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j>ADIC L-FUNCTIONS
OF HILBERT MODULAR FORMS

by Andrzej DABROWSKI

1. Introduction.

Let p be a prime number and F a totally real number field of degree
n over Q. Let OF) ^ C OF, Dp = •A/'(i?) denote, respectively, the maximal
order, the different and the discriminant of F. Let J p be the set of all real
embeddings ofF, and let Sgn^ C F^ := (F^I^ ^ R^ denote the group
of signs of F (i.e. elements of order 2 in F^).

Let / € .Mfc(c,-0) be a primitive Hilbert cusp form of type (A;,V?),
where k = (fci, ...,fcn), fci = ... = fcn(mod 2); put ko := max{^}. Let
c±(c^, /), a € Jp denote the corresponding periods. Let /^ denote the twist
of / with a Hecke character \ of finite order. Let

L^f^=^xWC^f)^rn-s

n= n (1 - ̂ c^ f^~8 + ̂ (pMpw0-1-25)"1 •p
Analytic properties of L{s, f) suggest that / should correspond to a certain
motive M(f) over F of rank 2 and weight ko with coefficients in a field T
containing all C'(n,f) (see [Pa2; sec.7] for a discussion).

Through the paper we fix embeddings

^o;Q^c, ip:q-^Cp
Key words : p-adic L-function - Hilbert cusp form - Complex-valued distribution -
Growth condition — Non-archimedean Mellin transform.
A.M.S'. Classification : 11F67 - 11F85.
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where Cp = Qp is the Tate field (the completion of a fixed algebraic closure
Qp of Q) endowed with a unique norm | • \p such that \p\p = p~1.

Put

1 - C(p, /)X + ̂ (p)^0-^2 = (1 - a(p)X) (1 - ̂ (p)^) e Cp[X]

where a(p),Q;'(p) are the inverse roots of the Hecke polynomial; assume
ordp0;(p) < ordpQ^p). Note, that with an embedding a^ 6 J p one can
associate the embeddings F '—> Q, F c-^ Cp and define a prime divisor
p = p ( o ^ ) o f p i n F attached to ai.

Let [m*,m*] be the critical strip for L (s, /^), where

m^ = max{(feo - ki)/2} + 1, m* = min{(fco + ki)/2} - 1.

n / ^ _ ^. \
Let A (s, f^) := ]~[ TC ( s — —.—z- ) L (5, /^) be the modified L-function

1=1 \ 2 /
of/x-

Let Galp denote the Galois group of the maximal abelian exten-
sion of F unramified outside p and oo. The domain of definition of
the non-archimedean L-function is the p-adic analytic Lie group Xp :=
Honicont(Galp,Cp) of all continuous p-adic characters of the Galois group
Galp.

For a Hecke character \ of finite order, with conductor c(^), let G'(^)
denote the Gauss sum; also define sgn(^) = sgn(^oo) = (^<r(x)) ^ Sgn^.

The aim of this paper is to prove the following result (stated in [Pa2;
8.2] without proof).

THEOREM 1. — Put h = [max(ordp(a(p(^)) - (fco - ̂ )/2))] -h l.Then

for each sign CQ = {eo,a} € Sgn^ there exists a Cp-analytic function L'^
on Xp of type o(log^) with the properties :

(i) for all m € Z,m* < m ^ m*, and for all Hecke characters of finite
order \ € X^6 with (-l)^^) = CO,<T (cr € J p ) the following equality
holds :

L^(^rn.D^^. . A(m,^)L(P)^X,)- ̂  n^^'^ T^T)"
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where

f (1 - a'Wp-^l - a(p)-Wp"1-1) tfp /c(x)

M^-[^^

and

n(eo,/) = (27H)-""1- • £»J,. Ip0"^/)'
(7

is a certain constant depending only on Co and /.

(ii) If h < m* — m* -I-1 then the function L^ on 3£p is uniquely
determined by conditions (i).

(iii) If max ('ordpa(p(^)) - ^ko ~ ki^ == Q then the function L^ is

bounded on Xp.

Remarks. — (i) Note that the quantities ̂ (a, /) are defined in terms
of the corresponding "motivic data" M(/). In section 4 of his recent paper
[Yo] Yoshida explained that the existence of these quantities is in agreement
with the Shimura's paper [Shi] : take

u^n^D^c^^fY
a

then the Deligne^s period conjecture for M(f) is equivalent to the Shimura's
result ([Shi;Th.4.3.(I)]).

