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Closed expressions are obtained for sums of products of Bernoulli numbers of the

form � ( 2n
2j1 , ..., 2jN

) B2j1 } } }B2jN , where the summation is extended over all nonnegative

integers j1 , ..., jN with j1+ j2+ } } } + jN=n. Corresponding results are derived for

Bernoulli polynomials, and for Euler numbers and polynomials. As easy corollaries

we obtain formulas for sums of products of the Riemann zeta function at even

integers and of other related infinite series. � 1996 Academic Press, Inc.

1. INTRODUCTION

The Bernoulli numbers Bn are defined by the generating function

t
et&1

= :
�

n=0

Bn

tn

n !
, |t|<2?. (1.1)

A well-known relation among the Bernoulli numbers is (for n�2)

:
n&1

j=1
\
2n
2j+ B2jB2n&2j=&(2n+1) B2n . (1.2)

This was found by many authors, including Euler; for references, see, e.g.,

[13]. Sitaramachandrarao and Davis [13] generalized (1.2) to sums of

products of 3 and 4 Bernoulli numbers:

: \
2n

2a, 2b, 2c+ B2aB2bB2c

=(n+1)(2n+1) B2n+n \n&
1

2+ B2n&2 , (1.3)
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: \
2n

2a, 2b, 2c, 2d+ B2aB2bB2cB2d

=&\
2n+3

3 + B2n&
4

3
n2(2n&1) B2n&2 , (1.4)

where ( 2n
2a, 2b, 2c) and ( 2n

2a, 2b, 2c, 2d) are multinomial coefficients. The sum in

(1.3) ranges over all positive integers a, b, c with a+b+c=n (n�3), and

the sum in (1.4) ranges over all positive integers a, ..., d with a+ } } } +d=n
(n�4). The identities (1.2)�(1.4) can be written in terms of the Riemann

zeta function, via Euler's formula

`(2n)=(&1)n&1
(2?)2n B2n

2(2n) !
. (1.5)

Thus, (1.2) can be written as

:
n&1

j=1

`(2j) `(2n&2j )=(n+ 1
2) `(2n), n�2, (1.6)

and similarly for (1.3) and (1.4).

Sitaramachandrarao and Davis remarked in [13] that it may be of inter-

est to find formulas of the type (1.2)�(1.4), (1.6) for sums of products of

N�5 Bernoulli number, resp. zeta function factors.

This was achieved by Sankarayanan [12] for N=5 and by Zhang [16]

for N�7. Before [16] appeared, Ramachandra and Sankarayanan [11]

proved that with

Y(z) := :
�

n=1

(&1)n&1 B2n

(2z)2n

(2n) !

we have

YN= :
N&1

j=0

A j (z) z
j d

jY
dz j , (1.7)

where Aj (z) are polynomials in z of degree at most (N&1) N, with rational

coefficients. (In fact, a somewhat more general result was obtained). It is

easy to see that (1.7) will lead to expressions of the type (1.2)�(1.4). It was

remarked in [11] that the proof gives an algorithm for determining the

Aj (z); however, they are not explicitly given.

It is one purpose of this paper to obtain explicit expressions, of the kind

given in [12], [13], and [16], and valid for all N�2 and all n�1 (not
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just for n�N ). We will do this in Section 2. In Section 3 we prove corre-

sponding results for the Bernoulli polynomials Bn(x), and in Section 4 for

the Euler polynomials En(x). In both cases we obtain as easy consequences

formulas for sums related to the Riemann zeta function. Section 5 contains

some remarks on related sums that occur in the literature.

2. BERNOULLI NUMBERS

Before stating our first result, the generalization of (1.2)�(1.4), we intro-

duce some notation. We define the sequence b (N )
k of rational numbers

recursively by b (1)
0 =1 and

b(N+1)
k =&

1

N
b (N )
k +

1

4
b (N&1)
k&1 , (2.1)

with b (N )
k =0 for k<0 and for k>[(N&1)�2]. (Here and in what follows

[x] denotes the greatest integer not exceceeding x). Furthermore, let

f (t) :=
1

et&1
,

and f (k)(t) denote, as usual, the k th derivative of f (t), with the convention

that f (0)(t)= f (t).

