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a b s t r a c t

We provide a unifying polynomial expression giving moments in
terms of cumulants, and vice versa, holding in the classical, boolean
and free setting. This is done by using a symbolic treatment of Abel
polynomials. As a by-product, we show that in the free cumulant
theory the volume polynomial of Pitman and Stanley plays the
role of the complete Bell exponential polynomial in the classical
theory. Moreover, via generalized Abel polynomials we construct
a new class of cumulants, including the classical, boolean and
free ones, and the convolutions linearized by them. Finally, via an
umbral Fourier transform, we state an explicit connection between
boolean and free convolution.
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1. Introduction

Cumulants linearize the convolution of probability measures in the probability theories classical,
boolean and free. The last one is a noncommutative probability theory introduced by Voiculescu [31]
with a view to tackle certain problems in operator algebra.More precisely, a newkind of independence
is defined by replacing tensor products with free products and this can help us to understand the von
Neumann algebras of free groups. The combinatorics underlying this subject is based on the notion of
noncrossing partition,whose first systematical study is due to Kreweras [10] and Poupard [19].Within
free probability, noncrossing partitions are extensively used by Speicher [15]. Speicher takes his lead
from the definition of classical multilinear cumulants in terms of the Möbius function. However, he
changes the lattice where the Möbius inversion formula is applied. Instead of using the lattice of all
partitions of a finite set, he uses the smaller lattice of noncrossing partitions. Such a new family of
cumulants, known as free cumulants, turns out to be the semi-invariants of Voiculescu, originally
introduced via the R-transform. Biane [2] has shown how free cumulants can be used to obtain
asymptotical estimations of the characters of large symmetric groups.
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As is well known, some results of noncrossing partition theory can be recovered via Lagrange
inversion formula. Recently, a simple expression of Lagrange inversion formula has been given by
Di Nardo and Senato [4] within classical umbral calculus. This paper arises from this new Lagrange
symbolic formula.
The classical umbral calculus [23] is a renewed version of the celebrated umbral calculus of Roman

and Rota [20]. It consists of a symbolic technique to deal with sequences of numbers, indexed by
nonnegative integers, where the subscripts are treated as powers. Applications to bilinear generating
functions for polynomial sequences are given by Gessel [9]. Recently Di Nardo and Senato [4,5]
have developed this umbral language in view of probabilistic applications. Moreover the umbral
syntax has been fruitfully used in computational k-statistics and their generalizations [6]. The first
algebraic approach to this topic was given by McCullagh [13] and Speed [25].
Rota and Shen [21] have already used umbral methods in exploring some algebraic properties

of cumulants, only in the classical theory. They have proved that the umbral handling of cumulants
encodes and simplifies their combinatorics properties. In this paper, we go further showing how the
umbral syntax allows us to explore themore hidden connection between the theory of free cumulants
and that of classical and boolean cumulants.
As pointed out in [16], the recent results of Belinschi and Nica [3] revealed a deeper connection

between free and boolean convolution that deserves a further clarification. Indeed, this connection
cannot be encoded in a straight way in the formal power series language. We provide this connection
via an umbral Fourier transform. Moreover, quite surprisingly, the umbral methods bring to the
light that the key to manage all these families of cumulants is the connection between binomial
sequences and Abel polynomials [22]. This connection gives the chance to find a new and very simple
parametrization of free cumulants in terms of moments. If α is the umbra representing the moments
and Kα is the umbra representing the free cumulants, then K̄nα ' ᾱ(ᾱ−n.ᾱ)

n−1. This parametrization
closely parallels the one connecting cumulants and moments, either in the classical or in the boolean
setting, which are respectively κnα ' α(α − 1.α)

n−1 and η̄nα ' ᾱ(ᾱ − 2.ᾱ)
n−1, where κnα denotes the

nth classical cumulant and η̄nα the nth boolean cumulant.
The inverse expression givingmoments in terms of free cumulants is obtained (up to a sign) simply

by swapping the umbra representing moments with the umbra representing its free cumulants, ᾱn '
K̄α(K̄α + n.K̄α)n−1. It is remarkable that the polynomial, on the right side of the previous expression,
looks like the volume polynomials of Pitman and Stanley [18] obtained when the indeterminates are
replaced by scalars, Vn(a, a, . . . , a) = a(a + n a)n−1. So we prove that moments of an umbra can be
recovered from volume polynomials of Pitman and Stanley [18]when the indeterminates are replaced
with the uncorrelated and similar free cumulant umbrae. In other words, in the free cumulant theory
the volume polynomials are the analogs of the complete Bell exponential polynomials in the classical
cumulant theory.
The paper is structured as follows. In Section 2,we recall the combinatorics of classical, boolean and

free cumulants with the aim to demonstrate how the umbral syntax provides a unifying framework to
deal with these number sequences. Indeed, in Section 3, after recalling the umbral syntax, a theorem
embedding the algebras of multiplicative functions on the posets of all partitions and of all interval
partitions of a finite set in the classical umbral calculus is proved. In this section we also recall the
umbral theory of classical cumulants and we show how the umbral theory of boolean cumulants is
easily deduced from the classical one by introducing the boolean unity umbra. A symbolic theory of
free cumulants closes the section. We also show that Catalan numbers are themoments of the unique
umbra whose free cumulants are all equal to 1. In Section 4, we state the connection between volume
polynomials and free cumulants. In the last section we introduce a new class of cumulants, including
the classical, boolean and free ones, and the convolutions linearized by them.