(ii) In Shimura's theory, to deduce an algebraicity theorem for
L(m,/^) {m critical) itself, on would like to be able to divide by L(n,fp)
for some integer n and some Hecke character of finite order p. In fact, by
[Shi, Prop.4.1.6] we have L(s^f) ^ 0 for Re(5) >_ —.—, so, assuming

(^ j- ^o \
k° > 3, we can divide by L ———— — 1, fp ) in this case. If ko = 2, A;o

have to be even, and the only choice for n is n = —. By a recent result of
A

/ k \Rohrlich [Roh] we have in this case L ( —, fp ) 7^ 0, for some choice of p.
\z /

Strategy for proving the theorem.

First we give the Rankin type representation for the appropriate
complex-valued distributions on the Galois group as a convolution with
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the Eisenstein series. In order to prove algebraicity properties of special
values of distributions, we apply the holomorphic projection operator. In
the proof of the growth conditions we use Atkin-Lehner theory and explicit
form of Fourier coefficients of the corresponding modular forms. Then the
p-adic L-function is constructed as the non-archimedean Mellin transform
of the corresponding admissible measure.

We follow the notations and definitions from [Pal], [Pa2], [Shi] if
otherwise is not stated.

2. Eisenstein series for Hilbert modular group.

Notation. For k = (fci,..., kn) € Z71 and z = (^i,..., Zn) € C, we write

-^ := n ̂ ' w ••= E ̂  > M ••= E -^
/2=1 ?,=! /X

/ n \
Let ep(z) '.= e({z}) = exp 2m ̂  Zp, .

V ^=1 7
We recall the definition of Eisenstein series in the Hilbert modular

case. Let a, b be arbitrary fractional ideals, 77 be a Hecke character of finite
order of conductor e C Op such that rf {(x)) = sgn x171'1 for x = 1 mod e
(here m • 1 == (m, ...,m), for m > 0 an integer ). Let q = (gi, ...,9n) ^ ̂ n -,
q^ >, 0. Put

K^s^^rf)={2m)-W(z-z)-^

x^sgnAWWb-1) f0^)9 ^(c^+^^IA^^+d)!-25

c , d \CZ-\-dJ

L^s^^r])=(2mr{q}{z--zrq

x ̂ sgn^c)^*^-1) f^-^y^^ + d)-771!^^ + d)|-25

c , d \CZ-\-dJ

the summation being taken over a system of representatives (c, d) of
equivalence classes with respect to the 0]p -equivalence relation for non-
zero elements in a x b given by (c, d) ~ (nc, ud) with u C 0]p. The above
series can be extended to functions on the adelized group GA so that

K^ a, b, 77)^ = ̂ (txY^MWK^z, 5, ̂ , b, rj)

L^ a, b, rj)x = Af^)-8-^^)8^^ 5, a, b^-1,77).
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We shall need the explicit form of Fourier expansion of the Eisenstein
series.

PROPOSITION ([Ka], [Pal; 4.4.2]). — For s e Z such that V^ s-q^O
we have the following Fourier expansion :

^(^)n.r(.+m+^)
(-2^)n(m+2s)(_l)ns+{g,} ^m^5,U^,^ ^ ,77)

=(47n/)-9 ^ aA($,5,2/,77)e^)
0<C€tA

where

^(^5,^,77) := ^ sgnA^^-W^-^-V^)
^Jd' , detA ,d'^OF

x JJ iy(47T^ , m + s + ̂  , 5 - q^)
y

and

,̂,,-,)=s(-i).(^^ .̂
for r G Z, r » 0 .

Let ^, p be Hecke characters of finite order of conductor m, n
respectively, such that x{x^) = sgn(^)^ p{x^) = sgn^oj*, where
9 = (qi,'",qn),t = (^i,...,^) e Z" (parity of \, p respectively). Assume
that q+t = I • l(mod 2Z71) for some / e N. Then there exist modular forms
9i{x)^ 9r(x) ^ Mi.i(mn,-)cp) such that

L(s,gi^)) = Ln(5,p) • ̂ (5 + 1 - l,x),
L{^9r(x)) = L^s + 1 - Z , p ) . L^x)

(see [Shi, p. 660]).

3. Algebraicity theorem.

Let / e Mk(c,^) be a primitive cusp form of type (A;,'0), where
A; i= . . .= A;n(mod 2), i.e. / is a "motivic" form. Then

^cmn(5,/,^(^)) := Lcnzn(2s + 2 - A;o - Z, ̂ ) • L(s,f,g^))

=L(s+l-l,f^.L(sJ,)

where 1 < Z < A;0 - 1, A;0 := min{^}, A;o := max{^}.
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Let

^(^/,^(X)) :=7n(5) •®cm(5,/,^(x)),

where

^):=(2.)-2»s.^^(.+l+fcl^fe^-^)•^(.+^).