Lemma 1. For N�1 we have

\
1

2

et+1

et&1+
N

&\
1

2+
N

= :
[(N&1)�2]

k=0

b (N )
k f (N&2k&1)(t). (2.2)

Proof. This is by induction on N. For N=1 we have

1

2

et+1

et&1
&

1

2
=

1

et&1
= f (t),

which agrees with the right-hand side of (2.2). For N=2, the left-hand side

of (2.2) becomes

1

4 \
e2t+2et+1

e2t&2et+1
&1+=

1

4

4et

(et&1)2
=& f $(t),

which again agrees with the right-hand side of (2.2).
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For the induction step we first note that we have the following identity

(for N�1) which is easy to verify:

\
1

2

et+1

et&1+
N+1

&\
1

2+
N+1

=&
1

N
d
dt {\

1

2

et+1

et&1+
N

&\
1

2+
N

=
+

1

4 {\
1

2

et+1)

et&1 +
N

&\
1

2+
N

= .
Assuming (2.2) is true for all exponents up to N, we thus obtain

\
1

2

et+1

et&1+
N&1

&\
1

2+
N&1

=&
1

N
d
dt

:
[(N&1)�2]

k=0

b (N )
k f (N&2k&1)(t)+

1

4
:

[(N&2)�2]

k=0

b (N&1)
k f (N&2k&2)(t)

=& :
[(N&1)�2]

k=0

1

N
b (N )
k f (N&2k)(t)+ :

[N�2]

k=1

1

4
b (N&1)
k&1 f (N&2k)(t)

= :
[N�2]

k=0
{&

1

N
b (N )
k +

1

4
b (N&1)
k&1 = f (N&2k)(t)

= :
[((N+1)&1)�2]

k=0

b (N+1)
k f (N+1&2k&1)(t),

where the last step follows from (2.1). This completes the proof. K

Let N�1 be given. Our aim is to evaluate the sum

SN(n) :=: \
2n

2j1 , 2j2 , ..., 2jN+ B2j1B2j2 } } } B2jN , (2.3)

where the sum is taken over all nonnegative integers j1 , ..., jN such that

j1+ } } } + jN=n, and where

\
2n

2j1 , ..., 2jN+=
(2n) !

(2j1) ! } } } (2jN) !

is the multinomial coefficient.

Theorem 1. For 2n>N we have

SN (n)=
(2n) !

(2n&N ) !
:

[(N&1)�2]

k=0

b (N )
k

B2n&2k

2n&2k
. (2.4)
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Before proving the theorem, we use it to write down some special cases.

First we tabulate, by way of the recursion (2.1), a few values of b (N )
k :

kN 1 2 3 4 5 6

0 1 &1
1

2
&
1

6

1

24

&1

120

1 0 0
1

4
&
1

3

5

24
&

1

12

2 0 0 0 0
1

16
&

23

240

With this table and (2.4) we obtain for N=1 the trivial S1(n)=B2n , and

further

S2(n)=&(2n&1) B2n ; (2.5)

S3(n)=
1
2 (2n&1)(2n&2) B2n+

1
2n(2n&1) B2n&2 ; (2.6)

S4(n)=&1
6 (2n&1)(2n&2)(2n&3) B2n&

1
32n(2n&1)(2n&3) B2n&2 ; (2.7)

these are equivalent to (1.2)�(1.4) if we take into account the slightly

different ranges of summation. The first new identities are obtained for

N=5 and N=6:

S5(n)=\
2n&1

4 + B2n+
5

12
n(2n&1)(2n&3)(2n&4) B2n&2

+
1

8
n(2n&1)(2n&2)(2n&3) B2n&4 ; (2.8)

S6(n)=&\
2n&1

5 + B2n&
1

6
n(2n&1)(2n&3)(2n&4)(2n&5) B2n&2

&
23

120
n(2n&1)(2n&2)(2n&3)(2n&5) B2n&4 . (2.9)

Proof of Theorem 1. We rewrite (1.1) as

t
et&1

=1&
1

2
t+ :