2. Cumulants and convolutions

The combinatorics of classical, free and boolean cumulants were studied by Lehner [11,12],
Speicher [27], and Speicher and Wouroudi [28]. In the following we recall the main results of their
approach.
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Denote by [n] the set of positive integers {1, 2, . . . , n} and by Πn the set of all partitions of [n].
The algebra of the multiplicative functions on the poset (Πn,≤) (see [8] or [29]), where ≤ is the
refinement order, provides nice formulaewhen the coefficients of the exponential formal power series
f [g(t) − 1] are expressed in terms of the coefficients of f (t) and g(t), where f (t) = 1 +

∑
n≥1 fn

tn
n! ,

and g(t) = 1 +
∑
n≥1 gn

tn
n! . For example, the coefficients of log f (t), expanded in an exponential

power series, are known as formal cumulants of f (t). When f (t) is the moment generating function of
a random variable X , this sequence has ameaningwhich is not purely formal. For example, cumulants
of order 2, 3 and 4 concur in characterizing the variance, the skewness and the kurtosis of a random
variable.
Let us recall some well known facts on multiplicative functions. We denote the minimum and the

maximum of the posetΠn by 0n and 1n respectively. The number of blocks of a given π ∈ Πn will be
denoted by `(π).
If σ , π ∈ Πn and [σ , π] = {τ ∈ Πn | σ ≤ τ ≤ π}, then there is a unique sequence of nonnegative

integers (k1, k2, . . . , kn)with k1 + 2k2 + · · · + nkn = `(σ ) and k1 + k2 + · · · + kn = `(π) such that

[σ , π] ∼= Π
k1
1 ×Π

k2
2 × · · · ×Π

kn
n . (2.1)

In particular, if π has exactlymi blocks of cardinality i, then

[0n, π] ∼= Π
m1
1 ×Π

m2
2 × · · · ×Π

mn
n . (2.2)

Moreover [π, 1n] ∼= Π`(π). The sequence (k1, k2, . . . , kn) is called the type of the interval [σ , π],
where

ki = number of blocks of π that are the union of i blocks of σ . (2.3)

The vector sh(π) = (c1, c2, . . . , cl)whose entries are the cardinalities of the blocks of π , arranged in
nondecreasing order, will be called the shape of π .
A function f : Πn ×Πn → C is said to bemultiplicative if f(σ , π) = f k11 f

k2
2 · · · f

kn
n ,whenever (2.1)

holds and fn := f(0n, 1n). The Möbius function µ, the Zeta function ζ and the Delta function δ are
multiplicative functions with µn = (−1)n−1(n− 1)!, ζn = 1, and δn = δ1,n (the Kronecker delta).
A convolution ? is defined between two multiplicative functions f and g. We have

(f ? g)(σ , π) :=
∑
σ≤τ≤π

f(σ , τ ) g(τ , π). (2.4)

The function f ? g is also multiplicative. In particular, if h = f ? g, then hn = (f ? g)(0n, 1n) so that

hn =
∑
τ∈Πn

fτ g`(τ ), (2.5)

where fτ := f
m1
1 f

m2
2 · · · f

mn
n and mi is the number of blocks of τ of cardinality i. The function δ is the

identity with respect to the convolution ?. Furthermore, µ and ζ are inverse each other with respect
to ?, that is µ ? ζ = ζ ? µ = δ.

Theorem 2.1. Let f, g and h be three multiplicative functions on the lattice (Πn,≤) with fn = f(0n, 1n),
gn = g(0n, 1n) and hn = h(0n, 1n). If f (t) = 1 +

∑
n≥1 fn

tn
n! , g(t) = 1 +

∑
n≥1 gn

tn
n! and h(t) =

1+
∑
n≥1 hn

tn
n! , then

h(t) = f [g(t)− 1] ⇐⇒ h = g ? f. (2.6)

The formulae expressing cumulants cn in terms ofmomentsmn, and vice versa, are easily recovered
from (2.5). Indeed, let F(t) = 1 +

∑
n≥1mn

tn
n! and C(t) = log F(t) = 1 +

∑
n≥1 cn

tn
n! its cumulant

generating function. If m and k denote two multiplicative functions on (Πn,≤) such that m(0n, 1n) =
mn and k(0n, 1n) = cn, then from Theorem 2.1 we have{

k = m ? µ,
m = k ? ζ .

(2.7)
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Free cumulants occur in noncommutative context of probability theory (see for instance [30]). A
noncommutative probability space is a pair (A, ϕ), where A is a unital noncommutative algebra and
ϕ : A −→ C is a unital linear functional. An element Y ofA is called noncommutative random variable.
The nth moment of Y is the complex number mn = ϕ(Y n), the distribution of Y is the collection of its
moments (ϕ(Y ), ϕ(Y 2), ϕ(Y 3), . . .). The moment generating function of Y is the formal power series

M(t) = 1+
∑
n≥1

mntn. (2.8)

The noncrossing (or free) cumulants of Y are the coefficients rn of the ordinary power series R(t) =
1+ r1t + r2t2 + · · · such that

M(t) = R[tM(t)]. (2.9)

This relation between cumulants and moments of a noncommutative random variable has been
found by Speicher [26] and characterize the free cumulants introduced by Voiculescu [30], so we
assume (2.9) as a definition of free cumulants (see also [14,27]). Moreover, Speicher [26] has shown
that an identity analogous to (2.7) holds between free cumulants {rn}n≥1 and moments {mn}n≥1 of a
(noncommutative) random variable Y , if we change the lattice of partitions of a set into the lattice of
noncrossing partitions (N Cn,≤).
A noncrossing partition π = {B1, B2, . . . , Bs} of the set [n] is a partition such that if 1 ≤ h < l <

k < m ≤ n, with h, k ∈ Bj, and l,m ∈ Bj ′ , then j = j ′ (see [10,19,24] for a detailed handling). LetN Cn
denote the set of all noncrossing partitions of [n]. Its cardinality is equal to the nth Catalan number
Cn. The convolution ∗ defined on the multiplicative functions on the the lattice (N Cn,≤) is given by

(f ∗ g)(σ , π) :=
∑
σ≤τ≤π
τ∈N Cn

f(σ , τ ) g(τ , π). (2.10)

Following Nica and Speicher [14], if τ̃ is the Kreweras complement of a noncrossing partition τ , then
f(0n, τ ) = fτ and g(τ , 1n) = gτ̃ . Hence, if h = f ∗ g then

hn =
∑
τ∈N Cn

fτ gτ̃ . (2.11)

If we denote by ζN C andµN C the Zeta function and the Möbius function on the noncrossing partition
lattice respectively, then we have h = f ∗ ζN C if and only if f = h ∗ µN C .

Theorem 2.2 (Speicher [26]). Let Y be a noncommutative random variable with moment generating
function M(t) and free cumulant generating function R(t) as in (2.8) and (2.9). If m and r are two
multiplicative functions on the lattice (N Cn,≤) such that m(0n, 1n) = mn and r(0n, 1n) = rn, then{

r = m ∗ µN C,
m = r ∗ ζN C .

