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Abstract

The aim of these lectures is to give an introduction to combinatorial aspects of Umbral
Calculus. Seen in this light, Umbral Calculus is a theory of polynomials that count
combinatorial objects. In the first two lectures we present the basics of Umbral Calculus
as presented in the seminal papers Mullin and Rota (1970) and Rota, Kahaner, and
Odlyzko (1973). In the third lecture we present an extension of the Umbral Calculus due
to Niederhausen for solving recurrences and counting lattice paths. An overview of other
extensions is given in the fourth lecture.
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1 Introduction

The roots of Umbral Calculus can be traced back to the previous century (see Bell (1938)).
The name Umbral Calculus was invented by Sylvester (referred to as ‘that great inventor
of unsuccesful terminology’ in Roman and Rota (1978)). This ‘calculus’ (also known under
the names Blissard Calculus or Symbolic Calculus) is a set of heuristic devices in which
subscripts are treated as powers. Let us look at an example to see what is meant by this (a
recent exposition with more examples can be found in Guinand (1979)).

The Bernoulli numbers B,, are defined by the generating function

= z" x
anmzex_l. (1)
n=0

The magic trick used in the 19th century Umbral Calculus is to write

an%:ZB”%:eBx, (2)
n=0

n=0

where we use the ~ symbol to stress the purely formal character of this manipulation. A
trivial standard algebraic manipulation then yields

e(B + Dz _ eBx ~ 2, (3)

from which we deduce by equating coefficients of Z—T that
(B+1)" = B" =~ b1y, (4)

where 61, denotes the Kronecker delta. If we now expand (4) using the Binomial Theorem and
change the superscripts back to subscripts, we obtain the following relation for the Bernoulli
numbers:

n—1

3 (Z) By = b1, (5)

k=0

which can be shown to be true (a standard direct proof is possible by considering the reciprocal
power series (e¥ — 1)/z). Many more examples of similar manipulations with valid results
are known (see e.g. Guinand (1979)). It is interesting to note that this technique is used
extensively in the well-known standard works Riordan (1958) and Riordan (1968). Attempts
to put this ‘calculus’ on a firm foundation were unsuccesful (e.g. Bell (1940)). A major
obstacle was to explain why it is not allowed to write:

2
(eBx) 2Bz

€ ’



which yields the obviously invalid identity
20 x 2
e —1 \et—-1) °

A major breakthrough was achieved in Rota (1964), where the process of lowering superscripts
was replaced by the action of functionals on polynomials in order to deal with problems related
to partitions. This idea was extended in Mullin and Rota (1970) to a theory of shift-invariant
operators acting on polynomials and an associated class of so-called polynomials of binomial
type. This paper can also be seen as a direct predecessor to Joyal (1981); a recent extension
of the concept of species that relates all polynomials of binomial type (including polynomials
with negative coefficients) to species can be found in Senato, Venezia, and Yang (1997).
Subsequently this modern form of Umbral Calculus was extended in Rota, Kahaner, and
Odlyzko (1973) to the class of Sheffer polynomials.

In Section 2 we will present the main results of Mullin and Rota (1970). Sheffer polynomials
and their use by Niederhausen for solving recurrences are the subject of Section 3. An overview
of some extensions of the Umbral Calculus (multivariate polynomials, generalized differential
operators, classical Umbral Calculus etc.) is given in Section 4.

These introductory lecture notes can only show a glimpse of the many ramifications of the
Umbral Calculus. For a major overview of the Umbral Calculus we refer to Di Bucchianico
and Loeb (1995). An unofficial HTML version can be found at

http : //www.win.tue.nl/math/bs/statistics/bucchianico/hypersurvey/.

For biographical information (including pictures) on mathematicians, consult the excellent
MacTutoor History of Mathematics archive at

http : //www — groups.dcs.st — and.ac.uk/ history//.

Notation and conventions

The degree of a polynomial, is defined as usual. However, the degree of a nonzero constant is
defined to be zero and the degree of the zero polynomial is defined to be -1.

Nis defined to be the set {0,1,2,...}.

The vector space of polynomials with coefficients in some fixed field of characteristic zero
is denoted by P. We refer to Van Hamme (1992) and Verdoodt (1996) for a version of the
Umbral Calculus where the field is of non-zero characteristic

2 Shift-invariant operators and polynomials of binomial type

In this section we present the basic definitions and results of the Umbral Calculus. We follow
the approach of Di Bucchianico (1997).



2.1 Shift-invariant operators

Definition 2.1.1 The shift-operator E® is the operator on P defined by (E°p)(x) := p(a +a)
(peP).

Definition 2.1.2 An operator T on P is called shift-invariant if F*T = TFE® for all a.

Examples 2.1.3 Examples of shift-invariant operators are:

a) the identity operator 1.

b

the differentiation operator D.

c) the operators £? of Definition 2.1.1.

e) the backward difference operator I — E~1.

f

)
)
)
d) the forward difference operator Bl 1.
)
) the Abel operators D E“.

)

g) the Laguerre operator L , defined by

ey = = [ e

h) the Bernoulli operator J , defined by

r+1

i) = [ pnd

xr

Remark 2.1.4 If S is an invertible shift-invariant operator on P , then its inverse S~! is
also shift-invariant, since S7'1E* = §~1E§5~1 = §-16Fa5-1 = Feg-1 for all a.

Definition 2.1.5 A linear operator () on P is called a delta operator if ) is shift-invariant
and Qx is a nonzero constant.

Examples 2.1.6 Examples of delta operators include b, d, e, f and g from Examples 2.1.3,
but not a, ¢ and h.

It is a remarkable fact that every linear shift-invariant operator has a Taylor-like expansion
in terms of an arbitrary delta operator (see Theorem 2.3.9).

We start by proving this expansion theorem for the differentiation operator D, because this
vields simple proofs for properties of shift-invariant operators.

Theorem 2.1.7 Let D be the differentiation operator and define q,(z) = Z—T for all n € N.
Then T is a linear shift-invariant operator on P if and only if

T i (T'qx)(0) D*.

k=0



Proof: ‘<=’ Note that the infinite sum is in fact a finite sum when applied to a polynomial
and thus is a well-defined operator on P. Shift-invariance of T follows from shift-invariance
of D.

‘=" Since (¢,)nen is a basis for P, it suffices to verify that both operators coincide when
applied to ¢, for all n € N. Using the Binomial Theorem, we obtain

(T gn)(a) = (E°T ,) (0) = (T'E* ¢, )( (Z Gk ( qu) (0) = (i (qu)(O)Dkqn) (a)

k=0
for all n» € N and all a. a

Examples 2.1.8
a) Consider the shift-invariant operator £*. Theorem 2.1.7 yields £ = el Hence,

& k

P+ a) = (Ep)(a) = Y (D p)e) T
k=0

for all p € P, which is Taylor’s Formula.
b) Consider the Laguerre operator of Example 2.1.3e. Since for k > 1 we have

L(z—f) (0):—/000 e_t%dt = -1,

it follows that L = — > D¥F = D(D - I)™*
k=0
c¢) Consider the Bernoulli operator of Example 2.1.3f. Since

(i) 0= =

it follows that J = Z it 1)

We now derive some corollaries from Theorem 2.1.7. Recall that the degree of a nonzero
constant is defined to be zero and that the degree of the zero polynomial is defined to be -1.

Corollary 2.1.9 a) If T is a linear shift-invariant operator on P, then there exists a non-
negative integer n(1') such that degT'p = max{—1,degp—n(T)} for all p € P. The null space
of T' equals the set of polynomials with degree less than n(T).

b) If Q is a delta operator, then deg Qp = max{—1,deg(p)— 1} and the null space of Q) equals
the set of constant polynomials.