We have the following fundamental result of Shimura (see [Shi, p.
661-662]) :

m ^(fe*+^/^(x)) ^^ ^ . .* , .
(1) TrW-^o^-i)^/)6^ 0 < r < h - h . - l

where

^=^(0:=m^/fc^^l+^,

/i*=ft*(0:=mm{^—^l.

Let r(Z) := /i*(Z) — /i+(Z) — 1 = fc° — I — 1. We have a sequence of modular
forms

^(r)(x), l(r) = fc° - r - 1, r = 0,1,..,A;° - 2, <(r ) . 1 = <?+t(mod 2Z71).

Now, fixing the sign eo as in Theorem 1, we choose p = p(eo) so that

,(^°-^),o.

Then (1) is equivalent to the following :

Lfr+l+^f^) _
—^__________L ̂  0

(-27^^)n(r+l) • Q(/) -

for 0 < r < k° - 2, (k° - r - 1) • 1 = q 4- t(mod 2Z71),

where

n(eo,/) := L (k0^- - l,f^~1. G(p)-1 • (/J)c • (-27^^)W-"(fc°+fc°-l)

(compare [Shi, 4.34]).
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4. Complex valued distributions on Galp
associated with the Hilbert modular form.

We define a family ̂  = ̂  (€0), r = 0,1,..., k° — 2 of complex-valued
distributions in the following way :

^m(^m)

^ W)^-1 ̂ (m)^^ ^ (^ - 1 ̂  ^)(Xm)|^)
: a(m) • 22{fc}-n(feo4-fe0-r-l) ' ̂ {fc}-n(fco+Z(r)-l) . ̂ {fc+(fc0-r+l)l} . ̂  y^ 5

where m is arbitrary ideal with the condition moc(^)[m, mo := fIP and
p|p

/o^^^a^aVla.
a|mo

The operators F|q, /|t/(q)5 /|jc are defined in [Pal, p.124], [Shi, p.655].

5. The Rankin integral representation.

First let us specialize the integral representation of Rankin type (see
[Shi, 4.32]) to our situation :

^ (^/o,^)(Xn,)|^) = DJ. (-1^^ 2-»(fc°+fco)+<fc} ̂ -"(^^W

^r^+i+^—'-^-I0)
v v /

x { f S ^ 9^r)(Xm) X^^O.cmn,^"1))^.

The method by which the right hand side can be explicitely calculated
is based on an application of the trace operator (see [Pal, p.136]). Actually,
we obtain the following representation for the values of the distributions :

^n(Xm) = ̂  • <^,^)(XmJ •^i^O^^^,^-1)!^)^)^

where

7(m):=Q(TO)-l•JV(mo)^-l
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and

%(5, OF, OF. rf) := D^ n Y{s + m + ̂ (-^F^8)
i/

x (-470^(5,0^, CM.

6. Application of the holomorphic projection operator.

In order to prove algebraicity properties of special values of distribu-
tions, we apply a certain holomorphic projection operator to the Hilbert
automorphic form

ft7r)(Xm)-^+i(0,^,OF^X-1).

DEFINITION. — Let Mk(c, ̂ ) denote the C-hnear space of C°°-Hilbert
automorphic forms consisting of Hilbert automorphic forms of weight
k € Z71, level c C Op, and Hecke character ip satisfying the following
condition :

(*) for each x € GA with Xoo = 1 there exists a C°°- function Gx '-

ft71 -. C such that F(x y) = (G^\k y)(i, ...,t) for all y = ( a ^ € Goo.

For A = 1,..., k , F\ := G^ belongs to the vector space A4(T\, ̂ ) of
all C^-modular forms on H71 relative to the congruence subgroup F\ :

{Fx\k 7) W = ^(7) F^(z) V7 € FA

where a;, ($,!/) eC00^)71).

The map

F^(FI,..,F^)
defines a vector space isomorphism

%(c,^)^e$=i%(r^^).

DEFINITION. — A function F G M.k{^^) is called a function of
moderate growth if for all X = l,...,/i, z € H^, s 6 C, Re(s) > 0 the
integral

f F(w)(w-z)-fc-12slIm(w)fc4-sdxw
J^
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is absolutely convergent and admits an analytic continuation over s to the
point 5=0.