The notion of boolean cumulants arises from considering the boolean convolution of probability
measures [28]. Within stochastic differential equations, this family of cumulants is also known as
‘‘partial cumulants’’. The boolean cumulants of Y are the coefficients hn of the ordinary delta series
H(t) = h1t + h2t2 + · · · such that

M(t) =
1

1− H(t)
, (2.12)

whereM(t) is the same as (2.8). From a combinatorial point of view, the formulae involvingmoments
and boolean cumulants are recovered by defining a convolution � on the multiplicative functions
on the lattice of interval partitions (see [32]). This lattice turns out to be isomorphic to the boolean
lattice of a n − 1-set, from which the name of boolean convolution has been derived. A partition
π of Πn is said to be an interval partition if each block Bi of π is an interval [ai, bi] of [n], that is
Bi = [ai, bi] = {x ∈ [n] | ai ≤ x ≤ bi}, where ai, bi ∈ [n]. We denote by In the subset of Πn of



1796 E. Di Nardo et al. / European Journal of Combinatorics 31 (2010) 1792–1804

all the interval partitions. The pair (In,≤), where ≤ is the refinement order, is a lattice. The type of
each interval [σ , τ ] in In is the same as (2.3). Let f and g be twomultiplicative functions on the interval
partition lattice. We define the convolution h = f � g, which is also multiplicative, by

(f � g)(σ , π) :=
∑
σ≤τ≤π
τ∈In

f(σ , τ )g(τ , π). (2.13)

So if h = f � g, then

hn =
∑
τ∈In

fτ g`(τ ). (2.14)

Given the power series H(t) and M(t) in (2.12), if h and m are two multiplicative functions on the
lattice of interval partitions, with m(0n, 1n) = mn and h(0n, 1n) = hn, then we have{

h = m � µI,
m = h � ζI,

(2.15)

where µI and ζI are the Möbius function and the zeta function on (In,≤).

Theorem 2.3. Let f, g and h be three multiplicative functions on the lattice (In,≤) with fn = f(0n, 1n),
gn = g(0n, 1n) and hn = h(0n, 1n). If f (t) = 1 +

∑
n≥1 fnt

n, g(t) = 1 +
∑
n≥1 gnt

n and h(t) =
1+

∑
n≥1 hnt

n, then

h(t) = f [g(t)− 1] ⇐⇒ h = g � f. (2.16)

Theorems 2.1 and 2.3 state that the convolutions ? and � express the composition of exponential
power series and ordinary power series respectively. So these convolutions are noncommutative. This
is not true for the convolution (2.10). In fact, the map τ → τ̃ is an order-reversing bijection such that
sh( ˜̃τ) = sh(τ ), and by virtue of (2.11) we obtain f ∗ g = g ∗ f (see [14] for more details).

3. Symbolic methods for classical, boolean and free cumulants

We start this section recalling the necessary tools of the umbral syntax; main references are
[4,5,7,23].
Let us denote by X the set of variables X = {x1, x2, . . . , xn}. A classical umbral calculus consists

of the following data: a set A = {α, β, . . .}, called the alphabet, whose elements are named
umbrae; a linear functional E, called the evaluation, defined on the polynomial ring R[X][A] and
taking value in R[X] (a ring whose quotient field is of characteristic zero), such that E[1] = 1 and
E[xs1x

m
2 · · · x

t
nα
iβ j · · · γ k] = xs1x

m
2 · · · x

t
nE[α

i
]E[β j] · · · E[γ k] (uncorrelationproperty) for all nonnegative

integers s,m, t, i, j, k; two special umbrae ε (augmentation) and u (unity) such that E[εi] = δ0,i, and
E[ui] = 1, for i = 0, 1, 2, . . . .
A sequence (1, a1, a2, . . .) of elements of R is represented by a scalar umbra α if E[αi] = ai, for

i = 0, 1, 2, . . .. In this case we say that ai is the ith moment of α. In the following the powers of
an umbra α will be also called moments, if this does not give rise to misunderstandings. A sequence
(1, p1, p2, . . .) of elements of R[X], such that pn is of degree n for all n, is represented by a polynomial
umbra ψ if E[ψ i] = pi for i = 0, 1, 2, . . ..
The factorial moments of a scalar umbra α are the elements a(n) ∈ R such that a(0) = 1 and

a(n) = E[(α)n] = E[α(α − 1)(α − 2) · · · (α − n+ 1)] for all n ≥ 1. The polynomial (α)n is an umbral
polynomial. More general, an umbral polynomial is a polynomial p ∈ R[X][A]. The support of p is the
set of all umbrae occurring in p. If p and q are two umbral polynomials, then p and q are uncorrelated
if and only if their supports are disjoint. Moreover the polynomials p and q are umbrally equivalent if
and only if E[p] = E[q], in symbols p ' q.
Two umbrae are similar, in symbols α ≡ γ , if and only if E[αn] = E[γ n] for all n. So, each sequence

is represented by infinite many uncorrelated (i.e. distinct) umbrae. In the following, we shall denote
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by α, α′, α′′, . . . a family of similar and uncorrelated umbrae. We extend the alphabet A with the so-
called auxiliary umbrae obtained via operations among similar umbrae. This leads to the construction
of a saturated umbral calculus in which auxiliary umbrae are treated as elements of a suitable alphabet.
For example, the symbol n.α denotes an auxiliary umbra similar to the sum of n distinct umbrae, each
one similar to the umbra α, that is n.α ≡ α′+α′′+· · ·+α′′′. We remark that n.(α+γ ) ≡ n.α+n.γ ,
and α.n ≡ nα, for every umbrae α and γ and for all nonnegative n.
The generating function f (α, t) of α is f (α, t) = 1 +