Proof: a) By Theorem 2.1.7, we have T' = 37 az D* for some sequence (ay,)nen. It follows
from deg D*p = max{—1,deg(p) — k} that if we set n(7) := min{k € N : az # 0}, then
deg Tp = max{—1,deg(p) — n(7T)} for all p € P. Thus T'p = 0 if and only if degp < n(T).

b) By definition, @) z is a nonzero constant. Thus a) implies that deg @p = max{—1,deg(p) —
1} for all polynomials p € P. a

The converse of Corollary 2.1.9a is not true. Fix m € N. The linear operator T on P defined

by Tz* := 0if k < m, Ta™ := 1, Ta™*! = %w and Tz* := 2*" if & > m + 2. Then T is

not shift-invariant, but deg7'p = max{—1,deg(p) — m} for all p € P.



Corollary 2.1.10 Let T be a linear shift-invariant operator on P. Then the following are
equivalent:

a) T is invertible.
b) T1 0.
c) degp = degTp for all p € P.

Proof: ‘a = b’ The null space of an invertible linear operator consists of 0 only, so T'1 # 0.
‘b = ¢’ Since T'1 # 0, it follows from Corollary 2.1.9a that degp = deg T'p for all p € P.

‘c = a’ It suffices to prove that T is injective and surjective. If p,q € P and p # ¢, then
T(p—q) # 0 since deg(p — q) > 0. Moreover, degp = degTp implies that (T2"),en is a
basis for P. Hence, T is surjective. a

Corollary 2.1.11 Any two linear shift-invariant operators on P commute.

Proof: All linear shift-invariant operators can be represented as a formal power series in
the differentiation operator D by Theorem 2.1.7. Since the action of these operators on a
polynomial only involves finitely many terms of their expansions, the result follows. O

2.2 Polynomials of convolution type

xr

The polynomials ¢,(z) = n—r,l appeared in the proof of Theorem 2.1.7. These polynomials
satisfy a binomial-like formula. We now study a general class of polynomials satisfying a
binomial-like formula.

We first need some definitions.

Definition 2.2.1 A sequence (q,)nen of polynomials is a sequence of polynomials of
convolution type if

qn(x‘l'@/) = Qk(x) qﬂ—k(y) (n: 0717"')7 (6)
k=0

Note that if (¢, )nen is of convolution type, then (p,)nen := (0! ¢n)nen satisfies

n

palz+y) =Y (Z) pr(2) Pak(y)  (m=0,1,...). (7)

k=0

Such sequences are called polynomials of binomial type in Mullin and Rota (1970). Since
the theory runs somewhat more smoothly when using polynomials of convolution type, they
are used in these lecture notes. Before we continue to give a full description of the class of
polynomials of convolution type, let us note some simple properties that follow directly from
the defining equations (6).

Lemma 2.2.2 If (¢, )nen is a sequence of polynomials of convolution type such that o # 0,
then

a) g =1



b) deg G <1
¢) ¢,(0) =0 forn > 1.

Proof: a) Since ¢y # 0, we may write go(2) = Ei\;o ap z* (any # 0). Let y be arbitrary. Then

N N
ar (24 )" = @z +9) = 00(2) 0(y) = qo(y) > ax .

Comparing coefficients of 2™, we see that ay = qo(y)an, hence go(y) = 1. This proves the
result, since y was arbitrary.

b) We proceed by induction on n. It follows from a) that the result is true for n = 0. Suppose
degq, < n for all n < m (m > 1). Suppose that degq,, > m, so ¢,(z) = 224:0 ap z*
(M > m,ap #0). It follows from (6) that

M

M
ax(22)" = 4,(22) = Y 41(2) gmr(2).

Using the induction hypothesis, we see that the coefficient of 2™ on the left-hand side equals
arr 2M , whereas the coefficient of 2™ on the right-hand side equals 2 aps. This leads to M = 1,
which is in contradiction with M > m > 1.

¢) First note that ¢1(0) = 2¢1(0)qo(0) = 2¢1(0). Hence, ¢1(0) = 0. We now proceed by
induction on n. Suppose ¢,(0) = 0 for 1 < n < m. Then ¢,(0) = >} _; ¢x(0) ¢,—x(0) = 0.
Hence, ¢,(0) = 2 ¢,(0) by the induction hypothesis, which implies that ¢,(0) = 0. O

Definition 2.2.3 Let a = (o )nen and B = (B,)nen be sequences in a commutative ring R.
The convolution a * 3 is the sequence defined by (a* 3)y 1= Y.1_o ok Brk.

If k € N, then o** is defined recursively as follows: a® := (8,)nery (6on is the Kronecker
delta) and a*+D* .= o « q.

For sake of brevity, we will write o* instead of (a**),,.

k

If 3% a,2" is a formal power series, then af* is the coefficient of 2" in (3°°, @, 2™)". In

n
other words,

ok = Z Qi e Oy (8)

i1 fip=n
Note that the convolution operation is commutative and associative. Hence,
n
ko JE 147 )*
Z oy al” = aliti=, (9)
k=0

Lemma 2.2.4 Let (o, )nen be a sequence in a commutative ring such that ag = 0. Then:
a) o =0ifk>n (k,neN).
b) a™ = (ay)" for alln € N.



c) ol is a polynomial in ay,. .. ,an_ g1 for2 <k <n (k,n € N).

Proof: a) Since ag =0, (> °,7 o, 2"\ only has terms 27 with j > k.

b) Since oy = 0, the only contribution to 2™ in (3.7 j @, 2™)" comes from the coefficient oy
of z.

¢) This follows from (8), since ag = 0 implies that the indices in the summation are at least
1. a

Theorem 2.2.5 A sequence (q,)nen of polynomials is sequence of polynomials of convolution
type if and only if there exists a scalar sequence (g, )nen with go = 0, such that

_ - kx L
k=0
for all n € N and all . In both cases, the following formal generating function relation holds:

iqn(x)t” = ewg(t)7 (10)

where g(t) = > g, t".

Proof: ‘<=’ This follows from direct substitution and (9).

O*x

‘=" We use induction on n. If n = 0, then go(2) = 1 = gy~ & for all z. Since ¢;(z + y) =
go() q1(y) + () qo(y) = ¢1(2) + qa(y), it follows that g1(z) = (1) 2. So i) = g™ %7 +
g1 gi—l, = g1z, if we set gp := 0 and g1 := ¢1(1).

Suppose that we have gg, g1, ... ,gn_1 (n > 1) such that go = 0 and g, (=) = Y7, &= i, for
m < n. It follows from (6) that g, is a solution of the following linear functional equation in
p:

plz+y) — Zpk @) Pr—k(y)

for all z,y.

It follows from Lemma 2.2.4¢ and (9 that for any choice of g,, the polynomial p, defined by
pla) =371, g% i—l? ,is a well-defined solution of this functional equation. Thus (¢, —p)(z +
y) = (g —p)(@)+ (g, — p)(y) for all z,y. Hence, there exists ¢ such that (¢, — p)(z) = cz for
all z. Differentiating at 0, we obtain that ¢ = ¢/,(0) — p'(0) = ¢/,(0) — ¢,,. Hence, if we choose

13
gn = ,(0), then g, (z) = S j_y g 5.

The formal generating function follows since

WACEEED 9 SPCE SUND ol O WEtS FSet L

n=0 k=0 =
O
Definition 2.2.6 Let (¢, )nen be a sequence of polynomials of convolution type. The coefli-

cient sequence of (¢, )nen is the sequence (g, )ner such that q,(z) = Y 7_, g&* i—l?



2.3 Basic sequences

In this subsection we show the relation between delta operators and polynomials of convolution
type.

Definition 2.3.1 Let () be a delta operator. A sequence (q,)nen of polynomials is a basic
sequence for () if:

1. qo =1
2. gu(0)=0ifn>1
3. Qgn = qu_q tfn>1.
Remark 2.3.2 It follows from (1), (3) and Corollary 2.1.9b that degg, = n for all n € N.

