nonzero entry in that column.

Expanding along this last column, the determinant is obviously pDn−1(p), and this proves
(5.7).

Remark 2. Returning to the generalized q-harmonic numbers of Sections 1 and 2,
we rewrite (1.6) as

H
(k)
p−1(q) :=

p−1∑

j=1

1 − qj + qj

[j]kq
= (1 − q)

p−1∑

j=1

1

[j]k−1
q

+

p−1∑

j=1

qj

[j]kq
,

so that with (1.7) we have

H
(k)
p−1(q) = (1 − q)H

(k−1)
p−1 (q) + H̃

(k)
p−1(q), (5.10)

and (2.6) gives

H̃
(k)
p−1(q) ≡

(−1)k−1

pk

(
Dk(−p) + pDk−1(−p)

)
(1 − q)k (mod [p]q).

Now we use (5.7) and the fact that p−kD̃k(p) is an even function, and obtain (2.4). This
is an alternative proof of Theorem 1, provided that Theorem 2 has been proven.

On the other hand, by iterating (5.10) we immediately obtain

H
(k)
p−1(q) = (1 − q)k(p − 1) +

k∑

j=1

(1 − q)k−jH̃
(j)
p−1(q). (5.11)

Now, if we use the congruence (2.4), then (5.8), and finally the identity Dk(p) − pk+1 =
(−1)kDk(−p), which follows directly from (5.6), then we obtain (2.6). This shows that
Theorem 1 implies Theorem 2.

6 Degenerate Bernoulli Numbers

In addition to the coefficient of p2n of the polynomial p−nD̃n(p), which was determined in
Proposition 3, we can just as easily find the constant coefficient of this polynomial. Let
b̃n be this coefficient. Multiply both sides of (3.7) by −(z − 1), and set x = z − 1. Then
we have

lim
p→0

px

(1 + x)p − 1
= 1 +

∞∑

n=1

(−1)nb̃nxn,

and l’Hospital’s rule gives

x

log(1 + x)
= 1 +

∞∑

n=1

(−1)nb̃nxn. (6.1)

Now, the left-hand side of (6.1) is known as the generating function of the Bernoulli

numbers of the second kind ; see, e.g., [12, p. 265 ff.]. Hence we have proved
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Proposition 9. For n ≥ 1 the constant coefficient of the polynomial p−nD̃n(p) is (−1)nbn,

where bn is the nth Bernoulli number of the second kind.

The first few values of the bn are b0 = 1, b1 = 1/2, b2 = −1/2, b3 = 1/24, b4 = −19/720,
b5 = 3/160, b6 = −863/60480. This is consistent with Table 1.

The question now arises whether there are explicit expressions also for the other co-
efficients of the polynomials p−nD̃n(p). This is indeed the case, and there is a close re-
lationship with the degenerate Bernoulli numbers. These numbers (in fact, polynomials)
were first studied by Carlitz [3], and can be defined by the generating function

x

(1 + λx)1/λ − 1
=

∞∑

n=0

βn(λ)
xn

n!
. (6.2)

Carlitz [3], [4] proved numerous properties, including the fact that βn(λ) is a polynomial
in λ of degree ≤ n. By comparing (6.2) with (5.2) it is clear that

lim
λ→0

βn(λ) = Bn. (6.3)

The following result gives a surprising connection with the determinants D̃n(p).

Theorem 3. For all n ≥ 0 we have

βn(λ) = (−1)nn!λ2nD̃n( 1
λ
), (6.4)

or equivalently

p−nD̃n(p) =
(−1)n

n!
pnβn(1

p
). (6.5)

That is, the polynomials βn(λ) and p−nD̃n(p) are, up to a constant factor, reciprocal to

each other.

Proof. As in the proof of Proposition 9 we start with (3.7), multiply both sides by −(z−1),

and set y = z − 1. With the convention D̃0(p) = 1 we then have

py

(1 + y)p − 1
=

∞∑

n=0

(−1)n

pn
D̃n(p)yn. (6.6)

Finally we set p = 1/λ and y = xλ; then (6.6) compared with (6.2) gives (6.4). The
identity (6.5) is obvious, with λ = 1/p.