Here we use the notation :
^-k-\2s\ :=^- |̂-2s ^ JJ ̂ ^-2sy

y

PROPOSITION. — Let F € A^c, '0) be a function of moderate growth
such that its Fourier expansion contains only terms a\{^y) with totally
positive $ € t\. Set for $ > 0, $ € t\

axW := (47^0fc-l ;[Jr(^ - I)-1 / a^, ̂ (z^)^-2^
AR4-)71

and suppose that the integral is absolutely convergent.

Put

Hol(F) = (Hoi (Fi),.., Hoi (Ffc)),

Hol(F^(^))=^aA(Oe^(^).
^

Then Hol(F) € Mk(^"> ̂ )and for any cusp form g € «Sfc(c, ̂ ) we have that

<p,F>c=<^,Hol(F)>c.

The proof of the proposition is carried out in a similar way to that
of the Proposition 4.7 in [Pal], where the case of scalar vector weight was
treated (see also [Ka]), so we omit the proof.

Now we put

V^(x) := Hoi (<^)(Xmo) • ̂ (0,(^,0^x-1)) .

Then

^m(Xm) = —n- • (fS^ ̂ (^[/(m)^)
\J? J / ^ / cmo"

7. Explicit formulae for the Fourier coefficients.

From Proposition in Section 2, we plainly obtain (see [Pal, pp. 142-
143], for a similar calculation) the following
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PROPOSITION. — V,\^) has the following Fourier expansion :

Vr\i(x)x(z)= ^ U^r^)ep^z)
o<^e<^

where

^,^)==^)-^. ^ ^r,^)
i= l̂+(2,$l»0,(2»0

x S sgaV((d)).^((d))^(^-i)((^))
(S2)=(d)(d'),det'x,d'€OF

xn^^M
t/=l

and

PS^2,.,^,r)

.-^_.y(9A r(r+i+^) r(k.-i-i)
^ / \i}r(r+l+q,-i) r(fe,-l) •^ ^,

and

ff((r)(^"o)(^A = S ^(r'^X)e^(^)+6^(r,^).
0«(6fx

8. Application of the Atkin-Lehner theory.

Now let us consider the linear form given by

L . ^ , . <^'^^.)a/)c
on the complex linear space .Mfc(cmo,i/'). Prom the Atkin-Lehner theory
(in Miyake's form [Miy]) it follows that L is defined over Q, i.e. for a finite
number of ideals m, and fixed algebraic numbers l(rm) € Q we have the
equality :

L($)=^C(m<,$)((m,).
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Therefore the distributions p^ can be written in the form

^m(Xm)=7(m).L(^(x)),

where

^rM)^V^(x)\U^

1035

9. The growth conditions.

Given an integral ideal m C OF, let I(m) denote the group of all
fractional ideals in F, prime to m. Also let

P(m) := {(a)| a € F?, a = ̂ mod^)}, H(m) := J(m)/P(m),

/i(m) := cardff(m).

Then Galp = limff(m) (where limit is over m with the condition 5(m) C
5(mo)). ^~

Let TTm : Galp —> H(m) be the natural projection; put (m) := ker Tim.

Let (^(Galp) denote the space of Cp-valued functions, which locally
can be represented by polynomials of degree less than m in variable NX p .

THEOREM 2. — There exist Cp - linear forms

^ ^ ̂  (co) ^-^Gafp) -^ Cp

such that

{ ^rxrd^=(-l)nr I d^, r=0,l,..,fc°-2.
a4-(m) a+(Tn)

For ̂  the following growth condition is satisfied :

sup
a 6 Galp

f (J^Xp

a+(m)

-NapYd^ = 0 (\Yt^\rp-w^a{v)\
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Proof. — The existence follows from the definition of /^. We now
check the growth condition; we can suppose that a € Op. Prom the section
8 we obtain :

/ (•A/'a;-^)''^~=E(^(-^("))r-J(-l)"J / d^
a+^ 3=0 / a4n)

-(-irEC.)^-"))'^
j=0 v/

xk^) E ^W(X)
\ modm

=(-l)•-ra-y(m)^(r)(-^(-a))^
j=o v/

x^ E ^(a)!^)).
x mod m

From the Atkin - Lehner theory it follows that the congruences in
the above theorem are sufficient to check for the following number A ffor
^1 = 0 mod m) :