Theorem 2.3.3 There exists a unique basic sequence for every delta operator.

Proof: Let ¢) be an arbitrary delta operator. It follows from Theorem 2.1.7 and Corol-
lary 2.1.9b that there exists a sequence (v, )neny With ay # 0 such that Q = Y22, apD* . By
Remark 2.3.2, we must construct polynomials ¢, of degree n. By (1) of Definition 2.3.1, ¢ = 1.
Suppose by induction that ¢, = Ez;é an_kak has been constructed. Since deggq, = n,
¢, must be of the form 7, _, amkxk. Because ¢,(0) = 0 by (3) of Definition 2.3.1, a,, o must
be zero. Substitution of @ = > 17, aD* into Q¢, = ¢,—1 and comparing coefficients yields

the following system of equations:

Up—1n—1 = Q1N0Gy,
p_1n-2 = al(n - 1)an,n—1 + agn(n - 1)an,n
Qn_11 = @1.28,2+ @2.23a,3+ -+ ap_1nla, ,

Because a7 # 0 this system of equations has a unique solution. This proves uniqueness and
existence. a

Examples 2.3.4
a) The differentiation operator D has basic sequence (%)

neN’
b) The forward difference operator ! — I has basic sequence <(£))neN’ where
Yy  z(z—1)...(z—-n+1)
n) n!

are the lower factorials.
¢) The backward difference operator I — E~! has basic sequence ((

(x+n—1) z(z+ 1) (e4n—1)

n n!

r+n—1

. ))nEN’ where

are the upper factorials .
d) The Abel operator DE® has basic sequence (M) N the Abel polynomials.
ne

n!



Theorem 2.3.5 The basic sequence of a delta operator is a sequence of polynomials of con-
volution type.

Proof: Let @ be a delta operator with basic sequence (g, )nen . According to Definition 2.2.1
we have to prove

n

(T +y) =D 0(2) Gu-i(y) (11)

k=0

for all n € N and all z,y We proceed by induction on n. The case n = 0 is trivial because
go = 1 by Lemma 2.2.2a.

Suppose by induction that (11) has been proved for m < n. Fix y. It follows from Defini-
tion 2.1.5 that @ EFYq, = EYQq, = EFYq,_1. Hence,

Q F' =Y 4ituj(¥) | = F'u1 =Y ¢j1 qujly) =

i=0 i=1

Ean—l - z qk Qn—l—k(y) =0.
k=0

Corollary 2.1.9b implies that EYq, — > 7_, qr ¢u—k(y) is a constant. So g.(z 4+ y) = ¢ +
qk(2) ¢o—k(y). Evaluating at z = 0 we obtain ¢ = 0, since ¢,(0) = 1 for n > 1. Because y was
arbitrary, we obtain ¢,(z +y) = > ;_y k(%) ¢u—r(y) for all z,y. a

Remark 2.3.6 Theorem 2.3.5 shows that the polynomials appearing in Examples 2.3.4 are
of convolution type. This yields the following formulas:

)
(z+y)" = zn: (Z) ahy

k=0

(the well-known Binomial Formula).

(-2 (06

(this is the Vandermonde convolution formula, see e.g. Riordan (1968, p. 8))

¢) (x_|_y;|;n_1):kz;(gc—|—Z—1)(y—l-Z:Z—1)

(another form of the Vandermonde convolution formula, since (QH'];_I) = (—1)’“(_]5”))

b)

10



ety —nar = =3 (et b yy = (0 oyt
k=0

(this is the Abel generalization of the Binomial Formula, see e.g. Riordan (1968, p. 18)).

The following theorem is a converse to Theorem 2.3.5.

Theorem 2.3.7 Let (¢y)nen be a sequence of polynomials of convolution type such that
deg q, = n. Then there exists a unique delta operator ) with basic sequence (q,)nen-

Proof: Since (¢, )nen is a basis for P | there exists a unique linear operator ¢ on P such that
Q¢n = ¢o—1 (n > 1) and @ go = 0. Since deg ¢y = 1, it follows that Qx is a nonzero constant.
Shift-invariance of ¢ follows from

n n n—1
QEYq, = Q (E Gn—k(Y) (]k) = Gak(W) b1 =D t1-n (V) = E¥gn1 = E¥Qqn.
k=0 k=1 h=0

Hence, TEY = EYT', since (g, )nen is a basis for P. O

Theorem 2.3.8 (Polynomial Expansion Theorem) Let () be a delta operator with basic
sequence (¢, )nen. Then

p= i(@kp)(o)qk

0
for all p € P.

Proof : Let p € P be arbitrary and let n be the degree of p. By Remark 2.3.2; there
exist constants ¢j such that p = >}, ¢pqp. It follows that Q"p = > ) cpqp—, for 0 <
r < n. Evaluating at zero yields ¢, = (Q"p)(0) since ¢z(0) = 0 for £ > 1. Hence, p =

>orzo (@Fp)(0) g

The following theorem generalizes Theorem 2.1.7.

a

Theorem 2.3.9 (Operator Expansion Theorem) Let T be a linear shift-invariant oper-
ator on P and let ) be a delta operator with basic sequence (¢, )nen. Then:

o0

W) T =Y (Ta:)(0)Q"

k=0

b) In particular, if (g, )nen is the coefficient sequence of (¢n)nen , then D = > > 0 9,Q"
and Q = 3.7 G, D" where Y G, t" is the composition inverse of the formal power

series Yo o gnt™.

11



Proof: a) Let p € P be arbitrary with degree n. Applying Lemma 2.3.8 to E¥p, we obtain

TE = 3" (@ ) 0) Tar = 3 (@9)(0) Tas

Hence,

n

(Tp)(y) = (ETP)(0) = (TE')(0) = > (Tge)(0) (Q*p) (9) = 3 (Ta)(0) (@"p) (v)

for all 4. This completes the proof, since p is arbitrary.

b) It follows from q,(z) = >.7_, g&* i—l? that (Dg,)(0) = g, for all n € N. Thus a) yields
D =37 (Dg)(0)Q" = >~ g.Q". Since go = 0, the formal power series > > ; g, t" has
a compositional inverse. a

There also exist operator expansions in terms of arbitrary degree reducing operators. The
coefficients of these expansions are polynomials in z rather than constants (see Di Bucchianico
and Loeb (1996a) and Kurbanov and Maksimov (1986)).

Examples 2.3.10 a) We want to expand the differentiation operator D in powers of the
xT

forward difference operator E' — I. The basic sequence of E' — I is <<n))n€N’ S0

D= gg (D (i)) (0)(E'— I)F = i %(El ~ k.

k=1

This is a classical formula for numerical differentiation.
b) Consider the shift operator F¢. Expanding E* in powers of E' — I yields

o0

B =Y (Z) (E' - D).

k=0

This is Newton’s forward difference interpolation formula.

2.4 Explicit formulas for polynomials of convolution type

In this subsection we show how to compute the basic sequence of a delta operator. and how
to compute connection coefficients. For this we need to introduce a derivation on the algebra
of shift-invariant operators.

Definition 2.4.1 If T is a linear operator on P, then its Pincherle derivative T' is defined
by T' := T x — xT where the linear operator x is defined by (xp)(z) := x p(z) for all x and
all polynomials p € P.

The Pincherle derivative was introduced by Pincherle in Pincherle (1897, Section 56).

The following lemma lists some elementary properties of the Pincherle derivative.

Lemma 2.4.2 «a) If T =352, ax D* | then T' = 372, kay D*L.