�

j=1

B2j

(2j) !
t2j; (2.10)

hence

f (t)=
1

t
&

1

2
+ :

�

j=1

B2j

2j
t2j&1

(2j&1)!
, (2.11)
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and therefore

f (N&2k&1)(t)=(&1)N&1
(N&2k&1)!

tN&2k

+ :
�

j=[(N&2k+1)�2]

B2j

2j
t2j&1&(N&2k&1)

(2j&N+2k) !
, (2.12)

except when N&2k&1=0 in which case we have just (2.11). Hence for

N>2k+1 we have

tNf (N&2k&1)(t)=(&1)N&1 (N&2k&1)! t2k

+ :
�

j=[(N+1)�2]

B2j&2k

2j&2k
t2j

(2j&N ) !
.

Now Lemma 1 gives

\
t
2

et+1

et&1+
N

=\
t
2+

N

+ :
[(N&1)�2]

k=0

b (N )
k

_{(&1)N&1 (N&2k&1)! t2k+ :
�

j=[(N+1)�2]

B2j&2k

2j&2k
t2j

(2j&N ) !=
&

1

2
aN b

(N )
(N&1)�2t

N, (2.13)

where an=0 when N is even, and aN=1 when N is odd (from (2.11)). On

the other hand, with (2.10) we get

t
2

et+1

et&1
= :

�

n=0

B2j

(2j ) !
t2j,

and raising this to the N th power gives, with (2.3),

\
t
2

et+1

et&1+
N

= :
�

n=0

SN(n)
t2n

(2n) !
. (2.14)

Finally, we compare coefficients of t2n in (2.14) and (2.13), and thus obtain

(2.4) for 2n>N, i.e., for n�[(N+2)�2]. K

The proof of Theorem 1 immediately gives expressions for SN (n) also in

the case n�[N�2]. First we need a lemma about some special values of the

coefficients b (N )
k .
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Lemma 2. For N�1 we have

(a) b (N )
0 =(&1)N&1�(N&1)!;

(b) b (N )
(N&1)�2=2&N+1 for N odd.

Proof. (a) By definition we have b (1)
0 =1 and b (N+1)

0 =&(1�N ) b (N )
0 ;

the result now follows immediately by induction. (b) In this case (2.1) gives

b(1)
0 =1 and b (N+2)

(N+1)�2=
1
4b

(N )
(N&1)�2 . The result follows again by induction. K

Theorem 2.

(a) S2n(n)=
(2n) !
4n

+ :
n&1

k=0

(2n) !
2n&2k

b (2n)
k B2n&2k ;

(b) SN (n)=(&1)N&1 (N&2n&1)! (2n) ! b (N )
n , 0�n�_

N&1

2 & ,
and in particular

(c) S2n+1(n)=(2n) ! 4&n.

Proof. Parts (a) and (b) follow directly from (2.13) and (2.14), by com-

paring coefficients of tN. Note that for odd N, the two terms involving tN

in (2.13) cancel each other, by Lemma 2(b). Part (c) follows from (b), with

Lemma 2(b). K

Although the recurrence relation (2.1) provides a convenient way of

determining the coefficients b (N )
k occurring in Theorems 1 and 2, it might

be of interest of express the b (N )
k in closed form in terms of known func-

tions. This can be done by first defining polynomials which have the b (N )
k

as coefficients. It is then easy to establish a three-term recurrence between

these polynomials, which in turn gives rise to a generating function.

Standard methods concerning generating functions are then used to obtain

the explicit expression.

Here and in the remainder of the paper we use the well-known Stirling

numbers of the first kind s(n, k). For definition an properties, see, e.g.,

[2, p. 212ff.]; a table can be found in [2, p. 310].

Lemma 3. For N�1 and 0�k�[(N&1)�2] we have

b (N )
k =(&1)N&1 N :

2k

i=0
\
N&1

i +
s(N&i, N&2k)

(N&i ) ! \
1

2+
i

. (2.15)

Proof. While the procedure described above was used to obtain this

expression, it now suffices to verify that the right-hand side of (2.15)
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satisfies the recursion (2.1). First we note that (2.15) gives b (1)
0 =s(1, 1)=1.

