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Abstract

A general theorem for providing a class of combinatorial identities where the sum is over all the partitions of a positive integer is
proven. Five examples as the applications of the theorem are given.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

If a polynomial has no multiple roots, then it is called separable. For n�1, let M
(q)
n denote the number of monic

separable polynomials of degree n over the finite field Fq with q elements. In 1932, Carlitz [1] showed that M
(q)
1 = q

and M
(q)
n = qn − qn−1, for n > 1.

The following method for computing the value of M
(q)
n is due to Deng [2]. Here we repeat the procedure. Since finite

fields are perfect, so any irreducible polynomial over finite fields is separable, and the product of distinct irreducible
polynomials is also separable. Let I

(q)
d denote the number of monic irreducible polynomials over Fq of degree d. For

a monic separable polynomial over Fq of degree n, consider its decomposition over Fq into the product of irreducible
factors, we know that each decomposition of the polynomial corresponds to a partition of n. Concretely, suppose

�(n) = (i
a1
1 , . . . , i

ad

d )

is a partition of n, where d > 0, i1 > i2 > · · · > id > 0, a1 > 0, . . . , ad > 0, and n = a1i1 + · · · + adid . Let I
(q)

�(n) denote
the number of monic separable polynomials over Fq of degree n which decompose as the product over Fq of aj many
monic irreducible polynomials of degree ij , j = 1, 2, . . . , d, then we have

I
(q)

�(n) =
d∏

j=1

(
I

(q)
ij
aj

)
.
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Hence we have

M
(q)
n =

∑
�(n)

I
(q)

�(n),

where the sum is over all the partitions of n. Thus we get the following.

Proposition (Deng [2]). Suppose n is a positive integer. Let �(n) denote a partition of n, usually denoted by
(1k1 , 2k2 , . . . , nkn), with k1 + 2k2 + · · · + nkn = n. Then we have that

M
(q)
n =

∑
�(n)

n∏
j=1

(
I

(q)
j

kj

)
,

where the sum is over all the partitions of n.

In view of this proposition and the results of Carlitz, we have the following identity.

∑
�(n)

n∏
j=1

(
I

(q)
j

kj

)
=
{

q if n = 1,

qn − qn−1 if n > 1,

where the sum is over all the partitions of n.
Combinatorial identities have been studied extensively by various authors, e.g. see [3,7] and the references therein.

But combinatorial identities where the sum is over all the partitions of a positive integer are rare. Motivating by the
above identity, in this paper we will consider a class of combinatorial identities where the left-hand side is a sum over
all the partitions of a positive integer. We get a class of such identities. It is remarkable that these identities have a
common profile, that is it involves a parameter in an infinite set.

2. Main theorem and the proof

First let us fix some notations. Let N = {1, 2, 3, . . .} denote the set of all positive integers and let R denote the set
of all reals. Let � denote the Möbius function and let log denote the natural logarithm. Define binomial coefficients as
follows:(

x

0

)
= 1,

(
x

n

)
= x(x − 1) · · · (x − n + 1)

n! ∀n ∈ N, x ∈ R.

Theorem. Suppose � is a nonempty subset of R (called space of parameters). For each � ∈ �, let a
(�)
1 , a

(�)
2 , . . . be a

sequence of reals. The sequence (b
(�)
n ) is defined by

b(�)
n =

∑
d | n

da
(�)
d .

Assume that the sequence (b
(�)
n ) satisfies one of the following two conditions:

(i) there exists a function f : � × N −→ � such that

b(�)
nm = b

(f (�,n))
m ∀n, m ∈ N, � ∈ �.

(ii)

b(�)
nm = b(�)

n + b(�)
m ∀n, m ∈ N, � ∈ �.
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The sequence (c
(�)
n ) is defined by

c(�)
n =

⎧⎪⎪⎨
⎪⎪⎩

b
(�)
n

n
if n is odd,

b
(�)
n

n
− b

(�)
n/2

n/2
if n is even.