12



b) The Pincherle derivative of a linear shift-invariant operator on P is a linear shift-
variant operator on P.

c) The Pincherle derivative of a delta operator is an invertible shift-invariant operator on

P.

d) If T and S are linear shift-invariant operators on P, then (T S) =TS+ T 5"

Proof: a) Since x is a linear operator on P, it suffices to prove a) for the polynomials Z—T We
have

T/ﬁ‘_(TX—XT)ﬁ—(n—I—l) Oog ay, D* o —woog aDkﬁ—
nt T T el g (n+1)! AT
n+1 ntl—k n n+l1—k
z z
n+1 — - n+l—Fk)ay ———— =
( )kz::o(n—l—l—k)! kzzo( ) P+ 1- k)
n+1 n+1—=k n n
X . Z’$

Hence, T" = 322 (i + 1) a;41 D', since x is a linear operator on P.

b) This follows directly from a) and Theorem 2.1.7.

¢) By Theorem 2.1.7 and Corollary 2.1.9b we have @ = Y72 by D¥ with b # 0. We get

from a) that Q' = 202, (i + 1) biy1 D*. Hence, Q' is invertible by Corollary 2.1.10.

d) This follows from (7'5) =T Sx—xT S =(T'Sx—-TxS)+(T'xS—xTS)=T5+1"5.
O

Lemma 2.4.3 For every delta operator () there exists a unique invertible shift-invariant op-

erator U on P such that () = DU.

Proof: By Theorem 2.1.7 and Corollary 2.1.9b, we have = > 77, by D¥ with by # 0. Define
Uby U:=3 070 bkt D* _so Q = DU. The invertibility of U follows from Corollary 2.1.10,
since by # 0. Uniqueness of U follows from the expansion of () and U in powers of D. a

We now are ready explicit formulas for basic sequences of delta operators. Formulas a) through
d) of Theorem 2.4.4 were already known to Steffensen (see Steffensen (1941, Sections 2 and
3); see also Rota, Kahaner, and Odlyzko (1973, Theorem 4)). The operator U that appears
in the statement of Theorem 2.4.4 is the operator whose existence is assured by Lemma 2.4.3.

Theorem 2.4.4 Let Q be a delta operator with basic sequence (¢, )nery and let (¢, )nen be the
coefficient sequence of (¢, )nen. Let U be the unique invertible shift-invariant operator such
that () = DU. Then the following formulas hold for n > 1:

a) nlg, = (QUT"H) (a")
b) nlgn = (U™")(x") = (U™") (@"71)
c) nlg, = (xU™")(2""!) (Transfer Formula)

d) nq, = (2(Q")1)¢.,—1 (Rodrigues Formula)
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e) ngu(x) =23 7_o kgr gn-r(z).

Proof: Since D' = I, we have Q' U™""' 2" = (DUY U 12" = (D'U+ DU"YU)a" =
(U+DUHYU™Ha" = (U™ + DUUT Han =U 2"+ U U1 Da" = U2 —
(UY ot =U™an —(U"x—xU)a" ! = (xU7)a""! | so the right-hand sides of
a), b) and c) are identical. Since ¢ has a unique basic sequence by Theorem 2.3.3, it suffices
to note that (x U™ 2"~1) (0) = 0 and

n n n n—1

(Q Q/U—n—1> % _ (DUQ/U—n—l) % _ (Q/U—n D) z (Q/U—n)

n!

for n > 1. This proves a), b) and ¢).
By Lemma 2.4.2¢, )’ is invertible. Thus it follows from a) that % = ((Q’)_l U”) ¢n-1(2)
for n > 2. By ¢),

xn—l

(n—1)!

ngn() = (xU™") = (xUTQ) T U") guma(w) = (x(Q) ) gu—r(x)

for n > 2. This proves d), since the case n = 1 follows from Lemma 2.4.2a and Theorem 2.3.9b.

In order to prove e) we write nan(x) = Y070 erqr(z). Using d) and Lemma 2.3.8 we obtain
that (@)
n € — —
= (@0 20} (0= (@4 (@) 0t ) 0= (@) m1-0)0) =
Qn—k(x) _
(n=k) { =) (0)=(n = k) gns-
This completes the proof. a

The name Rodrigues Formula comes from the theory of orthogonal polynomials (see e.g.
Chihara (1978, Rasala (1981)). An example of a classical Rodrigues Formula can be found in
Example 2.4.5e.

Examples 2.4.5 We consider the delta operators of Examples 2.1.6 and use Theorem 2.4.4
to calculate the corresponding basic sequences (cf. Examples 2.3.4).

a) Consider the differentiation operator D. It is clear that D’ = [ and that U = I, since
D = DI. Thus Theorem 2.4.4a yields ¢,(x) = 7.

n!

/
b) Consider the forward difference operator E* — I. Then (E® — I)/ = (El)/ = (eD) (use

Theorem 2.3.9a) = el (use Lemma 2.4.2a) = E'. Thus Theorem 2.4.4d yields ¢,(z) =
L E~ gp_1(x). Since go = 1, induction on n yields

o) = (x) =1 (z—nt1)

n n!

¢) Consider the backward difference operator / — F~1 . In the same way as in b) we now find

that (w+n_1) z(z+1)..(z+n-1)
qn(x) _ : ol TN =

n n!
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d) Consider the Abel operator D FE® for some fixed a. Obviously U = E%, so U™ = E~" for
all n € N. Thus Theorem 2.4.4c yields

z(z — na)"t

gn(a) = !

e) Consider the Laguerre operator L of Example 2.1.3g. We will show that the basic sequence
of the Laguerre operator is the sequence of Laguerre polynomials L%_l). We know from
Example 2.1.8b that L = — 322, D¥ = D(D—1)7! hence U = (D —1I)~"in this case. Thus

Theorem 2.4.4c yields

n

" n—1\ 2"
o) =S -nre =Y 0t (U 5

k=1

Since
D (T p) = (T =) = (D=1 ().

we may write

(-1).

which is the classical Rodrigues formula for the Laguerre polynomials L,
The formula L ¢, = ¢,—1 is the recurrence formula ¢/, = ¢/ | — qu—1, since L = D (D —I)~L.
Since L' = —(D — I)™%, Theorem 2.4.4d yields ng,(z) = —x (D — I)* g,—1(2).

We conclude this section with a discussion of umbral operators. Umbral operators play an
important role in the connection-constant problem which will be discussed below.

Definition 2.4.6 An umbral operator 1" is a linear operator on P such that there exist
basic sequences (1 )nen and (v, )nen with T'r, = v, for all n € N.

If (vn)nen = 7, then T “raises powers” (cf. Section 1 ), whereas if (r,,)nery = Zy, then Tp is
the umbral composition of p with (v,).en, i.e. it replaces powers of z by the corresponding
member of (v,,),en.

It is important to have basic sequences in Definition 2.4.6, since this implies deg r,, = deg v, =
n for all n € N by Remark 2.3.2. Hence, both (r,)nen and (v;,)nen are bases for P.

Some important properties of umbral operators are listed in Theorem 2.4.8, which is an
extension of Rota, Kahaner, and Odlyzko (1973, Proposition 1)). The following theorem is
important for our proof of Theorem 2.4.8.

Theorem 2.4.7 Let () be a delta operator with basic sequence (g, )nen and let the sequence
(Pr)nen be given by p, = Y.1_g Gnk @k Suppose (pp)nen is a sequence of polynomials with
deg p, = n for all n. Then (p,,)nen is of convolution type if and only if there exists a sequence
(Vn)nen such that vo =0 and a, j = & for all k and n. Moreover, v, = (Q p,)(0).
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Proof: ‘<=’ This follows by direct computation using (6) and (9).

‘= 7 We construct the sequence (7y,)nen by induction. Set vy = 0. Since p1(0) = 0 and
deg p1 = deg ¢1 = 1, there is a unique 7 such that p; = 1 ¢1. Suppose by induction that v
has been constructed for k < n such that p,, = 7% ¢ for m < n. Since 7o = 0, Lemma 2.2.4¢
yields that ’yfb* is a polynomial in ~1,...,7,-1 for 2 < k < n. Thus we can choose 7,
such that p,(1) = Y7_, 7% qr(1). It follows from the associativity of convolution that
pa(m) = 7o 75 qr(m) for all m € N. Thus p, = 37y 75 ¢n, since p, and Y7, 75 g1
are polynomials.