Also from (2.15) we get, after changing the order of summation,

1

4
b (N&1)
k&1 =(&1)N :

2k

i=2

2&i

(N&i ) ! \
N&1

i&2 +
_s(N+1&i, N+1&2k). (2.16)

Using the ``triangular'' recurrence relation for the s(n, k) (see, e.g., [2,

p. 214]), we obtain

&
1

N
b (N )
k =(&1)N :

2k

i=0

2&i

(N&i ) ! \
N&1

i + [s(N+1&i, N+1&2k)

+(N&i ) s(N&i, N+1&2k)]

=(&1)N { :
2k

i=0

2&i

(N&i) ! \
N&1

i + s(N+1&i, N+1&2k)

+ :
2k+1

i=1

2 } 2&i

(N&i ) ! \
N&1

i&1 + s(N+1&i, N+1&2k)= . (2.17)

Now we note that

\
N&1

i ++2 \
N&1

i&1 ++\
N&1

i&2 +=\
N
i ++\

N
i&1+

=\
N+1

i +=
N+1

N+1&i \
N

N&i+ .

Hence with (2.16), (2.17) and (2.15) we obtain (2.1), which was to be

shown. (Note that the terms for i=0, 1 in (2.16) and for i=0, 2k+1 in the

last sum in (2.17) all vanish). K

3. BERNOULLI POLYNOMIALS

The Bernoulli polynomials Bn(x) can be defined by the generating

function

text

et&1
= :

�

n=0

Bn(x)
tn

n !
, |t|<2?. (3.1)
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These polynomials satisfy a large number of identities (see e.g., [6, Ch. 50]

or [9]), including the sum

:
n

k=0
\
n
k+ Bk(x) Bn&k( y)

=n(x+ y&1) Bn&1(x+ y)&(n&1) Bn(x+ y). (3.2)

In this section we will generalize (3.2) to sums of products of N�2

Bernoulli polynomials, and derive some consequences.

In analogy to (2.3) we denote

SN(n; x1 , x2 , ..., xN)

:=: \
n

j1 , ..., jN+ Bj1(x1) Bj2(x2) } } } BjN(xN), (3.3)

where the sum is taken over all nonnegative integers j1 , ..., jN such that

j1+ } } } + jN=n.
It is possible to proceed just as in Section 2. However, here we can make

use of the well-developed theory of higher-order Bernoulli polynomials

B(N )
n ( y) defined by the generating function

tNe yt

(et&1)N
= :

�

n=0

B (N )
n ( y)

tn

n !
, |t|=2?; (3.4)

see, e.g., [10, p. 145 ff.].

Lemma 4. Let y :=x1+x2+ } } } +xn . Then for n�N we have

SN(n; x1 , ..., xN)=(&1)N&1 N \
n
N+ :

N&1

j=0

(&1) j \
N&1

j +
_B (N )

j ( y)
Bn& j ( y)
n& j

. (3.5)

Proof. In (3.1) we replace x by x1 , x2 , ..., xn and multiply these N
expressions together. With (3.3) and (3.4) we immediately obtain

SN(n; x1 , ..., xN)=B (N )
n ( y)(x1+x2+ } } } +xN).

Now the right-hand side of (3.5) comes directly from Equation (87) in [10,

p. 148]. K
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Theorem 3. Let y=x1+ } } } +xn . Then for n�N we have

SN(n; x1 , ..., xN)=(&1)N&1 N \
n
N+ :

N&1

j=0

(&1) j

_{ :
j

k=0
\
N& j&1+k

k + s(N, N& j+k) yk=
Bn& j (y)
n& j

.

(3.6)

Proof. From Equation (52.2.21) in [6, p. 350] we obtain, after

appropriate substitutions,

\
N&1

j + B (N )
j (y)= :

j

k=0
\
N& j&1+k

k + s(N, N& j+k) yk. (3.7)

Now (3.6) follows directly from (3.5). K

Examples. (i) N=2: With s(2, 2)=1, s(2, 1)=&1, (3.6) immediately

gives (3.2).

