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SOME FAMILIES OF GENERATING FUNCTIONS FOR THE
BESSEL AND RELATED FUNCTIONS

G. DATTOLI, M. MIGLIORATI AND H. M. SRIVASTAVA

Abstract. The authors apply a certain novel technique based on the com-
bined use of operational methods and of some special multivariable and multi-
index polynomials to derive several families of generating functions involving
the products of Bessel and related functions. The possibility of extending this
technique to the derivation of generating functions of hybrid nature (involv-
ing, for example, the product of a Bessel function and Laguerre polynomials)
is also investigated.
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1. Introduction

Using certain operational rules, Dattoli et al. [4] derived generating functions
of the form

S{p}
({x}; t) =

∞∑
n=0

tn

n!
Jn+p1(x1) · · · Jn+pm(xm) (1)

({x} = x1, . . . , xm; {p} = p1, . . . , pm

)
,

where Jn(x) is a cylindrical Bessel function (see [1] and [8] for details).
The indices p1, . . . , pm, which appear on the right-hand side of equation (1),

are not necessarily integers. The technique applied in the derivation of such
generating functions as (1) is based on the combined use of operational methods
and some families of special functions involving many indices and many variables
[5]. It can also be extended to the case of spherical Bessel functions.

The main objective of this paper is to provide an extension of the afore-
mentioned technique and to show how such extended procedure leads to further
generalizations including (for example) generating functions of hybrid nature.

We begin by illustrating the derivation of a well-known generating function
(cf. [7, p. 427, equation 8.4 (56)]), which we present here as Proposition 1.

Proposition 1. The following generating function relationship holds true:
∞∑

n=0

tn

n!
Jn+ν(x) =

(
x

x− 2t

)ν/2

Jν

(√
x2 − 2xt

)
(ν ∈ C) . (2)
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Proof. If we multiply both sides of the familiar derivative formula [8, p. 46,
equation 3.2 (6)]

(
1

x

d

dx

)n (
x−νJν (x)

)
=

(−1)n

xn+ν
Jn+ν (x) (3)

(ν ∈ C; n ∈ N0 := {0, 1, 2, . . . })
by τn/n! and sum each side from n = 0 to n = ∞, then we find from (3) that

exp

(
τ

x

d

dx

) (
x−ν Jν (x)

)
= x−ν

∞∑
n=0

1

n!

(
−τ

x

)n

Jn+ν (x) (ν ∈ C) . (4)

The use of the operational identity [6]

exp

(
τ

x

d

dx

)
f (x) = f

(√
x2 + 2τ

)
(5)

in (4) readily yields (2) after setting τ = −xt.
An alternative procedure is based on the use of the so-called Tricomi–Bessel

function defined by (see, e.g., [5])

Cn (x) :=
∞∑

r=0

(−1)r xr

r! (n + r)!
, (6)

which is related to the cylindrical Bessel function Jn (x) by

Cn (x) = x−n/2 Jn

(
2
√

x
)

and Jn (x) =
(x

2

)n

Cn

(
x2

4

)
, (7)

with the generating function

∞∑
n=−∞

tn Cn (x) = exp
(
t− x

t

)
.

It is fairly straightforward to observe from definition (6) that
(

d

dx

)n

Cl (x) = (−1)n Cn+l (x) (8)

so that
∞∑

n=0

tn

n!
Cn+l (x) = exp

(
−t

d

dx

)
Cl (x) = Cl (x− t) ,

which, in the light of (7), yields the generating function (2). This evidently
completes our alternative (operational) derivation of the generating function
(2) without using the operational identity (5). ¤

Remark 1. Albeit simple, the above examples illustrate how operational
methods and special functions can be combined to end up with the explicit
derivation of a generating function.
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In Section 2 of this paper, we will provide a generalization of the above results
by suitably combining various known results and identities with different special
functions including, for example, some non-standard forms of Bessel and related
functions.