The last statement follows from @) ¢, = ¢,,—1 and ¢,(0) = 0 for n > 1. a

The following theorem describes the basic properties of umbral operators. As an introduction
to parts d), e) and f), we let ) and P be delta operators with basic sequence (¢, )nen, (Pn)nen
respectively. Let T be the umbral operator that maps p, to ¢, for all n € N. This leads to
the following commutative diagram.

n — qn-1

b
Pn = Pn-1

We immediately read off that P = TQ T~".

Theorem 2.4.8 Let T be an umbral operator. Then:
a) T is invertible.
b) T is shift-invariant if and only if T = 1.

¢) If (pn)nen is an arbitrary sequence of polynomials of convolution type, then (T p,)nen
1s also of convolution type.

d) If (gn)nen is the basic sequence of the delta operator (), then (T q,)nen is the basic
sequence of the delta operator T Q T!.

e) If Q is a delta operator with basic sequence (¢, )nen , then T Q™" T™1 = P™ where P is
the delta operator of the basic sequence (T ¢, )nen.

f) If Q = q(D) is a delta operator, p, :==T Z—T and P is the delta operator of (p,)nen, then
TQT-! = ¢(P).

Proof: Let (7, )nen and (v,,)nen be basic sequences such that T'r, = v,. Let R and V' be the
delta operators of (7, )nen , (V5 )nen respectively.

a) Since deg r,, = deg v, = n for all n € N, T' is invertible by Corollary 2.1.10.

b) If T' is shift-invariant, then Corollary 2.1.11 yields Rv, = RTr, =T Rr, =T r,—1 = vp—1
for n > 1. Hence, r, = v, for all n € N, since both (r,),en and (v, ),en are basic sequences
for R.

¢) By Theorem 2.4.7, there exists a sequence (v, )ner such that vo = 0 and p, = S 7_, v* 71
Thus T p, = > p_y 75 v and Theorem 2.4.7 implies that (T p, )nen is of convolution type.

d) We know from c¢) that (7" ¢, )nen is of convolution type. Since deg ¢, = 1, it follows from a)
and Corollary 2.1.10 that deg (7 ¢, ) = n. Thus (T ¢, )nen is a basic sequence by Lemma 2.2.2
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and Theorem 2.3.7. Because (T QT 1) (T ¢,) =T qu—1 for n > 1, the same argument as in
the proof of Theorem 2.3.7 yields that T'Q T~! is the delta operator of (T p,)nen.

e) This follows from d) and (T Q T~1)" =T Q" T~1.

f) Since (pn )nemw is a basis for P by a), it suffices to note that the Operator Expansion Theorem
yields

rQT p=TQ = T; (5) 0 =3 (0%) 0
and
=3 (e5)orn=3 (o) ©m

O

For a probabilistic interpretation of umbral operators in terms of subordination we refer to
Di Bucchianico (1994).

Now that we know how to calculate basic sequences, we are ready to discuss the problem of
connection coefficients. The problem of connection coeflicients consists of finding numbers
an such that p, = >} o ank g where (p,)nen and (g, )nen are sequences of polynomials
with deg p, = deg ¢, = n for all n € N. Note that the connection coefficients are the
coefficients of the basis change (p, )nen t0 (¢ )nen.

If both (pn )new and (g, )nen are sequences of polynomials of convolution type, then the Umbral
Calculus gives the following elegant answer.

Theorem 2.4.9 Let P and Q) be delta operators with basic sequences (pp)nen, (¢n)nen Te-
spectively. Let T be the umbral operator defined by T q, = Z—T for all n € N. Then the
constants a, i (k,n € N), defined by p, := Y 1 _y @n i qx, are uniquely determined as follows.

The polynomials r,,, defined by r,(z) = > ) _ 0 an & ,:, are the basic polynomials of the delta
operator T PT~Y. Moreover, if P =32, a;Q%, then TPT1 = 3%%, a; D',

Proof: It follows from Theorem 2.4.8d that 7P 7T~! is a delta operator with basic sequence
(T pr)nen- Since r, = Tp, for all n € N, (r,),en is the basic sequence of T PT~!. For
the last statement, note that T PT~! = D by Theorem 2.4.8d, since T ¢,, = Z—T The last
statement follows from Theorem 2.4.8e. a

Examples 2.4.10 a) We want to express the lower factorials in terms of upper factorials of
Example 2.3.4c, i.e. we want to calculate coefficients a,, ; such that (i) = o nk (QH':_I).
We apply Theorem 249 with P = E'—I,(Q = I—E~!. Let T be the umbral operator defined
by T (x'i'” 1) = L for all n € N. Theorem 2.3.9a yields P = > (P (x'i'” 1))( Q" =
Yoo, Q. Hence 1t follows from Theorems 2.4.8d and 2.4.8e that

TPT‘lzi (T QT Z D" =D(I-D)"!
n=1

Thus the coefficients a,,j, are the coefficients of ¥ of the polynomials ¢,(—z), where (¢, )nen
are the Laguerre polynomials of Example 2.4.5e.

17



b) We want to derive duplication formulas for the Laguerre polynomials ¢, of Example 2.4.5e.
Fix a and define polynomials p, by p.(z) := ¢.(az) for all z. Let W be the umbral op-
erator defined by Wa™ := o™ z™. Note that W ¢, = p,. It follows from Theorem 2.4.8d
that (pn)nen is the basic sequence of the delta operator P, defined by P := W ILW™! =

a™'D (a7t D - I)_l. Theorem 2.4.9 yields that the connection coefficients of (p,)nen and
(gn)nen are the coefficients of the basic sequence of the delta operator T P T~!, where T is
the umbral operator defined by T ¢, := Z—T for all » € N. By Theorem 2.3.9a,

D= j;i (D qi(0 j;i L(L— ])
k=0

k=1

k

since g, () = Y5, (—1)F(?7]) &7 (see Example 2.4.5¢). Hence,

P=a'L (I-(1—a™L) ' =L(al+(1-a)L) .
and the last statement of Theorem 2.4.9 yields
TPT =D (al+(1—a)D)".

It follows from Theorem 2.4.4c that the basic sequence (7, ),en of T P T is given by

x 2"l T~ (1 2"l
e I 1 _ D" _ kl_ nank —
n(a +(1-a)D) n—1! nkz_o(k)a( @) n— 1!
n k—1 n k
Yk n—k ¥ _ n—1\ n—k %
];(k)a(l—a) k—l!_;(l@—l)a(l_a) ik

Putting everything together yields the following duplication formula for the Laguerre poly-
nomials of Example 2.4.5e:

n

wan)=> (3 71) et 1-ara (n>1).

k=1
2.5 Combinatorial applications

In this section we mention some applications to combinatorics.

A powerful tool in combinatorics is Lagrange inversion. We will now show that Lagrange
inversion formulas can be derived from the Transfer Formula (Theorem 2.4.4c).

Let ¢(t) = Y., a, t" be a formal power series in ¢ with a; # 0. Let (g, )nen be the basic
sequence of Q) = ¢(D) with coefficient sequence (g, )nen. We know from Theorem 2.3.9b that
Yool o gnt" is the compositional inverse of ¢. Since go = 0, it follows from Theorem 2.2.5 that

¢n(2)

= n.
=0
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Now mnote that (¢(D)2")(0) = n!a,. Combining this with the Transfer Formula, we obtain
the following simple form of the Lagrange Inversion Formula:

(a0l ") = < () > .