∑
n≥1 an

tn
n! . A formal construction is given

in [4]. In particular, we have f (ε, t) = 1, f (u, t) = et and f (n.α, t) = f (α, t)n.
Special umbrae are the Bell umbra β and the singleton umbra χ . The Bell umbra β has moments

given by the Bell numbers so that f (β, t) = ee
t
−1. The singleton umbra χ has moments E[χn] = 1,

if n = 0, 1, and E[χn] = 0 otherwise, so that f (χ, t) = 1 + t. The derivative umbra αD of an
umbra α is the umbra whose moments are (αD)n ' ∂αα

n
' nαn−1 for n = 1, 2, . . . [7]. We have

f (αD, t) = 1+ t f (α, t), and in particular E[αD] = 1.
Given an umbra α, the umbra denoted by −1.α is uniquely determined (up to similarity) by the

condition α + (−1.α) ≡ ε. The umbra −1.α is said to be the inverse of α. Its generating function is
f (α, t)−1. Then, the umbra−n.α is the inverse of n.α and f (−n.α) = f (α, t)−n.
A generalization of the auxiliary umbra n.α (dot operation) is introduced when n is replaced by an

umbra γ . We denote by γ .α an auxiliary umbra with moments

(γ .α)n '
∑
λ`n

dλ (γ )`(λ) (α′)λ1(α′′)λ2 · · · (α′′′)λ`(λ) , (3.1)

where the sum ranges over all the partitions λ = (λ1, λ2, . . . , λl) of n, where l = `(λ) is the number
of positive parts of λ, and dλ =

( n
λ

)
/[m(λ)1!m(λ)2! · · ·m(λ)n!], where m(λ)i denotes the number of

parts of λ equal to i. From now on, we denote (α′)λ1(α′′)λ2 · · · (α′′′)λ`(λ) and m(λ)1!m(λ)2! · · ·m(λ)n!
by αλ and m(λ)! respectively. The generating function of γ .α is f (γ .α, t) = f [γ , log f (α, t)]. In
particular, we have α.u ≡ u.α ≡ α for all α in A, and χ.β ≡ β.χ ≡ u.
The composition of f (γ , t) and f (α, t) is the generating function of γ .β.α, f (γ .β.α, t) =

f [γ , f (α, t) − 1]. The umbra γ .β.α is said to be the composition umbra of γ and α. The moments
of γ .β.α are

(γ .β.α)n '
∑
λ`n

dλ γ `(λ) αλ. (3.2)

In particular (γ .β).α ≡ γ .(β.α) and

γD.β.αD ≡ (α + γ .β.αD)D. (3.3)
Finally the symbol α〈−1〉 denotes an umbra whose generating function is the compositional inverse
f 〈−1〉(α, t) of f (α, t). Such an umbra is uniquely determined (up to similarity) by the relations
α.β.α〈−1〉 ≡ α〈−1〉.β.α ≡ χ.

Theorem 3.1. Let f, g and h be three multiplicative functions on the lattice (Πn,≤). If α, γ and ω are
three umbrae with moments αn ' fn, γ n ' gn, and ωn ' hn, then we have h = f ? g⇐⇒ ω ≡ γ .β.α.

Proof. Note that in the equivalence (3.2), dλ counts the number of partitions of Πn of shape λ so
that (γ .β.α)n '

∑
π∈Πn

γ `(π)απ , where π = {B1, B2, . . . , Bl} ∈ Πn and we set απ = (α′)|B1|

(α′)|B2| · · · (α′′′)|Bl|. The result follows by comparing this last equivalence with (2.5). �

Remark 3.1. Theorem 3.1 states that multiplicative functions on (Πn,≤) can be thought as umbrae,
and the convolution ? of twomultiplicative functions corresponds to a composition umbra. The umbra
χ.χ is the umbral counterpart of the Möbius function µ. In fact, f (χ.χ, t) = 1 + log(1 + t) so
that (χ.χ)n ' (−1)n−1(n − 1)! = µn. In addition, the umbral counterparts of the Zeta function
ζ and the Delta function δ are respectively the unity umbra u and the singleton umbra χ . Hence the
relations among multiplicative functions can be interpreted in the umbral syntax. For example, we
have δ = µ ? ζ = ζ ? µ similarly to χ ≡ (χ.χ).β.u ≡ u.β.(χ.χ). Furthermore, an umbra α has a
compositional inverse α〈−1〉 if and only if E[α] = a1 6= 0. In analogy, a multiplicative function f has
an inverse respect to the convolution ? if and only if f1 6= 0.
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3.1. Classical cumulants

Classical cumulants have been studied via the classical umbral calculus in [4]. Here we state a
new theoremconcerning a parametrization of classical cumulants andmoments. This parametrization
represents the trait d’union with the umbral theory of boolean and free cumulants, that we introduce
later on.
For each umbra α, the α-cumulant umbra is an umbra, denoted by κα , similar to χ.α. In particular

we have κα ≡ (χ.χ).β.α, and from Theorem 3.1, this similarity is the umbral version of (2.7), if we
assume F(t) = f (α, t) and C(t) = f (κα, t). The formulae expressing the cumulants κnα ' cn in terms
of their moments αn ' mn are easily recovered from (3.2):

cn =
∑
λ`n

dλ(−1)`(λ)−1(`(λ)− 1)!mλ, (3.4)

wheremλ = E[αλ], so thatmλ = mλ1mλ2 · · ·mλ`(λ) . The relation κα ≡ χ.α is inverted by α ≡ β.κα by
which we havemn =

∑
λ`n dλcλ. In particularmn = Yn(c1, c2, . . . , cn), where Yn is the complete Bell

exponential polynomial. The Bell umbra β is the unique umbra, up to similarity, having the sequence
of cumulants {1}n≥1, being κβ ≡ χ.β ≡ u. Moreover, we have βn ' Bn = |Πn|.
Comparedwithmoments, cumulants are special sequences because of their properties of additivity

and homogeneity. The following theorem states these properties in umbral terms. Recall that the
disjoint sum of the umbrae α and γ is an auxiliary umbra such that (α

.

+ γ )n ' αn + γ n.

Theorem 3.2. For all umbrae α, γ ∈ A and for all c ∈ R, the following properties hold:

κα+γ ≡ κα
.

+ κγ (additivity property);
κα+cu ≡ κα

.

+ cχ, (semi-invariance for translation property);
κcα ≡ cκα. (homogeneity property).