Then we have the following identity

∑
�(n)

n∏
j=1

(
a

(�)
j

kj

)
=

n∑
i=1

1

i!
∑

j1+...+ji=n

c
(�)
j1

· · · c(�)
ji

∀n ∈ N, � ∈ �,

where the sum of the left-hand side is over all the partitions of n.

Remark. The theorem in essence transforms a sum over partitions into another sum. In general, sums over partitions
are difficult to handle (see p. 224 of [3] as an open problem 4.2). Using this general theorem, in the next section we
can transform several sums over partitions into ordinary sums.

To prove this theorem we need a lemma.

Lemma. Using the notations as in the theorem. For n�1, it holds that

1

n

∑
d | n

(−1)n/d−1da
(�)
d =

⎧⎪⎪⎨
⎪⎪⎩

b
(�)
n

n
if n is odd,

b
(�)
n

n
− b

(�)
n/2

n/2
if n is even.

Proof. If n is odd, then the result follows from the definition of b
(�)
n .

Suppose now n is even. We write n as n=2��, where � > 0 and � is odd. Any divisor d of n can be written as d =2ij ,
where 0� i�� and j |�. Thus we have that

1

n

∑
d | n

(−1)n/d−1da
(�)
d = 1

n

⎛
⎜⎜⎝∑

j | �
2�ja

(�)
2�j −

∑
0� i<�

j | �

2ija
(�)

2i j

⎞
⎟⎟⎠ .

Obviously, by the definition of b
(�)
n we have that∑

0� i<�
j | �

2ija
(�)

2i j
=

∑
d | 2�−1�

da
(�)
d =

∑
d | n

2

da
(�)
d = b

(�)
n/2.

From the Möbius inversion formula and the properties of Möbius function, we have

2�ja
(�)
2�j =

∑
d | 2�j

�(d)b
(�)
2�j/d =

∑
d | j

�(d)b
(�)
2�j/d −

∑
d | j

�(d)b
(�)

2�−1j/d
.

Assume that the sequence (b
(�)
n ) satisfies Condition (i). Then∑

d | j
�(d)b

(�)
2�j/d −

∑
d | j

�(d)b
(�)

2�−1 j/d

=
∑
d | j

�(d)b
(f (�,2�))
j/d −

∑
d | j

�(d)b
(f (�,2�−1))
j/d

= ja
(f (�,2�))
j − ja

(f (�,2�−1))
j .
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Hence∑
j | �

2�ja
(�)
2�j =

∑
j | �

(
ja

(f (�,2�))
j − ja

(f (�,2�−1))
j

)

= b
(f (�,2�))

� − b
(f (�,2�−1))

� = b
(�)

2�� − b
(�)

2�−1� = b(�)
n − b

(�)
n/2.

Therefore

1

n

∑
d | n

(−1)n/d−1da
(�)
d = 1

n
(b(�)

n − b
(�)
n/2 − b

(�)
n/2) = b

(�)
n

n
− b

(�)
n/2

n/2
.

If the sequence
(
b

(�)
n

)
satisfies Condition (ii), similar to the above argument, we can prove the same result. This

completes the proof of the lemma. �

Proof of the theorem. The following arguments work for sufficiently small real variable x. Consider the function
defined by

g(x) =
∞∏

j=1

(1 + xj )
a

(�)
j .

Its power series expansion is

g(x) =
∞∏

j=1

⎛
⎝ ∞∑

kj =0

(
a

(�)
j

kj

)
xjkj

⎞
⎠

= 1 +
∞∑

n=1

⎛
⎝∑

�(n)

n∏
j=1

(
a

(�)
j

kj

)⎞⎠ xn.

On the other hand, by the lemma we have

log g(x) =
∞∑

j=1

a
(�)
j log(1 + xj ) =

∞∑
j=1

a
(�)
j

∞∑
l=1

(−1)l−1 xjl

l

=
∞∑

n=1

⎛
⎝1

n

∑
d | n

(−1)
n
d
−1da

(�)
d

⎞
⎠ xn

=
∞∑

n=1

c(�)
n xn.

Hence

g(x) = exp

( ∞∑
n=1

c(�)
n xn

)

= 1 +
∞∑

j=1

1

j !