If instead we use Theorem 2.4.4a and g, = (D ¢,)(0), then we obtain the following form of
the Lagrange Inversion Formula:

(a(1) | 1) = <tq'<t> (42) > .

More general Lagrange inversion formulas can be obtained similarly if we use more theory
of umbral operators. (see e.g. Roman (1984)). Various forms of Lagrange inversion using
operators can be found in Barnabei (1985), Hofbauer (1979), Joni (1978), Krattenthaler
(1988), Niederhausen (1986b), Niederhausen (1992) and Verde-Star (1985).

Our next application deals with counting labeled trees. Recall that a tree is a connected
graph that has no cycles. A rooted tree is a tree with a distinguished vertex (the root).

We first need a lemma.

Lemma 2.5.1 Let U be an invertible shift-invariant operator. If (g, )nen is a basic sequence
satisfying

= (T7" 4a-1)(0),

then DU 1is the delta operator of (¢, )nen.

Proof: Define the linear operator @ by Jgo = 0 and Q) ¢, = ¢,,—1 for n > 1. As in the proof
of Theorem 2.3.7, we conclude that ¢) is shift-invariant. Then we have

n(2)

X

[

= (U_l @ ¢,)(0).

=0

Since (¢, )nen is a basis for P, this identity also holds when ¢, is replaced by an arbitrary
polynomial. In particular, it holds for Z—T Now expand the shift-invariant operator U~! @ in

powers of D by Theorem 2.1.7:

-1 _OO 2"
U Q_ZU QH

n=0

DK
=0

By Theorem 2.1.10, the operator U~! () is a delta operator. Combining this with the identity
for (U=1Q £7)(0), we see that only the term with n = 1 contributes to the expansion in
powers of D. Hence, U="'Q = D and Q = DU. a

Theorem 2.5.2 Let t, ;. be the number of forests of rooted labeled trees with n vertices and
k trees, then

Ap(z) = z”: tog 2™ = (x+n)""h (12)
k=0
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Proof: Define ¢, = A,/n!l. We want to show that (¢,).en is the basic sequence of the
Abel operator D E'. The first step is to show that (g,),en is of convolution type. Define
Cn e = % nk. An easy combinatorial argument shows that

n
n
ki, = Z (]) Lialp—jh—1-

=0
Hence, the numbers ¢,, ;. satisfy

o0

Cnk = E Ci1Cn—jk—1-

i=0

A simple induction argument shows that ¢, 1 is the k-fold convolution of (¢, 1)nen. Hence,
(¢n )new is a basic sequence by Theorems 2.2.5 and 2.3.7. Now each rooted labeled tree on n
vertices may be obtained from a forest on n — 1 vertices by

¢ adding a new vertex v
¢ adding edges between the new vertex and the roots of the trees of the forest root
e rooting the new tree at v (with n possibilities for labeling!)

Cdonversely, removing the root of a rooted tree on n vertices results in a forest on n — 1
vertices. Hence, we have t,,1 = n A,_1(1) and thus

Qn(x) tn 1 1
=Cph1 = —— = An_ 1) = — 1).

=0
Now Lemma 2.5.1 shows that D E' is the delta operator of (g, )nen, since g,—1(1) = (E' ¢,-1)(0).
The result now follows from Fxample 2.4.5d. a

Corollary 2.5.3 (Cayley) The number of rooted labeled trees on n vertices equals n™~*t,

Proof: The number of rooted labeled trees on n vertices is the coefficient of  of the polynomial
A,, of Theorem 2.5.2, which is easily seen to be n"7!. a

For an interesting comparison with other proofs of these results, see Wilf (1990, Sections 3.12
and 3.17).

3 Recurrences and Umbral Calculus

Most properties of a basic sequence (¢, ).en essentially depend only on the property Q) ¢, =
¢n—1, the other definining properties being normalization conditions. Thus it seems plausible
that the theory of basic sequences can be extended under weaker conditions. This is indeed
the case, as the theory of Sheffer sequences shows in the next subsection. Sheffer polynomials
are useful for solving recurrences as shown in subsection 3.2.
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3.1 Sheffer polynomials

Definition 3.1.1 Let Q be a delta operator. A sequence of polynomials (s, )nen is called a
Sheffer sequence for () if:

1. sg is a nonzero constant
2.0Q 8, =581, n=12,....
Note that if (s, )nen is a Sheffer sequence then, by Corollary 2.1.9b, deg s,, = n for all n € N.

Examples 3.1.2 a) Sheffer polynomials for the differentiation operator D are called Appell
polynomials. They were studied by Appell in Appell (1880). Examples of Appell polynomials
include the Hermite polynomials H,, defined by

- 1
ZHn(w) " = exp (wz — 522) )
n=0

and the Bernoulli polynomials B,,, defined by

- n_ _ * Tz
;Bn(x)z == —¢

It follows directly from their generating functions or from Theorem 3.1.3d that these polyno-
mials are Appell polynomials, i.e. D H, = H,_1 and DB, = B,_1 forn > 1.

Note that the numbers B, (0) are the Bernoulli numbers that we encountered in Section 1.
b) The Laguerre polynomials of order a are Sheffer sequences for the Laguerre operator of
Example 2.1.3g. The Laguerre polynomials of Example 2.4.5e are the Laguerre polynomials
of order o = —1 (cf. (Roman 1984, p. 108)).

Sheffer sequences satisfy a convolution-like equation (see Theorem 3.1.3b below).

Theorem 3.1.3 Let Q be a delta operator with basic sequence (¢, )nen. Then the following
are equivalent:

a) (sp)nen is a Sheffer sequence for ().

b) so is a nonzero constant and s,(x +y) = sk(2) ¢u—r(y) for alln € N and all z,y.
k=0
i3

¢) so is a nonzero constant and s, = Z $5(0) g for alln € N.

k=0

i3
d) there exists a sequence (ay,)nen such that ag # 0 and s, = Z ap ¢k for all n € N,
k=0
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Proof: a = b’ Fix an arbitrary z. Applying the Polynomial Expansion Theorem 2.3.8 to
E% s, we obtain

E s =Y (QE"5,)(0)gi = su—il2) s,
=0 =0

since deg s, = n. Hence, it follows that

n n

sa(z+y) =Y sa-i®)qi(y) = Y 56(2) gu-i(y)

=0 k=0

for all  and y, since x is arbitrary.

‘b = ¢’ This follows by setting z = 0.

‘c = d’ Take a := s1(0).

‘d<=a’ Note that sg is constant because sqg = aggg = ag. If » > 1, then

n n—1
Q Sp = Q (z ag Qn—k) = E af qn—1-k = Sp—1-

Hence, (s,,)nen is a Sheffer sequence for Q). O

Corollary 3.1.4 Let (w,,)nen be a Sheffer sequence for the delta operator () with basic se-
quence (qn )nen. Let (g, )nen be the coefficient sequence of (¢, )ner. Then the following formal
generating function identity holds:

an(x)t” = (z 5,(0) t”) exp (x zgn t”) .

n=0

Proof: This follows directly from Theorems 2.2.5 and 3.1.3c. a

The following theorem describes Sheffer sequences (of a delta operator @ with basic sequence
(¢n)new) in terms of the linear operator A on P, defined by Ag¢, := s,. It follows directly
from Theorem 2.3.9a that A = 372, 54(0) Q% (cf. the proof of (Rota, Kahaner, and Odlyzko
1973, Corollary 1)). We also give a description of Sheffer sequences in terms of delta operators
and functionals in the style of Roman and Rota (1978) and Roman (1984). We first need a
lemma.

Lemma 3.1.5 Let A be a linear functional such that A1 # 0 and let ) be a delta operator
on P. There exists a unique sequence of polynomials (p,)nen with degp, = n for alln € N
such that A QF p, = 6,1, for all k,n € N, where 6, denotes the Kronecker delta.