2. A Class of Multivariable Bessel Functions

An important rôle in pure and applied mathematics is also played by some
families of Bessel functions with more than one variable. For example, we have
a two-variable one-parameter Bessel function defined by the generating function
[5]

∞∑
n=−∞

tn Jn (x, y; τ) = exp

[
x

2

(
t− 1

t

)
+

y

2

(
t2τ − 1

t2τ

)]

and given explicitly by the series:

Jn (x, y; τ) =
∞∑

l=−∞
τ l Jn−2l (x) Jl (y) .

It is convenient, for our purposes, to introduce the two-variable one-parameter
counterpart of the Tricomi–Bessel function, which satisfies each of the following
identities:

∞∑
n=−∞

tn Cn (x, y; τ) = exp
(
t− x

t
+ t2τ − y

t2τ

)
, (9)

Cn (x, y; τ) =
∞∑

l=−∞
τ l Cn−2l (x) Cl (y) ,

Jn (x, y; τ) =
(x

2

)n

Cn

(
x2

4
,
y2

4
;
2y

x2
τ

)
,

and

Cn (x, y; τ) = x−n/2 Jn

(
2
√

x, 2
√

y;
x√
y

τ

)
.

Remark 2. It can also be proved in a fairly direct way that

(−1)s ∂s

∂xs
Cn (x, y; τ) = Cn+s (x, y; τ) (10)

and

(−τ)s ∂s

∂ys
Cn (x, y; τ) = Cn+2s (x, y; τ) , (11)
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which can be applied to derive the generating functions [4]

∞∑
n=0

tn

n!
Cn+l (x, y; τ) = Cl (x− t, y; τ) ,

∞∑
n=0

tn

n!
C2n+l (x, y; τ) = Cl (x, y − τt; τ) , (12)

∞∑
n=0

tn

n!
Jn+l (x, y; τ) =

(
x

x− 2t

)l/2

Jl

(√
x2 − 2xt, y;

τ (x− 2t)

x

)
,

and
∞∑

n=0

tn

n!
J2n+l (x, y; τ) = Jl

(
x,

√
y2 − 2yτt; τ

√
y

y − 2τt

)
.

With a view to further generalizing the above results, we recall that Bessel
functions can be extended to the case with more than two variables and one
parameter. Indeed, note that the three-variable two-parameter Tricomi–Bessel
function given by

Cn (x, y, z; τ1, τ2) =
∞∑

l=−∞
τ l
2 Cn−3l (x, y; τ1) Cl (z) ,

satisfies the generating function

∞∑
n=−∞

tn Cn (x, y, z; τ1, τ2) = exp

(
t− x

t
+ t2 τ1 − y

t2 τ1

+ t3 τ2 − z

t3 τ2

)

and the derivative formula

(−τ2)
s ∂s

∂zs
Cn (x, y, z; τ1, τ2) = Cn+3s (x, y, z; τ1, τ2)

along with

∞∑
n=0

tn

n!
C3n+l (x, y, z; τ1, τ2) = Cl (x, y, z − τ2t; τ1, τ2) .

Furthermore, the three-variable two-parameter Bessel function given by

Jn (x, y, z; τ1, τ2) =
∞∑

l=−∞
τ l
2 Jn−3l (x, y; τ1) Jl (z)

with the generating function

∞∑
n=−∞

tn Jn (x, y, z; τ1, τ2) = exp

[
x

2

(
t− 1

t

)
+

y

2

(
t2 τ1 − 1

t2 τ1

)

+
z

2

(
t3 τ2 − 1

t3 τ2

)]



GENERATING FUNCTIONS FOR THE BESSEL AND RELATED FUNCTIONS 223

can be expressed in terms of the corresponding Tricomi–Bessel functions as
follows:

Jn (x, y, z; τ1, τ2) =
(x

2

)n

Cn

(
x2

4
,
y2

4
,
z2

4
;
2y

x2
τ1,

4z

x3
τ2

)
(13)

and (conversely)

Cn (x, y, z; τ1, τ2) = x−n/2 Jn

(
2
√

x, 2
√

y, 2
√

z;
x√
y

τ1, τ2

√
x3

z

)

so that we have
∞∑

n=0

tn

n!
J3n+l (x, y, z; τ1, τ2) = Jl

(
x, y,

√
z2 − 2τ2 tz; τ1, τ2

√
z

z − 2τ2 t

)
.