(ii) N=3: With s(3, 1)=2, s(3, 2)=&3, and s(3, 3)=1 we obtain

for n�3

:
n !

i ! j ! k !
Bi (x) Bj (y) Bk(z)

=
n(n&1)

2 _\x+ y+z&
3

2+
2

&
1

4& Bn&2(x+ y+z)&n(n&2)

_\x+ y+z&
3

2+ Bn&1(x+ y+z)+
(n&1)(n&2)

2
Bn(x+ y+z),

(3.8)

where the sum is taken over all nonnegative integers, i, j, k with

i+ j+k=n.

Corollary 1. If x1+ } } } +xN=0 then we have for n�N

SN(n; x1 , ..., xN)=N \
n
N+ :

N&1

j=0

(&1)N&1& j s(N, N& j)
Bn& j

n& j
. (3.9)

This follows immediately from (3.6) with y=0; note that Bj(0)=Bj . In

particular, with x1=x2= } } } =xN=0 the right-hand side of (3.9) gives an

expression for

: \
n

j1 , ..., jN+ Bj1 } } } BjN .
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Compare with (2.4); the difference lies in the fact that the above sum

includes B1=&1
2 .

Remark. For the special case of Bernoulli numbers, i.e., when

x1= } } } =xN=y=0, the identity (3.9) (or (3.6)) was proved by Vandiver

[15, Eq. (140)]. The equation (3.5) in this particular case occurs in [15]

as identity (142).

Apart from formulas for `(2n), such as (1.6) and its generalizations,

Sitaramachandrarao and Davis [13] also deal with formulas involving the

alternating sums (in the notation of [1])

'(n) := :
�

k=1

(&1)k&1

kn . (3.10)

For instance, they show that

:
n&1

j=1

'(2j ) '(2n&2j )=(n& 1
2) `(2n)&'(2n), (3.11)

and a formula for a sum of products of 3 factors. Using Theorem 3, we can

easily generalize this to any number of factors.

Theorem 4. For 2n�N we have

:'(2j1) } } } '(2jN)=
(&1)N+n&1 (2?)2n

(N&1)! (2n&N ) ! 2N

_ :
[(N&1)�2]

j=0
{ :

2j

k=0
\
N&2j&1+k

k + s(N, N&2j+k) \
N
2 +

k

=
_

B2n&2j (N�2)
2n&2j

, (3.12)

with the convention '(0)= 1
2 , and the sum on the left-hand side taken over all

nonnegative integers j1 , ..., jN with j1+ } } } + jN=n.

Proof. From the definition (3.10) it is clear that for n>1 we have

'(n)=(1&21&n) `(n), (3.13)

and with Euler's formula (1.5) and the well-known identity

Bn(
1
2)=&(1&21&n) Bn (see, e.g., [1, p. 805]) we obtain

'(2n)=(&1)n
(2?)2n

2(2n) !
B2n \

1

2+ . (3.14)
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Hence we use Theorem 3 (or Lemma 4) with x1= } } } =xN=
1
2 , so that

y=N�2. With (3.4) we have

:
�

j=0

B (N )
j \

N
2 +

t j

j !
=

tNeNt�2

(et&1)N
=

tN

(et�2&e&t�2)N
,

and from this it is clear that the generating function is an even function;

hence we have B(N )
j (N�2)=0 for odd j. Now (3.12) follows directly from

(3.5) and (3.6). K

Remark. The right-hand side of (3.12) can be written again in terms of

'(2n) or `(2n). Indeed, the well-known difference equation Bn(x+1)&Bn(x)
=nxn&1 (see e.g., [1, p. 804]) implies

B2n&2j \
N
2 +=(2n&2j ) :

(N�2)&1

k=1

k2n&2j&1+B2n&2j

for N even, and

B2n&2j \
N
2 +=(2n&2j ) :

[N�2]&1

k=0
\k+

1

2+
2n&2j&1

+B2n&2j \
1

2+
for N odd. Now use (1.5), resp. (3.14)

Example. N=2. Note that s(2, 2)=1 and B2n(1)=B2n . Then (3.12) and

(1.5) give

:
n

j=0

'(2j ) '(2n&2j )=(n& 1
2) `(2n).