Theorem 3.3 (Parametrization). If κα is the α-cumulant umbra, then

αn ' κα(κα + α)
n−1 and κnα ' α(α − 1.α)

n−1. (3.5)

Proof. Sine for any umbra α ∈ A we have (β.α)n ' α(α + β.α)n−1, see [5], we obtain the former in
equivalence (3.5) replacing α by κα ≡ χ.α. The latter can be proved as follows. We have

α(α − 1.α)n−1 '
∑
1≤k≤n
λ`n−k

(
n− 1
k− 1

)
dλ(−1)`(λ) αk αλ,

and, setting λ← λ ∪ k (i.e. a part equal to k is joined with λ), we recover Eq. (3.4). �

3.2. Boolean cumulants

The notion of boolean cumulant requires the connection between umbrae and ordinary generating
functions. We obtain this connection simply by multiplying an umbra by the boolean unity umbra ū,
whose moments are ūn ' n!. In fact, if α has moments αn ' an, the umbra ᾱ ≡ ūα has generating
function f (ᾱ, t) = 1+ a1t + a2t2+ · · ·. Note that, α ≡ γ if and only if ᾱ ≡ γ̄ . The following theorem
is the analogous of Theorem 3.1 for the lattice (In,≤).

Theorem 3.4. Let f, g and h be threemultiplicative functions on the lattice (In,≤). If α, γ andω are three
umbrae with moments αn ' fn, γ n ' gn, and ωn ' hn, then we have h = f � g⇐⇒ ω̄ ≡ γ̄ .β.ᾱ.

Proof. Since ᾱλ ' λ!αλ, from (3.2) the moments hn of γ̄ .β.ᾱ are

hn =
∑
λ`n

`(λ)!

m(λ)!
g`(λ) fλ. (3.6)

But `(λ)!/m(λ)! is the number of interval partitions of shape λ, so that h = f � g. �
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Since theα-cumulant umbra is such that κα ≡ χ.α ≡ u〈−1〉.β.α,wedefine theα-boolean cumulant
umbra by taking the ‘‘bar version’’of the previous similarity.

Definition 3.1. The α-boolean cumulant umbra is the umbra ηα such that η̄α ≡ ū〈−1〉.β.ᾱ.

If hn denotes the nth moment of α-boolean cumulant umbra, from (3.6) we have

hn =
∑
λ`n

`(λ)!

m(λ)!
(−1)`(λ)−1mλ. (3.7)

Definition 3.1 is based on the following proposition that states that hn in (3.7) are the same as the
coefficients of H(t) in (2.12).

Proposition 3.5. If ηα is the α-boolean cumulant umbra, then f (η̄α, t) = 2 − f (ᾱ, t)−1 and f (ᾱ, t) =
(1− [f (η̄α, t)− 1])−1.

Proof. We have f (ū, t) = (1 − t)−1 so ū ≡ −1. − χ and −1.ū ≡ −χ . Moreover, we have
ū〈−1〉.β ≡ −χ.−β, since−χ.−β.ū ≡ −χ.−β.−1.−χ ≡ −χ.β.−1.−1.−χ ≡ −χ.β.−χ ≡ χ ,
this because −χ is the compositional inverse of itself and ū〈−1〉.β.ū ≡ χ. Therefore we have
f (ū〈−1〉.β, t) = 2− e−t , by which the results follow. �

Theorem 3.6 (Boolean Inversion Theorem). If ηα is the α-boolean cumulant, then ᾱ ≡ ū.β.η̄α.

Proof. The result follows from (3.1) by left dot product of both sides with ū.β . �

The unique umbra (up to similarity) having sequence of boolean cumulants {1}n≥1 is an umbra
α such that ᾱ ≡ ū.β.ū ≡ (2ū)D. Since ᾱn ' (2ū)nD ' n(2ū)n−1 ' n!2n−1, then such an
umbra has moments 2n−1, that is the number of interval partitions In. The following theorem gives a
parametrization of boolean cumulants and moments. The proof is omitted.

Theorem 3.7 (Boolean Parametrization). If ηα is the α-boolean cumulant umbra, then

ᾱn ' η̄α(η̄α + 2.ᾱ)n−1 and η̄nα ' ᾱ(ᾱ − 2.ᾱ)
n−1. (3.8)

Similarly to the α-cumulant umbra, we can state additivity and homogeneity properties also for
the α-boolean cumulant umbra.

Theorem 3.8 (Homogeneity Property). If ηα is the α-boolean cumulant umbra, then ηcα ≡ cηα.

Proof. Since ū〈−1〉.β.cᾱ ≡ c(ū〈−1〉.β.ᾱ) and cα ≡ cᾱ, then from (3.1) we have η̄cα ≡ cη̄α and finally
ηcα ≡ cηα . �

Theorem 3.9 (Additivity Property). If ηα, ηγ and ηξ are the boolean cumulant umbrae of α, γ and ξ
respectively, then

ηξ ≡ ηα
.

+ ηγ ⇔ −1.ξ̄ ≡ −1.ᾱ
.

+ −1.γ̄ . (3.9)

Proof. Let −1.ξ̄ ≡ −1.ᾱ
.

+ −1.γ̄ . Due to −1.ᾱ ≡ (−χ.β).η̄α , we have −χ.β.η̄ξ ≡ −χ.β.η̄α
.

+

−χ.β.η̄γ ≡ −χ.(β.η̄α + β.η̄γ ) so that β.η̄ξ ≡ β.η̄α + β.η̄γ . Taking the left product of both sides for
χ , the result follows. �

Wedefine the boolean convolution ofα and γ to be the umbraα]γ such thatα ] γ ≡ −1.(−1.ᾱ
.

+

−1.γ̄ ). Theorem 3.9 assures this is the unique convolution linearized by boolean cumulants. In this
way, from (3.9) we express the additivity property of the boolean cumulant umbrawith respect to the
boolean convolution as follows ηα]γ ≡ ηα

.

+ ηγ . Since η̄cu ≡ (ū〈−1〉.β.ū).c ≡ χ.c ≡ cχ , from (3.9)
we have ηα]cu ≡ ηα

.

+ c χ that gives the semi-invariance property.
Oncemore, note the analogywith the convolution linearized by classical cumulants, that isα+γ ≡

−1.(−1.α +−1.γ ).