The extension of relation (13) to the case with m (> 3) variables is straight-
forward and we merely observe here that

Jn

({x}m
1 ; {τ}m−1

1

)
=

(x1

2

)n

Cn

(
1

4
{x2}m

1 ; {σ}m
2

)

(
{a}m

1 = a1, . . . , am; {a2}m
1 = a2

1, . . . , a
2
m;

{σ}m
2 =

2r−1 xr

xr
1

τr−1 (r = 2, . . . , m)
)
.

3. Generating Functions for Hermite–Bessel Functions

For the two-variable one-parameter Tricomi–Bessel function Cn (x, y; τ) de-
fined by (9), it readily follows from (10) and (11) that

−τ
∂

∂y
Cn (x, y; τ) =

∂2

∂x2
Cn (x, y; τ) .

We also find from (10) and the generating function (12) that

Cn (x, y − τ ; τ) = exp

(
∂2

∂x2

)
Cn (x, y; τ) .

The above observations are particularly interesting because they allow a con-
ceptual step forward. With this point in view, we first recall that (cf. [2])

exp

(
a

∂2

∂x2

)
xn = Hn (x, a) := n!

[n/2]∑
r=0

ar xn−2r

r! (n− 2r)!
, (14)

where Hn (x, y) denotes the Hermite–Kampé de Fériet polynomials in two vari-
ables, given also by

Hn (x, y) =
(
i
√

x
)n

Hn

(
y

2i
√

x

)
= g2

n (x, y)
(
i :=

√−1
)

(15)

in terms of the familiar Hermite polynomials Hn (x) and the Gould–Hopper
polynomials gm

n (x, y) with m = 2 (cf. [7, p. 76, equation 1.9 (6)]). Next, in
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the light of the operational representation in (14), we introduce the notion of
H-based functions as follows:

Hf (x, a) := exp

(
a

∂2

∂x2

)
f (x) =

∞∑
n=0

cn Hn (x, a)

(
f (x) :=

∞∑
n=0

cn xn

)
,

where we have simply replaced the ordinary monomial xn in the Taylor–Mac-
laurin expansion of f (x) by the polynomials Hn (x, a) defined by (14) and, just
as we have shown above in (15), related closely to the relatively more familiar
Hermite polynomials Hn(x) and the Gould–Hopper polynomials gm

n (x, y) (with
m = 2).

Within the above H-based framework, we note that the function HCn (x, y)
defined by

exp

(
a

∂2

∂x2

)
Cn (x) = HCn (x, a) :=

∞∑
r=0

(−1)r

r! (n + r)!
Hr (x, a)

also satisfies the following generating function:

∞∑
n=−∞

tn · HCn (x, a) = exp
(
t− x

t
+

a

t2

)
.

Clearly, therefore we have

Cn (x, y − τ ; τ) = HCn (x, y; τ |1, 0) ,

where

HCn (x, y; τ |a, b) :=
∞∑

l=−∞
τ l · HCn−2l (x, a) · HCl (y, b) .

The results, which we have just obtained, open new possibilities. Indeed, by
combining equations (10) and (11), we find that

∞∑
n=0

tn

n!
C3n+l (x, y; τ) = exp

(
tτ

∂2

∂x ∂y

)
Cl (x, y; τ) .