This is equivalent to (3.11) (via '(0)= 1
2).

4. EULER NUMBERS AND POLYNOMIALS

In complete analogy to the method of Section 3 one can obtain results

concerning the Euler polynomials. They are defined by the generating

function

2

et+1
ext= :

�

n=0

En(x)
tn

n !
, |t|<? (4.1)
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(see, e.g., [1, p. 804]). Again, many identities are known; see, e.g., [9] or [6,

Ch. 51]. For instance, we have in analogy to (3.2),

:
n

k=0
\
n
k+ Ek(x) En&k(y)=2(1&x& y) En(x+ y)+2En+1(x+ y). (4.2)

In analogy to (3.3) and (2.3) we denote

TN(n; x1 , ..., xN) :=: \
n

j1 , ..., jN+ Ej1(x1) } } } EjN(xN), (4.3)

where the sum is again taken over all nonnegative integers j1 , ..., jN such

that j1+ } } } + jN=n. We use the n th order Euler polynomials defined by

\
2

et+1+
N

e yt= :
�

n=0

E (N )
n (y)

tn

n !
, |t|<?, (4.4)

(see, e.g., [9, p. 143 ff.]). The following lemma and theorem are proved in

complete analogy to Lemma 4 and Theorem 3. Here Equation (88) in [10,

p. 148] is used.

Lemma 5. Let y=x1+ } } } +xN . Then for n�N we have

TN(n; x1 , ..., xN)=
2N&1

(N&1)!
:

N&1

j=0

(&1) j \
N&1

j + B (N )
j (y) En+N&1& j (y).

(4.5)

Theorem 5. Let y=x1+ } } } +xN . Then for n�N we have

TN(n; x1 , ..., xN)=
2N&1

(N&1)!
:

N&1

j=0

(&1) j

_{ :
j

k=0
\
N& j&1+k

k + s(N, N& j+k) yk=
_En+N&1& j ( y). (4.6)

The Euler numbers are defined by the generating function

2

et+e&t= :
�

n=0

En

tn

n !
, |t|<?�2. (4.7)

It follows from a comparison with (4.1) that

En(
1
2)=2&nEn . (4.8)
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The left-hand side of (4.7) is an even function. Hence the odd-index Euler

numbers are zero, and we have

E2n(
1
2)=2&2nE2n , E2n+1(

1
2)=0.

If we now use (4.5) and (4.6) with x1= } } } =xn=
1
2 and use the fact that

B(N )
j (N�2)=0 for odd j, we obtain the following result.

Theorem 6. For 2n�N we have

: \
2n

2j1 , ..., 2jN+ E2j1 } } } E2jN

=
22n+N&1

(N&1)!
:

[(N&1)�2]

j=0
{ :

2j

k=0
\
N&2j&1+k

k + s(N, N&2j+k) \
N
2 +

k

=
_E2n+N&1&2j \

N
2 + . (4.9)

Remark. The case N=3 was recently considered by Zhang [17].

Another sum dealt with in [13] is (in the notation of [1, p. 807])

;(n) := :
�

k=0

(&1)k

(2k+1)n
.

It is known that

;(2n+1)=(&1)n
(?�2)2n+1

2(2n) !
E2n (4.10)

(see, e.g., [1, p. 807]). With this and (4.9) we can easily obtain an expression

for

:
j1+ } } } + jN=n

;(2j1+1) } } } ;(2j1+1). (4.11)

The right-hand side of (4.9) can be written in terms of ;( j ) or `( j ),
depending on the parity of N. Indeed, the difference equation

E&(x+1)+E&(x)=2x& gives upon repeated application

E& \
N
2 +=2 :

[N�2]

k=1

(&1)k&1 \
N
2
&k+

&

+(&1)[N�2] E& \
N
2
&_

N
2 &+ . (4.12)
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Now for odd N, (4.8) and (4.10) give the appropriate ;( j ), while for even N
we use the formula

E&(0)=&2
2&+1&1

&+1
B&+1 , &�1 (4.13)

(see, e.g., [1, p. 805]) and Euler's formula (1.5).