1800 E. Di Nardo et al. / European Journal of Combinatorics 31 (2010) 1792–1804

3.3. Free cumulants

Definition 3.2 (Free Cumulant Umbra). For a given umbra α, the unique umbra Kα (up to similarity)
such that (−1.K̄α)D ≡ ᾱ

〈−1〉
D is called the free cumulant umbra of α.

The moments of Kα will be called free cumulants of the umbra α. Definition 3.2 is based on the
following proposition that states that the free cumulants of an umbra α, whose moments aremn, are
the coefficients of R(t) in (2.9).

Proposition 3.10. If Kα is the free cumulant umbra of α, then ᾱ ≡ K̄α.β.ᾱD.

Proof. By using Definition 3.2, we have ᾱD.β.ᾱ
〈−1〉
D ≡ ᾱD.β.(−1.K̄α)D and via (3.3) we obtain

ᾱD.β.(−1.K̄α)D ≡ (ᾱ − 1.K̄α.β.ᾱD)D. As ᾱD.β.ᾱ
〈−1〉
D ≡ χ , then ᾱ − 1.K̄α.β.ᾱD ≡ ε ⇔ ᾱ ≡

K̄α.β.ᾱD. �

Proposition 3.10 gives (2.9), if we set f (ᾱ, t) = M(t), f (K̄α, t) = R(t) and observe that f (ᾱD, t) =
1+ tf (ᾱ, t).

Theorem 3.11. If Kα is the free cumulant umbra of α, then K̄α ≡ ᾱ.β.ᾱ
〈−1〉
D and ᾱ ≡ K̄α.β.(−1.K̄α)

〈−1〉
D .

Proof. The former similarity follows from Proposition 3.10 as we have ᾱ.β.ᾱ〈−1〉D ≡ K̄α.β.ᾱD.β.ᾱ
〈−1〉
D

and ᾱD.β.ᾱ
〈−1〉
D ≡ χ . The latter similarity follows from Definition 3.2, by observing that β.ᾱD ≡

β.(−1.K̄α)
〈−1〉
D . �

Aparametrization of free cumulants andmoments canbe constructed byusing the so-calledumbral
Abel polynomials [7]

An(x, α) '
{
u if n = 0,
x(x− n.α)n−1 if n ≥ 1. (3.10)

Note that if the umbra α is replaced by the umbra a.u, with u the unity umbra and a ∈ R, then
E[An(x, a.u)] = An(x, a) for all n ≥ 1, where {An(x, a)} denotes the Abel polynomial sequence,
An(x, a) = x(x− na)n−1.

Theorem 3.12 (Free Parametrization). If Kα is the free cumulant umbra of α, then

ᾱn ' K̄α(K̄α + n.K̄α)n−1 and K̄nα ' ᾱ(ᾱ − n.ᾱ)
n−1. (3.11)

Proof. In [7], the following equivalence An(x, α) ' (x.β.α〈−1〉D )n, is proved for all n ≥ 1, so that
An(K̄α,−1.K̄α) ' [K̄α.β.(−1.K̄α)

〈−1〉
D ]

n. From the latter similarity in Theorem 3.11, we have ᾱn '
An(K̄α,−1.K̄α) ' K̄α(K̄α − n.(−1.K̄α))n−1 by which the former equivalence (3.11) follows. From the
latter similarity of Theorem 3.11, we have K̄nα ' (ᾱ.β.ᾱ

〈−1〉
D )n ' An(ᾱ, ᾱ). The latter equivalence

(3.11) follows by replacing xwith ᾱ in (3.10). �

Corollary 3.13. With {rn}n≥1 and {mn}n≥1 given in (2.9), we have mn =
∑

λ`n(n)`(λ)−1rλ/m(λ)! and
rn =

∑
λ`n(−n)`(λ)−1mλ/m(λ)!.

TheAbel parametrization allowsus to prove the homogeneity property of the free cumulant umbra,
since for any c ∈ R and for any α ∈ Awe have−n.(cα) ≡ c(−n.α), see [4].

Theorem 3.14 (Homogeneity Property). If Kα is the free cumulant umbra of α, thenwe haveKcα ≡ cKα,
for all c ∈ R.

Remark 3.2. In order to prove the additivity property of the free cumulant umbra we introduce an
umbra δP such that (δP)n ' δn+1/(n+ 1) for n = 1, 2, . . .. Thanks to this device, Definition 3.2 gives
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K̄α ≡ −1.(ᾱ
〈−1〉
D )P . Denote by Lᾱ the umbra (ᾱ

〈−1〉
D )P . Consider the multiplicative function f on the

noncrossing partition lattice defined by αn−1 ' fn. Note that f is unital, that is f1 = 1. The generating
function f (Lᾱ, t) is exactly the Fourier transform (F f)(t) considered by Nica and Speicher [14]. In
particular, being [F (f ∗ g)](t) = (F f)(t)(F g)(t) for all f and g unital, if γ n−1 ' gn and ωn−1 ' hn,
then we obtain h = f ∗ g ⇔ Lω̄ ≡ Lᾱ + Lγ̄ . This way, an analog of Theorems 3.1 and 3.4 for unital
multiplicative functions on the noncrossing partitions lattice is given.

Theorem 3.15 (Additivity Property). If Kα,Kγ and Kξ are the free cumulant umbrae of α, γ and ξ
respectively, then

Kξ ≡ Kα
.

+ Kγ ⇔ −1.Lξ̄ ≡ −1.Lᾱ
.

+ −1.Lγ̄ . (3.12)

Remark 3.3 (Connection Between Boolean and Free Convolution).Write ᾱD〈−1〉P for (ᾱ
〈−1〉
D )P . By virtue

of Theorem 3.15, the free convolution α � γ of α and γ has to be defined by α � γ D
〈−1〉

P ≡

−1.[−1.ᾱD〈−1〉P
.

+ −1.γ̄D〈−1〉P ], so that Kα�γ ≡ Kα
.

+ Kγ . Moreover, thanks to the umbra Lᾱ we
have

Lα�γ ≡ Lᾱ ] Lγ̄ ,

which gives the connection between boolean and free convolution.

Semi-invariance property can be proved by observing that Kα�cu ≡ Kα
.