( ∞∑
n=1

c(�)
n xn

)j

= 1 +
∞∑

n=1

⎛
⎝ n∑

i=1

1

i!
∑

j1+···+ji=n

c
(�)
j1

· · · c(�)
ji

⎞
⎠ xn.
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Therefore

∑
�(n)

n∏
j=1

(
a

(�)
j

kj

)
=

n∑
i=1

1

i!
∑

j1+···+ji=n

c
(�)
j1

· · · c(�)
ji

.

This completes the proof of the theorem. �

3. Examples

In this section, we will get some concrete identities by means of the theorem.

Example 1. As a first example, we see how the identity at the beginning of the paper falls into our theorem. Let � be
the set of all prime powers of N. For q ∈ �, a

(q)
n = I

(q)
n . From [6], b

(q)
n = qn. And f (q, n) = qn. It is easy to see that

the condition b
(q)
nm = b

(f (q,n))
m holds.

∞∑
n=1

c
(q)
n xn =

∞∑
n=1

qn

n
xn −

∞∑
n=1

qn

n
x2n

= log
1 − qx2

1 − qx
.

Thus

g(x) = 1 − qx2

1 − qx
= 1 + qx +

∞∑
n=2

(qn − qn−1)xn.

So we get the preceding identity by the theorem.

Example 2. This is an example from combinatorial theory (see p. 12 of [4]). Let � be the set of all integers greater
than 1. For r ∈ �, let M

(r)
n denote the number of circular sequences of length and period n over the set {1, 2, . . . , r}.

Then ∑
d | n

dM
(r)
d = rn,

M(r)
n = 1

n

∑
d | n

�(d)rn/d .

Completely similar to Example 1 we have the following identity.

∑
�(n)

n∏
j=1

(
M

(r)
j

kj

)
=
{

r if n = 1,

rn − rn−1 if n > 1.

The following three examples need some elementary facts from number theory, one can see Hardy and Wright [5].

Example 3. It is well-known that∑
d | n

�(d) = �1,n,

where �1,n is the Kronecker symbol. We put � = R and a
(�)
n = ��(n)/n. So b

(�)
n = ��1,n. Define f (�, n) = ��1,n. Here

∞∑
n=1

c(�)
n xn = �x − �x2.
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It is easy to see that

exp(�x − �x2) = 1 +
∞∑

n=1

⎛
⎝�n/2�∑

i=0

(−1)i
�n−i

(n − i)!
(

n − i

i

)⎞⎠ xn.

Thus we have the following identity

∑
�(n)

n∏
j=1

(
��(j)/j

kj

)
=

�n/2�∑
i=0

(−1)i
�n−i

(n − i)!
(

n − i

i

)
.

Example 4. Let � denote Euler phi-function. It is well-known that

∑
d | n

�(d) = n.

We put � = R and a
(�)
n = ��(n)/n. So b

(�)
n = �n. Define f (�, n) = �n. Here

∞∑
n=1

c(�)
n xn = �x

1 − x2 .

It is easy to see that

exp

(
�x

1 − x2

)
= 1 +

∞∑
n=1

⎛
⎝�(n−1)/2�∑

i=0

�n−2i

(n − 2i)!
(

n − i − 1
i

)⎞⎠ xn.

Thus we have the following identity

∑
�(n)

n∏
j=1

(
��(j)/j

kj

)
=

�(n−1)/2�∑
i=0

�n−2i

(n − 2i)!
(

n − i − 1
i

)
.

Example 5. In the above four examples, the sequence (b
(�)
n ) satisfies Condition (i). In this example the sequence (b

(�)
n )

satisfies Condition (ii). Consider von Mangoldt function �(n). It is defined by

�(n) =
{

log p if n = pm, m�1, p is a prime,
0 otherwise.

It is well-known that∑
d | n

�(d) = log n.

We put the space of parameters be R and a
(�)
n =��(n)/n. So b

(�)
n =� log n and it satisfies Condition (ii). By the theorem

we can get the corresponding identity. Here we omit the details.
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