A further obvious consequence of (4.6) is obtained when y=0. Upon

changing the order of summation we get the following

Corollary 2. If x1+x2+ } } } +xN=0 then we have for n�N,

TN(n; x1 , ..., xN)=
(&2)N&1

(N&1)!
:

N&1

j=0

(&1) j s(N, j+1) En+ j (0). (4.14)

This corollary allows us to deal with yet another class of series related to

the Riemann zeta function, some results for which were proved in [13].

Using the notation of [1, p. 807], we define

*(s)= :
�

k=0

1

(2k+1)s
=(1&2&s) `(s), s>1. (4.15)

With (1.5) and (4.13) we immediately obtain

*(2n)=(&1)n
?2n

4(2n&1)!
E2n&1(0). (4.16)

In [13] it was shown that

:

i, j, k�1
i+ j+k=n

*(2i ) *(2j ) *(2k)=
(n&1)(2n&1)

4
*(2n)&

?2

16
*(2n&2). (4.17)

We will now prove an extension to an arbitrary number of factors.

Theorem 7. For m�N we have

: *(2k1) } } } } } *(2kN)=
21&N

(2m&N ) !
:

[(N&1)�2]

j=0

(&1) j ?2j(2m&2j&1)!

_{ :
2j

k=0
\
N
k +

s(N&k, N&2j )
2k(N&1&k) ! = *(2m&2j ) (4.18)

where the sum on the left-hand side is taken over all positive integers
k1 , ..., kN , with k1+ } } } +kN=m.
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Proof. We use (4.14) with x1= } } } =xN=0. To simplify notation, we

set TN(n) :=TN(n; 0, ..., 0) (see (4.3)), and denote by T� N(n) the sum TN(n)
with all those summands removed for which at least one of j1 , ..., jN is zero.

Since by (4.1) we have E0(0)=1, the inclusion-exclusion principle (see, e.g.,

[2, p. 176 ff]) gives

T� N(n)=TN(n)&\
N
1 + TN&1(n)+\

N
2 + TN&2(n)+ } } }

= :
N&1

k=0

(&1)k \
N
k + TN&k(n).

Using (4.14) and changing the order of summation, we obtain

T� N(n)= :
N&1

k=0

(&1)k \
N
k +

(&2)N&k&1

(N&k&1)!
:

N&k&1

j=0

(&1) j s(N&k, j+1) En+ j (0)

= :
N&1

j=0

(&1) j :
N&1& j

k=0

(&1)k \
N
k +

(&2)N&k&1

(N&k&1)!
s(N&k, j+1) En+ j (0).

We reverse the order of summation in the first sum and obtain

T� N(n)= :
N&1

j=0

(&1)N&1+ j :
j

k=0

(&1)k \
N
k +

(&2)N&k&1

(N&k&1)!

_s(N&k, N& j ) En+N&1& j (0). (4.19)

First we consider the left-hand side of (4.19). By (4.13) and the fact that

B2n+1=0 for n�1 it is clear that E2n(0)=0 for n�1. Let ji=2ki&1 for

i=1, 2, ..., N. Then n= j1+ } } } + jN=2(k1+ } } } +kN)&N or equivalently

2(k1+ } } } +kN)=n+N. Now we use (4.16) with n replaced by k1 , ..., kN.

Then

T� N(n)=(&1) (n+N )�2 n ! 2
2N

?n+N : *(2k1) } } } } } *(2kN),

where the sum is taken over all positive integers k1 , ..., kN with

k1+ } } } +kN=(n+N )�2. If we set n+N=2m, then

T� N(n)=(&1)m
(2m&N ) ! 4N

?2m : *(2k1) } } } } } *(2kN), (4.20)

where k1+ } } } +kN=m, ki�1 (i=1, ..., N ).
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To deal with the right-hand side of (4.19), we recall that E2n(0)=0 for

n�1; then

T� N (n)=(&1)N&1 :
[(N&1)�2]

j=0

:
2j

k=0

(&1)k \
N
k +

(&2)N&k&1

(N&k&1)!