Proof: Existence follows in the same way as in the proof of Theorem 2.3.3. In order to prove
uniqueness, consider another sequence (P, )ner such that A Q*p, = A Q"% p, for all k,n € N.
Suppose there is an n € Nsuch that p, # p,. Let £ be the degree of p, —p,. Then Q° (p,—pn)
is a non-zero constant, which contradicts A Q* (p, — p,) = 0. O

Theorem 3.1.6 Let Q be a delta operator with basic sequence (g, )nen. Let ($,)nen be a

sequence of polynomials and define the linear operator A on P by Aq, := s, for all n € N.
Then:

22



a) (sp)nen is a Sheffer sequence for Q) if and only if A is shift-invariant and invertible.

b) (Sn)nen is a Sheffer sequence for Q) if and only if there exists a linear functional A on P
such that A1 # 0 and AQk Sp = bpi for all k,n € N, where é,,;, denotes the Kronecker
delta.

¢) If (8p)nen is a Sheffer sequence, then Ap = A= p(0) for all p € P, where A is as in a).

Proof: a) ‘=" Since (¢, )nen is of convolution type, we have for all y

AEYq, = A (Z a(y) (]n—k) = ql(y) s = BV s, = EY Agy.

Hence, by linearity, A EY = EY A for all y. By Corollary 2.1.9b, deg s, = n for all n € N.
Hence, A is invertible by Corollary 2.1.10.

‘<=’ Corollary 2.1.9a and s = Aggp = A1 together imply that sy is constant. Using Corol-
lary 2.1.11 we see that Q@ s, = Q@ Aq, = AQq, = Aq,_1 = s,_1 for n > 1. Moreover, since
A is invertible and sg = A qg, Corollary 2.1.10 yields that so(0) # 0.

b) ‘=’ Define the linear functional A by A s,, = 8q,,. Because s is a nonzero constant, we have
A1 # 0. Moreover, since shift-invariant operators commute by Corollary 2.1.11, it follows
that AQ%s, = AQ*Aq, = AAQ* ¢, = b0t = k.

‘=’ Define the polynomials 7, by r, := @ s,41 (n € N). Then AQ* (Q s5,41) = Okt1nt1 =
0kn. By the uniqueness part of Lemma 3.1.5, we have () 5,41 = s, for all n € N. Thus
(85 )nen is a Sheffer sequence.

It follows from AQ*s, = As,_j = &, with & = 0 that As, = 6p,. Since A7's,(0) =
7,(0) = g, by Definition 2.3.1 and deg s, = n for all n € N, the results follows.

d) Since (s, )nen is a basis for P, it suffices to note that A s, = 8p, = ¢,(0) = A=1s,(0). O

The operator A of the above theorem is called invertible operator.

Corollary 3.1.7 Let (s, )nen be a strict sense Sheffer sequence for the delta operator ) with
basic sequence (q,)nen and invertible operator A. Let (g, )nen be the coefficient sequence of
(gn)nen and let g be the formal power series defined by g(t) := Y.~ g, t". Then the following
formal generating function identity holds:

o0

sul@) 1" = f(g(1)) e 91,

n=0
where A = f(D).
Proof: Define s(t) := 3>.°7 , s,(2) t". It follows from Theorem 2.3.9a that A = Y72 s,(0) Q*.
Hence, we have A = s()). Since go = 0, the formal power series is invertible (w.r.t. to
composition, cf. Niven (1969)). Hence, there exists a formal power series f such that s =

fog. By Theorem 2.3.9b, we have A = f(g(Q)) = f(D). The result now follows from
Corollary 3.1.4. a

Corollary 3.1.8 Let () be a delta operator with basic sequence (¢, )nen.
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a) The sequence (s,)nen defined by sp(z) = (n + 1) n+1(2) (x #0) and s,(0) := (n +
x
1) (¢n41)'(0) is a Sheffer sequence.
b) The sequence (s, )nen defined by s, := (qn41)" is a Sheffer sequence.

Proof: a) Recall that ¢,(0) = 0 for n > 1. Then (s;,)nen is a Sheffer sequence by Theo-
rem 3.1.6b, since s, = (Q")"! ¢, by Theorem 2.4.4d.

b) By Theorem 2.3.9b, D ¢,41 = EZié Gk qn—k- Thus sop = g1 # 0 and (s, )nen is a Sheffer
sequence by Theorem 3.1.3. a

We now extend the Expansion Theorems 2.3.8 and 2.3.9 to Sheffer sequences.

Theorem 3.1.9 Let (s,)n.en be a Sheffer sequence with delta operator ) and let A be the
linear operator on P defined by A q, := s,.

a) For all p € P, we have

(A_l Qkp)(O) Sk

NE

p=
k

Il
=]

b) If T is a linear shift-invariant operator, then
T=> (Ts(0) A Q"
k=

o

Proof: a) Apply Theorem 2.3.8top= A (A_l p) and use shift-invariance.
b) Apply Theorem 2.3.9 to T = A7'(AT) and use shift-invariance. 0

Theorem 3.1.6 enables us to generalize Theorem 2.4.7 to Sheffer sequences.

Theorem 3.1.10 Let Q) be a delta operator with basic sequence (G, )nen. Let (Sp)nen be a
Sheffer sequence for ) and let A be the linear operator on P defined by Aq, = s,. The
following are equivalent for a sequence (r,,)n,en of polynomials:

a) (rn)nen is a Sheffer sequence and there exists a basic sequence (py,)nen such that r, =

Ap, for all n € N.

b) there exists a sequence (Y, )nen with ¥o = 0 and y1 # 0 such that r, = > ¢_q 75 sy for

all n € N.

Proof: ‘a = b’ Since (p,)nen is a basic sequence, Theorem 2.4.7 yields the existence of a
sequence (Y, )nen With 9 = 0 such that p, = >, _, v5 gy, for all n € N. Since deg p; = 1
(Remark 2.3.2), we have 41 # 0. Since A¢q, = s, for all n € N, it follows that r, = Ap, =
S i_o 15 sy for all n € N.

‘b = a’ Define polynomials p, (n € N) by p, := S 7_; 75 q. Since 70 = 0 and v, # 0, it
follows from Theorem 2.4.7 and Theorem 2.3.7 that (p,, )nen is a basic sequence. Moreover, it
is obvious that Ap, = r, for all n € N since A¢q, = s,. It follows from Theorem 3.1.6b that
(75 )nen is a strict sense Sheffer sequence. o

As a corollary to Theorem 3.1.10, we now derive a Rodrigues Formula for Sheffer sequences (cf.
Theorem 2.4.4d). This form of the Rodrigues Formula is due to Avramjonok (see Avramjonok

(1977)).
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Theorem 3.1.11 (Avramjonok) Let Q) be a delta operator with basic sequence (g, )nen-
Let (sn)nen be a Sheffer sequence for  and let A be the linear operator on P defined by
Aqy, := s, for all n € N. Then we have

nan(e) = (2 (@) +(Q)7 AT AT) sua(a). (13)

Proof: By Theorem 2.4.4d, we have nq,(z) = 2 (Q")"" ¢u_q(2) for all n > 1 and all 2.
Writing qr = A~ Agg (k = n — 1,n), we obtain ns,(z) = Az (Q")"" A~ s,_1(x). By the
definition of Pincherle derivative, we may write Ax = v A + A’. Substituting this into the
expression for n s, (), we obtain the result. ]

3.2 Lattice path counting

In this subsection we show a glimpse of the powerful umbral methods developed by Nieder-
hausen for solving recurrences and lattice path counting. For overviews of his results, we refer
to Niederhausen (1986a) and Niederhausen (1997).