A^-I)^)^-^))^ ^ ^m^x)
\ mod TO

-(-^^(^(-^-a))^——
j=o v^ h•(m)

x E ^-l(a) E ^o,ei,x)
^ mod m ^=ei+^2,^i»o,^2:»o

^ sgn (̂d) •^•(Wx-1)^) n ̂ te,.,^,j).
(i2)=(d)(d'),de^,d'e0p i/=l

Now, taking into account the explicit form of the Fourier coefficients for
^)(Xmo) (see [Shi], p 660) and taking summation over all \, we obtain :
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A = (-!)"'• • Q(mmo)-1 • .^(wo)'^"1

x ^ p{e'W)sgn^(de) • ̂  (r) {-M(-a)Y-3 • W3

$=$1+^2, j = o ' /

^1»0,$2»0,

($1) = (e)(eQ ,
($2)=(d)((f) ,

—ae = dt^ (mod m)
n

ji,°_,_l t<-/;-l\x Aw-^-1 •^(t;:1)^ • n p^$2,.,^,j).
LEMMA. — Let h > q be positive rational integers, and a,f3 6 OF)

a= 13 mod m. Then

^^^-..(_^.^

J=0 v/

belongs to mh~q.

Proof (of the Lemma). — Induction with respect to q. The case q = 0
is trivial.

Now

E (^-^-wf = E f'V^-w b' • •" • o - 9 +1) + ̂ -i(j)]
j=0 v/ J=0 v/

=^.,..^_^l)(-^(a-^-^+^^a^(-/3)^^
j=o v/

where Pg_i(j) is a polynomial of degree q — 1 in j.

The assertion follows.
n

Let us continue the proof of the theorem. Firstly, ]~[ P^ ($2,1/5 $i/?j) is
i/=i

n
the polynomial of degree ^ ̂  in variable j ; note also that Pg ($2,1^ (ivj)

v=i
is homogeneous of degree q^ in variables $2,i/ and $^. On the other hand,
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71

$ is divisible by m and |̂ |p = |$|p; consequently f] ̂  is divisible by
i/=i

tj mql/. Now, if r > ̂  ̂ i/, then the theorem follows from the above lemma :
v v
take h = r, a = J\f(-ae), /? = Af {dt\). The case r < ̂  ̂  is trivial.

i/

10. End of the proof of Theorem 1.

First, we can explicitely determine Euler factors of the Rankin con-
volution. Proceeding similarly as in ([Pal], p.130-132; or [Pa3], p.135-140)
we obtain

( k + fc° \
^ ———^——— - ljo,^(r) (Xmo) Ijcmmonj

=P(/,p)^(cmon)Mrlr^^(n)^r)-fc°

xG^n^f^^^+i)pip v /^(^-i,^^-^)
where

P(/, p) = a(cmon)G(p) n (l - ̂ "1) 11A? (^ fclTfco - 1) •
q|n p|c v /

In order to finish the proof of Theorem 1, we put

L^(x) := V xd^\
Galp

where

^••'pijj)'^^-
It is well known (due to Amice-Velu and Vishik), that such non-

archimedean Mellin transform is Cp-analytic function of the type o(log'1),
and ̂  is uniquely determined by L^f {x^x^}, -x, e X^8, m =
0,l,...,h-l.
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11. p-adic functional equation.

THEOREM 3.

L^(x) =iW+^ .W^x-W^^x-1).

Proof. — Let we use the archimedean functional equation :

M(c^ • A(s, /) = zW • A/^2)^ • A(fco - 5, fU)

and the following properties :

/k = A(/). f^ A(^) = (^x*)(c) • G(x)2 •^(m)-1 . A(/).

On the other hand, we remark that the product \[A^(f^m) ls

Pb
invariant under change of the type

(X^(P)^(P),^) ̂  (X"1,^?),^?),^ - m),

where d(q) :== ^(q) • a(q), ^3(q) := ^(q) • /3(q). Here L^0 denotes the
p-adic L-function, which correspond to the Mellin transform of a measure
associated to the form fp.

12. Remarks.

In the p-ordinary case Theorem 1 was established by Yu.I. Manin
(see[Ma]) using the theory of generalized modular symbols on some Hilbert-
Blumenthal modular varieties. Another approaches (still in the p-ordinary
case) are given by the work of H. Hida (see[Hi]), and in CM-case by N.M.
Katz (see[Ka]), although they obtain p-adic L- functions of several variables
and from their theory we can obtain some p-adic analytic families of Hilbert
modular forms. The non-p-ordinary case was treated only for F =Q by
M.M. Vishik [Vi]. Conjectural generalization of the Hida's construction
to arbitrary motives has been formulated in the recent paper of A. A.
Panchishkin ([Pa4]). In general (including non-critical case) all this ought
to be deeply related to Mazur^s theory of deformations of representations,
Fontaine's theory, p-adic Hodge structures and the like. We hope to treat
all this in a separate article. On the other hand it would be interesting to
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generalize construction of our article to Sym^/), r = 2,3,... (see [Dab] for
the case of elliptic modular forms).
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