_s(N&k, N&2j ) E2m&2j&1(0). (4.21)

Finally we use (4.16) with n replaced by m& j; then (4.20) combined with

(4.21) gives (4.18). K

Examples. (i) With N=2 we get immediately

:
m&1

k=1

*(2k) *(2m&2k)=(m& 1
2) *(2m)

(see also [13, p. 1180]). For N=3 we obtain (4.17) if we note that

s(3, 1)=2, s(2, 1)=&1, s(1, 1)=1.

(ii) N=4: With s(4, 2)=11, s(3, 2)=&3, s(2, 2)=1 we get the first

apparently new formula

: *(2k1) } } } *(2k4)=
1

8 \
2m&1

3 + *(2m)&
?2

24
(2m&3) *(2m&2),

where k1+ } } } +k4=m, ki�1.

5. ADDITIONAL REMARKS

1. Theorem 1 with Lemma 3 can also be proved with (3.9), by careful

use of the inclusion-exclusion principle to take care of the case B1=&1
2.

This would be similar to the proof of Theorem 7, and would be somewhat

shorter than the proof in Section 1. However, Theorem 2 cannot be

obtained in this way. On the other hand, the method of Section 1 could

probably be used to prove the results in Sections 2�4, including analogues

to Theorem 2.

2. Sums similar to the ones treated in this paper have occured in con-

nection with the study of the Riemann zeta function at odd positive integer

arguments. In particular, the well-known formula (1.2) occurs in [14], and

the sum

:
n

j=0

(&1) j \
2n
2j+ B2jB2n&2j (5.1)
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occurs in the main result of [4]. A closed form for this alternating sum does

not appear to be known.

Finally, a sum very similar to (2.3) plays a fundamental role in [3]; for

each integer r>2, `(r) is shown to be an infinite series involving A2m(r&2),

where

A2m(r) :=:
\

2m
2i1 , ..., 2ir+ B2i1 } } } } } B2ir

[2i1+1][2(i1+i2)+1] } } } } } [2(i1+i2+ } } } +ir&1)+1]
,

with the summation as in (2.3). In spite of the similarlity to the sum (2.3),

it does not appear to be possible to treat this sum with the methods of the

present paper.

3. Both Bernoulli and Euler numbers are special cases of the

generalized Bernoulli numbers Bn
/ belonging to a residue class character /.

It may be of interest to have formulas of the type (1.2), and possibly of type

(2.4), also for generalized Bernoulli numbers. We note that the corre-

sponding alternating sum (of type (5.1)) occurs in [5], again in connection

with integer values of the Riemann zeta function.

4. It is clear (via (1.5)) that Theorem 1 gives a formula for the sum

:
j1+ } } } + jN=n

`(2j1) } } } } } `(2jN), (5.2)

with nonnegative integers j1 , ..., jN and with the convention `(0)=&1
2 . The

product `(2j1) } } } } } `(2jN) is obviously related to the multiple sum

A( j1 , ..., jN) := :
n1>n2> } } } >nN�1

1

n j1
1 n

j2
2 } } } } } n jk

k

(see [8]) and the sum (5.2) corresponds to

:
j1+ } } } + jN=n

A( j1 , ..., jN), (5.3)

with positive integers j1 , ..., jN , and j1>1. It was conjetured by C. Moen

that the sum (5.3) is equal to `(n) for all n and N<n; see [8], where this

was verified for n�6.

5. The following interesting ``inverse problem'' was discussed in [7]:

Given an integer k�1 and a sequence [sn] with sn{0 for some n, is there
a sequence [rk] such that

sn= :
i1+ } } } +ik=n

n !
i1! i2 ! } } } ik !

ri1ri2 } } } rik?
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Haukkanen [7] proved that this is the case if and only if the least n for

which sn{0 is a nonnegative multiple of k; similarly for

sn= :
i1+ } } } +ik=n

ri1ri2 } } } rik .

Solutions to these questions are called k th roots of [sn] under the binomial,

respectively the usual convolution.
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