Many recursions can be written in the form ) s, = s,_1, where (J is a delta operator. As
a toy example, let 7(n,m) be the number of lattice paths from (0,0) to (n,m) with unit
steps in the direction (1,0) or (0,1). Of course, a standard combinatorial argument yields
that r(n,m) = (m:”) Let us see how this fits in with Sheffer polynomials. Suppose that

there exist a Sheffer sequence (s;,),en such that s,(m) = r(n,m). If we can construct such a
sequence, then this assumption is justified. The standard recursion

r(n,m)=r(n,m—1)+r(n—1,m)
translates into
(I - E_l)sn = 5,_1.

It follows from Example 2.4.5¢ that ¢,(2) = (x+z_1) are the basic polynomials of the delta
operator [ — E~!. Obviously, r(n,0) = 1 for all n, i.e. s,(0) = 1 for all n. Let A the invertible
operator of (s, )uen, i.e. Aq, = s,. The Operator Expansion Theorem yields that

A= i s0(0) (T—E Y = (I—(1-EY ' = EL,

k=0

Thus, s,(m) = Elg,(m) = ("t").

n

If the lattice paths are required to satisfy bounds as in the ballot problem, then further
techniques (e.g. reflection principles) are needed. Niederhausen has shown that the Umbral
Calculus provides tools that yield closed expressions for the number of lattice paths with
complicated boundaries. The simplest case is the case of an affine boundary.

Theorem 3.2.1 If (¢,)nen is the basic sequence of a delta operator @), then the Sheffer
sequence (s, )nen defined by

- T —an—c
sp(@) = Z ey R Gn-i(x — ak — ¢)
k=0

has the initial values s,an + ¢ = y, for all n.
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Proof: First note since the shift-operators are invertible, a shifted Sheffer sequence is again

qn-l-l(x)

Sheffer for the same delta operator. By Example 3.1.8, the polynomials (n+ 1) form

¥
a Sheffer sequence for (). Combining this, we see that the polynomials r,, defined by

T —an —c x—c
ro(2) = — qn(w—c):qn(x—c)—aniqni_c)

is Sheffer for Q). Moreover, direct computation yields that r,(an + ¢) = dp,,. Now note that
r—an—c
r—ak—c

Gn-i(x — ak — ¢) = rp_p(x — ak). Hence,

Sy = Z Yk To—k(z — ak).

k=0

It is now straightforward to verify that (s,).ecr is Sheffer with initial values s, an + ¢ = y,
for all n. a

Repeated application of the above theorem yields expressions for the case where the boundary
is piecewise affine. For two-sided boundaries, Niederhausen introduces Sheffer splines (func-
tions that are piecewise Sheffer polynomials); for details we refer to Niederhausen (1986a).

Niederhausen also shows how to solve more general operator equations. For details, we refer
to Niederhausen (1986a) and Niederhausen (1997).

4 Extensions of the Umbral Calculus

The setting of the Umbral Calculus that we have studied is a theory of polynomials and shift-
invariant operators. However, the main ideas of the Umbral Calculus (basic sequences, delta
operators, expansion theorems, umbral operators, etc.) can be extended to other settings.
In this section we briefly mention some of these extensions. For a overview we refer to Di
Bucchianico and Loeb (1995).

The Umbral Calculus is built on shift-invariant operators. In fact, one can prove that this
is the class of linear operators on P that commute with the differentiation operator. Since
the basic theory of Umbral Calculus does not use analytic properties of differentiation, it is
not surprising that there exists versions of the Umbral Calculus based on other operators
that the differentiation operator. In fact, an Umbral Calculus exists for every linear operator
that reduces the degree of a polynomial by one as shown in the papers Kreid (1990a), Kreid
(1990b), Markowsky (1978) and Viskov (1978). However, these papers lack explicit examples.
An interesting class of operators that yields many explicit examples is the class of generalized
differentiation operators. The idea goes back to Ward (1936).

Let (¢n)nen be a sequence of nonzero numbers. Define the generalized differentiation operator
D. by D.c =0 and

n n—1
x x
D.— =
Cpn Cpn—1

for n > 1. Important choices of (¢, )nen are:

e ¢, — n!: this yields the ordinary differentiation operator
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e ¢, = 1: this yields the divided difference calculus with D.p(z) = (p(z) — p(0)/z and
shift operators
EVp(a) = zp(e) —yply)
r—y

See Hirschhorn and Raphael (1992) and Verde-Star (1988) for more details.

e ¢, = (_nA)_l: this yields an Umbral Calculus for Gegenbauer polynomials (see Sec-

tion 6.3 of Roman (1984)).

o ¢, = (2n)!: this Umbral Calculus is coined the Hyperbolic Umbral Calculus in Di Buc-
chianico and Loeb (1996b), since the shift operators can be expressed as Elp(z) =
cosh (\/y Dc), with D, = D 22 + D, where D denotes the ordinary differentiation oper-
ator.

o c, = (l_q)(l(zi));;'(l_qn): this leads to a ¢-Umbral Calculus (see Roman (1985) and

Section 6.4 of Roman (1984)).

5 Epilogue: Classical Umbral Calculus

These lectures started with a mysterious 19th century manipulation rule in which a sequence
of scalars ag, ay,aq, ... is treated as a sequence of powers 1,a,a?,... of a variable a called
an umbra. Using a 20th century approach to linear algebra, we were able to replace this
manipulation rule with operator calculations. Although rigorous and powerful, the feeling of
‘witchcraft” that surrounds the 19th Umbral Calculus is lost in this 20th century operator
version. It would be nice if there would be a rigorous version of the Umbral Calculus that is as
close as possible to the original version. Recently, Rota and collaborators have succeeded in
finding the key to a rigorous version of the 19th century Umbral Calculus. Their results (the
so-called “Classical Umbral Calculus”) can be found in the papers Rota and Taylor (1993),
Rota and Taylor (1994), Di Crescenzo and Rota (1994) and Cerasoli (1995).

The main idea is to consider a linear functional on polynomials, called eval below, so that
eval(a”) = a,.

A classical umbral calculus consists of three types of data:

1. a polynomial ring k[A,z]. The variables belonging to the set A will be denoted by
Greek letters, and are called umbrae.

2. a linear functional eval : k[A, 2] — k[z] such that

(a) eval(l) =1,
(b) eval(a'3 ---v*2") = z"eval(a')eval(3) - - -eval(y"),
for distinct umbrae o, 3,...,vy € Aand ¢,5,--- , k> 0.

3. A distinguished umbra, ¢ € A, satisfying eval(e’) = éy,; where ¢ is the Kronecker delta.

A polynomial p € k[A] is called an umbral polynomial. In order to avoid the troubles of
the 19th century Umbral Calculus, we now introduce two(!) different type of “equality”.
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Definition 5.0.2 Two umbral polynomials p,q € k[A] are said to be
e umbrally equivalent, written p ~ ¢, when eval(p) = eval(q).

¢ exchangeable, written p = ¢, when eval(p™) = eval(¢™) for all n.

These are the basic definitions; for advanced calculations there are more definitions (see the
papers cited above).

Let us perform some calculations to get a feeling for these definitions. If o and 3 are ex-
changeable umbrae representing the sequence (a, ),en, then

(a+ a)* ~4day,
but
(a—l—ﬁ)2:az—l—Qaﬂ—l—ﬂQ:Qaz—l—Qa%.

Thus a + f is umbrally equivalent, but in general not exchangeable to 2. This explains the
major source of incorrect umbral manipulations.

We now conclude these lecture notes by returning to the Bernoulli example that we started
with. Let 3 be an umbra representing the Bernoulli numbers B, as defined by the generating
function (1),i.e. ™ ~ B,. It follows that

pa t
e ~ .
el — 1

The umbral derivation of the recursion that we gave in Section 1 is now perfectly legal. For
more Bernoulli computations (with different starting definitions), we refer to Rota and Taylor
(1994) and Di Crescenzo and Rota (1994). An umbral treatment of generalized Bernoulli
numbers can be found in Cerasoli (1995).
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