+ cKu so that Kα�cu ≡

Kα
.

+ cχ , being K̄u ≡ ū.β.ū
〈−1〉
D ≡ χ .

Definition 3.3 (Catalan Umbra). The Catalan umbra is the unique umbra ς such that Kς ≡ u, that is
ς̄ ≡ ū.β.(−1.ū)〈−1〉D .

As it iswell known, Catalan numbers count the noncrossing partitions of a set. So in the free setting,
the Catalan umbra plays the same role played by the Bell umbra β in the classical framework.

Proposition 3.16 (Catalan Numbers). If Cn is the nth Catalan number, then ςn ' Cn.

Proof. We have n!ςn ' ς̄n ' n!
∑

µ`n(n)`(µ)−1/m(µ)!. As well known (see for instance [10]),
(n)`(µ)−1/m(µ)! is the number of noncrossing partitions of shape µ and |N Cn| = Cn, so that
ςn ' |N Cn| = Cn. �

4. Volume polynomial

In this section we provide an explicit connection between free cumulants and parking functions
via volume polynomials. Moreover we prove that in the free setting the volume polynomials play the
same role played by the complete Bell exponential polynomials in the classical settings.
Recall that a parking function of length n is a sequence (p1, p2, . . . , pn) of n positive integers,

whose nondecreasing arrangement (pi1 , pi2 , . . . , pin) is such that pij ≤ j. We denote by park(n)
the set of all parking functions of length n; its cardinality is (n + 1)n−1. The symmetric group Sn
acts on the set park(n) by permuting the entries of parking functions. As well known, the number
of orbits in park(n)Sn is equal to the nth Catalan number Cn. It is also known that a map τ can be
defined from park(n) to N Cn whose restriction to park(n)Sn is bijective. The n-volume polynomial
Vn(x1, x2, . . . , xn), introduced by Pitman and Stanley [18], is the following homogeneous polynomial
of degree n:

Vn(x1, x2, . . . , xn) =
1
n!

∑
p∈park(n)

xp, (4.1)

where xp = xp1xp2 · · · xpn whenever p = (p1, p2, . . . , pn). For each p ∈ park(n) let m(p) =
(m1,m2, . . . ,mn) be the vector of the multiplicities of p, that is mj = |{i | pi = j}|. If λ is a
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partition of n, then we say that the parking function p is of type λ if the nonzero entries of m(p)
consists of a rearrangement of the parts of λ. The orbit Op = {ω(p) | ω ∈ Sn} of a parking function
of type λ has cardinality n!/λ!. The map τ has the following property: p is of type λ if and only if
τ(p) = {B1, B2, . . . , Bl} is of shape λ. Hence, the polynomial Vn(x1, x2, . . . , xn) can be written as

Vn(x1, x2, . . . , xn) =
∑
λ`n

1
λ!

(n)`(λ)−1
m(λ)!

xλ, (4.2)

being xλ = xλ11 x
λ2
2 · · · x

λl
l . In particular when xi are replaced by similar and uncorrelated umbrae we

have n!Vn(α′, α′′, . . . , α′′′) ' α(α + n.α)n−1, for all α ∈ A (see [17]). By using this last result and
Theorem 3.12, the following theorem provides an explicit connection between free cumulants and
parking functions.

Theorem 4.1. Let α be an umbra and let Kᾱ be its free cumulant umbra. If K′, K′′,. . . , K′′′ are n
uncorrelated umbrae similar to Kα and Vn(x1, x2, . . . , xn) is the n-volume polynomial (4.1), then ᾱn '
Vn(K̄′, K̄′, . . . , K̄′′′).

Corollary 4.2. If ς is the Catalan umbra and u′, u′′, . . . , u′′′ are uncorrelated umbrae similar to the unity
u, then ς̄n ' Vn(ū′, ū′′, . . . , ū′′′), or equivalently n!Cn = E[ū(ū+ n.ū)n−1].

Observe that, from (4.1) we have n!Vn(x1, x2, . . . , xn) =
∑
p∈park(n) xp. If we restrict the sum to

the quotient park(n)Sn (i.e. if we take only a parking function per orbit) we obtain polynomials
Rn(x1, x2, . . . , xn) =

∑
λ`n(n)`(λ)−1xp/m(λ)! such that Rn(K

′,K′′, . . . ,K′′′) ' mn. Thanks to the
parametrization given in Theorems 3.3 and 3.7 we can also construct polynomials Cn(x1, x2, . . . , xn)
and Hn(x1, x2, . . . , xn) such that mn = Cn(κ ′, κ ′′, . . . , κ ′′′) = Hn(η′, η′′, . . . , η′′′), κ ′, κ ′′, . . . , κ ′′′ and
η′, η′′, . . . , η′′′ being uncorrelated umbrae similar to κα and ηα respectively. This will be done in the
next section for a more general class of cumulants.
Finally, since we have E[Cn(κ ′, κ ′′, . . . , κ ′′′)] = Yn(c1, c2, . . . , cn), then the analog of the

complete Bell polynomials in the boolean and free case are the polynomials E[Hn(η′, η′′, . . . , η′′′)]
and E[Rn(K′,K′′, . . . ,K′′′)] respectively.

5. Linear cumulants and Abel polynomials

Let {gn}n≥1 be a sequence of nonnegative integers represented by an umbra γ . Let us define the
generalized Abel polynomials as the umbral polynomials A(γ )n (δ, α) such that A(γ )n (δ, α) ' δ(δ −

gn.α)n−1 for n ≥ 1. In particular, when α ≡ δ we will write A(γ )n (α) instead of A(γ )n (α, α). It can
be shown that (see [17], Theorem 3.1)

A(γ )n (α) '
∑
λ`n

dλ(−gn)`(λ)−1(α′)λ1(α′′)λ2 · · · (α′′′)λ`(λ) . (5.1)

Generalized Abel polynomials allow us to express classical, boolean and free cumulants in terms of
moments. Indeed for the classical cumulants from Theorem 3.3 we have κnα ' A

(u)
n (α), since the

sequence {1}n≥1 is represented by the unity umbra u. Since the sequence {2}n≥1 is represented by
the umbra χ.2.β , from Theorem 3.7 we have η̄nα ' A

(χ.2.β)
n (ᾱ) for the boolean cumulants. Since the

sequence {n}n≥1 is represented by the umbra uD, from Theorem 3.12 we have K̄nα ' A
(uD)
n (ᾱ) for the

free cumulants. In this section, by using generalized Abel polynomials, we show how to construct
a more general family of cumulants possessing the additivity, homogeneity and semi-invariance
properties. To the best of our knowledge, a previous attempt to give a unifying approach to cumulants
families was given in [1], but the boolean case seems not fit in.