The action of the exponential operator containing a mixed derivative on a
function of the variables x and y can again be obtained by using the concept of
H-based functions. We note that if

f (x, y) =
∞∑

m,n=0

cm,n xm yn,

then

exp

(
α

∂2

∂x∂y

)
f (x, y) = hf (x, y; α) :=

∞∑
m,n=0

cm,n hm,n (x, y; α) ,
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where

hm,n (x, y; α) := m! n!

min(m,n)∑
r=0

αr xm−r yn−r

r! (m− r)! (n− r)!

denotes the incomplete two-variable Hermite polynomials considered in (for
example) [3] and [9]. We thus find that

exp

(
tτ

∂2

∂x∂y

)
Cl (x, y; τ) = hCl (x, y; τ |tτ) ,

hCl (x, y; τ |tτ) =
∞∑

r=−∞
τ r · hCl−2r,r (x, y; tτ) ,

and

hCm,n (x, y; τ) :=
∞∑

r,s=0

(−1)r+s

r! s! (r + m)! (s + n)!
hr,s (x, y; τ) .

Remark 3. Various interesting properties of the above families of functions and
polynomials were investigated by (among others) Dattoli [2]. Furthermore, it is
fairly obvious that the above-detailed considerations, valid for Tricomi–Bessel
functions, can be extended without any significant problem to cylindrical Bessel
functions as well.

4. A Family of Mixed Generating Functions

In this section, we discuss the possibility of obtaining generating functions of
the form ∞∑

n=0

tn

n!
Ln (x, y) Cn+l (z) ,

which incidentally is a hybrid generating function involving the product of
Bessel-like functions and Laguerre-like polynomials Ln (x, y) defined by (cf. [2])

Ln (x, y) := n!
n∑

r=0

(−1)r xr yn−r

(r!)2 (n− r)!
= yn Ln

(
x

y

)
, (16)

where Ln (x) denotes the ordinary Laguerre polynomial of degree n in x (see
[1] and [7] for details).

The polynomials Ln (x, y) defined by (16) are also given by means of the
following operational rule (cf. [2]):

Ln (x, y) =
(
y − D̂−1

x

)n

(1) ,

where, for convenience,

D̂−n
x (1) =

xn

n!
(n ∈ N0) .

It is easily observed that
∞∑

n=0

tn

n!
Ln (x, y) Cn+l (x) = Cl

(
z − t

(
y − D̂−1

x

))
(1) . (17)
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The families of Hermite–Bessel and Laguerre–Bessel functions have recently
been investigated rather systematically (see [2] and the references cited therein)
as a useful tool for dealing with the solution of partial differential equations
associated with some electromagnetic transport problems. In the present case,
the Laguerre–Tricomi functions are defined by

LCn (x, y) :=
∞∑

r=0

(−1)r

r! (n + r)!
Lr (x, y) , (18)

which, in conjunction with (6) and (17), yields

∞∑
n=0

tn

n!
Ln (x, y) Cn+l (z) = LCl (−xt, z − yt)

or, equivalently,
∞∑

n=0

tn

n!
Ln (x, y) Jn+l (z) = LCl

(
−xzt

2
,
z2 − 2yzt

4

)
(19)

in terms of the Laguerre–Tricomi function LCn(x, y) defined by (18). We thus
complete the proof of Proposition 2 below.

Proposition 2. The bilateral generating function (19) holds true for the
Laguerre-like polynomials Ln (x, y) defined by (16).

Finally, we consider the possibility of deriving generating functions of the
form

∞∑
n=0

tn

(n!)2 Cn+l (z) ,

which, in view of (6) and (8), assumes the following operational form:

∞∑
n=0

tn

(n!)2 Cn+l (z) = C0

(
t

∂

∂z

)
Cl (z) . (20)

Since (cf. [2])

C0

(
t

∂

∂x

)
xn = Ln (t, x) ,

we find from (20) that

∞∑
n=0

tn

(n!)2 Cn+l (z) = LCl (t, z) , (21)

where the Laguerre–Tricomi function LCn (x, y) is given by (18). Thus we have
proved Proposition 3 below.

Proposition 3. In terms of the Laguerre–Tricomi function LCn (x, y) defined
by (18), the generating function (21) holds true for the Tricomi–Bessel function
Cn (x) defined by (6).
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In this paper we have shown how operational methods may play a significant
rôle in the derivation of generating functions involving Bessel-type functions. In
a forthcoming investigation, we will apply the results presented here to problems
of physical nature.
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