Theorem 3 implies that all the properties of one the set of polynomials carry over
to the other. For instance, Proposition 2(b) immediately gives the following, apparently
new, divisibility property of the polynomial βn(λ).

Corollary 1. If n ≥ 3 is odd and m is a divisor of n − 2, then m2λ2 − 1 divides βn(λ).
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In one of the more recent papers on degenerate Bernoulli numbers, Howard [11] found
a remarkably simple explicit expression for the coefficients of the βn(λ), namely

Theorem 4 (Howard). For n ≥ 2 we have

βn(λ) = n!bnλn +

bn/2c∑

j=1

n

2j
B2js(n − 1, 2j − 1)λn−2j, (6.7)

where s(n, r) is the Stirling number of the first kind and bn the Bernoulli number of the

second kind.

Recall that the Bernoulli numbers of the second kind are defined by the generating
function (6.1). For properties of Stirling numbers see, e.g., [6] or, in a different notation,
[10]. Combining (6.7) with (6.5), we get the following immediate consequence.

Corollary 2. For n ≥ 2 we have

p−nD̃n(p) = (−1)nbn +
(−1)n

(n − 1)!

bn/2c∑

j=1

B2j

2j
s(n − 1, 2j − 1)p2j. (6.8)

It is obvious that (6.8) contains both Proposition 3 and Proposition 9 as special cases.
Let now n = 2k + 1, k ≥ 1. Then bn/2c = k, and the leading coefficient of (6.8) becomes

−1

(2k)!

B2k

2k
s(2k, 2k − 1).

Since s(n, n− 1) = −n(n− 1)/2 (see, e.g., [6, p. 214]), we get the following result supple-
menting Propostion 3.

Corollary 3. For all k ≥ 1, the polynomials p−(2k+1)D̃2k+1(p) have degree 2k, with leading

coefficient
2k − 1

2

B2k

(2k)!
.

Finally, we can use Corollary 2, and in fact the partial results Proposition 3 and
Proposition 9, to derive two known classical determinant expressions. First, in (2.1) with
n in place of k, we divide each column by p. Then we can see from (3.10) that upon
setting p = 0 each entry

(
p
j

)
becomes (−1)j−1/j. We then eliminate the minus signs,

which are arranged in checker-board fashion, by first multiplying columns 1, 3, 5,. . . , and
then rows 2, 4,. . . , by −1, for a total of (−1)n. Altogether, if we set p = 0 in (6.8), we
obtain

bn = det




1
2

1 0 . . . 0
1
3

1
2

1 . . . 0
...

...
...

. . .
...

1
n

1
n−1

1
n−2

. . . 1
1

n+1
1
n

1
n−1

. . . 1
2




.
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This determinant can be found in an old paper by Glaisher [7].
Next, the identities (6.3) and (6.4) give

Bn = (−1)nn! lim
p→∞

p−2nD̃n(p). (6.9)

Note that the (j, k)-th entry in (2.1) is a polynomial in p of degree j−k+2 if this number
is positive, and vanishes otherwise. Since a determinant is a sum or difference of products
of exactly one element in each row and each column, the j and k cancel each other out as
contributions to the degree, and so each nonzero product has degree exactly p2n. Thus, if
we divide each entry

(
p
j

)
by pj, this amounts to dividing the entire determinant D̃n(p) by

p2n. Taking the limit as p → ∞, the relevant entries then become 1/j!, and we get with
(6.9),

Bn = (−1)nn! det




1
2!

1 0 . . . 0
1
3!

1
2!

1 . . . 0
...

...
...

. . .
...

1
n!

1
(n−1)!

1
(n−2)!

. . . 1
1

(n+1)!
1
n!

1
(n−1)!

. . . 1
2!




,

a determinant that can be found in [7] as well, and also in [15].
These last two determinant expressions can therefore be seen as special cases of the

determinant in (2.1), via Theorem 3.
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