Definition 5.1 (Cumulant Umbrae). The umbra Kγ ,α such that Knγ ,α ' A
(γ )
n (α) for all n ≥ 1 is called

the cumulant umbra of α induced by the umbra γ .
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Let a = (an)n≥1 and g = (gn)n≥1 be the sequences of moments of α and γ respectively. Then the
nth cumulant of α induced by γ is cn(a; g) = E[Knγ ,α]. If we choose as umbra γ the umbra χ.k.β and
we set cn,k = E[A

(χ.k.β)
n (α)], then we may consider the infinite matrix

C(a) =

c1,1 c1,2 · · ·
c2,1 c2,2 · · ·
...

...
. . .

 .
The cumulants induced by the umbra χ.k.β are the ones occurring in the kth column. But we can
construct different sequences of cumulants of α by extracting one entry from each row of C(a). For
example, suppose to define the umbra γ such that gn = (n + k − 1), for all n ≥ 1 and for a fixed
positive integer k. The cumulants induced by this umbra γ are the ones occurring in the kth diagonal
of C(a).
By means of equivalence (5.1) and Definition 5.1, we have

Knγ ,α ' Qn(γ ;α
′, α′′, . . . , α′′′) (5.2)

where Qn(γ ; x1, x2, . . . , xn) =
∑

λ`n dλ(−gn)`(λ)−1x
λ1
1 x

λ2
2 · · · x

λn
n (λi = 0 if i > `(λ)) are

homogeneous polynomial in R[X] of degree n whose coefficients do not depend on α. This property
of Qn(γ ; x1, . . . , xn) gives rise to the following theorem.

Theorem 5.1 (Homogeneity Property). If Kγ ,α is the cumulant umbra of α induced by the umbra γ , then
Kγ ,jα ≡ jKγ ,α for all j ∈ R.

If we set j a = (jnan)n≥1, then the homogeneity property states that cn(j a; g) = jncn(a; g)
for all n. In terms of the matrix C(a), the homogeneity property can be restated as C(j a)T =
diag(j, j2, . . .)C(a)T . It is also possible to express the moments of α in terms of its cumulants induced
by any γ with positive integer moments.

Theorem 5.2 (Invertibility Property). For all scalar umbrae γ whose moments {gn}n≥1 are positive
integers, there exists a sequence {Pn(γ ; x1, . . . , xn)}n≥1 of homogeneous umbral polynomials of degree n,
such that for all n and for all α ∈ A we have αn ' Pn(γ ;K′,K′′, . . . ,K′′′), for all n-sets {K′,K′′, . . . ,K′′′}
of umbrae similar to Kγ ,α.

Proof. Suppose to denote by cn the nth moment of Kγ ,α. From (5.2), cn = an + q(a1, a2, . . . , an−1)
where q is a suitable polynomial in a1, a2, . . . , an−1. So an can be expressed in terms of c1, . . . , cn by
recursions. By replacing occurrences of product of powers of the ci’s by suitable products of powers
of the xi’s, the polynomials Pn such that an = E[Pn(γ ;K′,K′′, . . . ,K′′′)] can be constructed from these
expressions. Finally, from the homogeneity property 5.1, we have Pn(γ ; jK′, jK′′, . . . , jK′′′) ' jnαn,
which assures the homogeneity of the Pn’s. �

Each sequence of cumulants linearizes a certain convolution of umbrae (i.e. of moments) and
this is why we call the elements of the matrix C(a) linear cumulants. More precisely, we define the
convolution of two umbrae α and η induced by the umbra γ to be the auxiliary umbra α+(γ ) η such
that

Kγ ,α+(γ ) ω ≡ Kγ ,α
.

+ Kγ ,ω, (Additivity property). (5.3)

In particular, convolutions are commutative. The invertibility property 5.2 assures the existence of the
convolution of any pair of umbrae induced by any umbra whose moments are positive integers.

Theorem 5.3. For all scalar umbrae γ whose moments {gn}n≥1 are positive integers, there exists a
sequence of polynomials {Tn(γ ; x1, . . . , xn, y1, . . . , yn)}n≥1 homogeneous of degree n, such that for all
n and for all scalar umbrae α, ω ∈ A we have (α+(γ ) ω)n ' Tn(γ ;α′, α′′, . . . , α′′′, ω′, ω′′, . . . , ω′′′).
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Proof. Due to the invertibility property 5.2, there exists Pn(γ ; x1, x2, . . . , xn) such that (α+(γ ) ω)n '
Pn(γ ;K′,K′′, . . . ,K′′′). Then, suppose to replace each occurrence of x

λi
i in Pn with x

λi
i + y

λi
i and denote

by Tn the polynomial resulting of this replacement. By virtue of the additivity property (5.3), it is
straightforward to prove that Tn satisfies all the properties of the theorem. �

In general, the cumulant umbrae Kγ ,α ’s do not have the semi-invariance property. This is due to
the fact that Kγ ,u is not similar to χ , so that Kγ ,α+(γ ) cu is not similar to Kγ ,α

.

+ cχ . However, after
a suitable normalization of cumulants, moments and convolutions it is possible to recover the semi-
invariance property. More explicitly, for the first column (classical cumulants) no normalization is
needed. For the second column the right normalization (which returns boolean cumulants) is obtained
via the moments n! of the boolean unity ū. Indeed, {Knχ.2.β,α/n!}n≥1 is a sequence of cumulants for the
moments {αn/n!}n≥1 which is semi-invariant with respect to the convolution {(α+(χ.2.β) ω)n/n!}n≥1.
For the main diagonal (free cumulants) it is again ū giving a good normalization. More generally, for
columns anddiagonals the normalization is always possible and it is obtained via umbrae representing
positive integer moments.
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