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A SURVEY ON q-POLYNOMIALS AND THEIR

ORTHOGONALITY PROPERTIES

ROBERTO S. COSTAS-SANTOS AND JOAQUIN F. SÁNCHEZ-LARA

Abstract. In this paper we study the orthogonality conditions satisfied by the
classical q-orthogonal polynomials that are located at the top of the q-Hahn
tableau (big q-jacobi polynomials (bqJ)) and the Nikiforov–Uvarov tableau
(Askey-Wilson polynomials (AW)) for almost any complex value of the pa-
rameters and for all non-negative integers degrees.

We state the degenerate version of Favard’s theorem, which is one of the
keys of the paper, that allow us to extend the orthogonality properties valid
up to some integer degree N to Sobolev type orthogonality properties.

We also present, following an analogous process that applied in [16], tables
with the factorization and the discrete Sobolev-type orthogonality property
for those families which satisfy a finite orthogonality property, i.e. it consists
in sum of finite number of masspoints, such as q-Racah (qR), q-Hahn (qH),

dual q-Hahn (dqH), and q-Krawtchouk polynomials (qK), among others.

1. Introduction

The classical orthogonal polynomials constitute a very important and interesting
set of special functions and more specifically of orthogonal polynomials. They are
very interesting mathematical objects that have attracted the attention not only of
mathematicians since their appearance at the end of the XVIII century connected
with some physical problems. They are used in several branches of mathemati-
cal and physical sciences and they have a lot of useful properties: they satisfy a
three-term recurrence relation (TTRR), they are the solution of a second order lin-
ear differential (or difference) equation, their derivatives (or finite differences) also
constitute an orthogonal family, among others (for a recent review see e.g. [6]).

In this survey we are going to focus on classical q-orthogonal polynomials –
also called q-polynomials– which are polynomial eigenfunctions of the second order
hypergeometric-type homogeneous linear difference operator

(1.1) H = σ(s)
∆

∆x(s − 1
2 )

∇
∇x(s)

+ τ(x(s))
∆

∆x(s)
,

where σ̂(x(s))
def
= σ(s) + 1

2τ(x(s))∆x(s − 1
2 ) and τ(x(s)) are polynomials on x(s)

with deg σ̂ ≤ 2 and deg τ = 1.
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In fact they appear in several branches of the natural sciences, e.g., quantum
groups and algebras [23, 24, 33], quantum optics , continued fractions, theta func-
tions, elliptic functions, . . . ; among others [8, 19, 20, 29].

q-polynomials have been intensively studied by the American School starting
from the works of G. E. Andrews and R. Askey [9] arising the q-Askey tableau,
and the Russian (former Soviet) school, starting from the works in [30] and further
developed by N. M. Atakishiyev and S. K. Suslov (see [13, 12, 29, 31] and references
therein) arising the Nikiforov–Uvarov tableau.

It is known that any family of polynomial eigenfunctions (pn) of (1.1) satisfies a
TTRR [30], i.e. there exist two sequences of complex numbers, (βn) and (γn), such
that for n ≥ 1

(1.2) pn+1(x) = (x− βn)pn(x)− γnpn−1(x),

with initial conditions p0(x) = 1, p1(x) = x− β0.
On the other side, if a sequence of monic polynomials (pn) satisfies the initial

conditions p0(x) = 1, p1(x) = x − β0, and the TTRR (1.2) then these polynomi-
als are orthogonal with respect to the moment functional L0 [15, §1], defined by
L0(pn) = δn,0, n ≥ 0, i.e., for n 6= m

(1.3) L0(pnpm) = 0.

If γn 6= 0 for n ≥ 1 then the polynomials defined by (1.2), are the unique normal
and monic polynomials satisfying the orthogonality property (1.3). Moreover, if
βn, γn are real, γn > 0, then there exists a positive Borel measure µ such that

L0(p) =

∫

R

pdµ.

This result is known as Favard’s theorem (see [18], [15, p. 21]), although this result
was also discovered (independent of J. Favard) by I. P. Natanson in 1935 [28] and
was presented by himself in a seminar led by S. N. Bernstein. He then did not
publish the result since the work of J. Favard appeared in the meantime.

Our main aims here are to study the orthogonality conditions satisfied by Askey-
Wilson and big q-Jacobi polynomials for almost any complex value of the parame-
ters, any complex value of q and all non-negative integer degrees. In all the cases,
the proposed orthogonality conditions characterizes such polynomials. When there
exists a γN = 0 in (1.2), an extension of the Favard’s result is used in order to
establish a Sobolev-type orthogonality. In such a case we also give the factorization

pn+N = pNp(N)
n , n ≥ 0,

where p
(N)
n is the associated polynomial of order N and degree n, which also be-

longs to the Nikiforov–Ubarov and/or q-Askey tableaux. We present a table with
the Sobolev-type orthogonality and the factorization for all the q-polynomials con-
sidered in Section 2.2 for whose TTRR there exists, at least, one N such that
γN = 0.

The structure of the paper is as follows. The preliminaries which will be used
throughout the paper as well as the extension of the Favard’s theorem are given
in Section 2. In Sections 3 and 4 we study the orthogonality conditions for Askey-
Wilson and big q-Jacobi polynomials respectively for almost any value of the com-
plex parameters. In section 5 we study the orthogonality conditions for Askey-
Wilson for |q| = 1. In Section 6 we give a table for all the families of q-polynomials
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which satisfy a discrete orthogonality with a finite number of masses like q-Racah,
q-Hahn, dual q-Hahn, and q-Krawtchouk polynomials, among others; and we finish
this paper giving some conclusions and outlooks. An appendix is also included.

2. Preliminaries

In this subsection we summarize some definitions and preliminary results that
will be useful throughout the work. Most of them can be found in [15].

Definition 2.1. Let (µn) be a sequence of complex numbers (moment sequence)
and L a functional acting on the linear space of polynomials P with complex
coefficients. We say that L is a moment functional associated with (µn) if L is
linear and L (xn) = µn, n ≥ 0.

Definition 2.2. The polynomial sequence (pn) is a orthogonal polynomials system

(OPS) with respect to a moment functional L if the following conditions hold:

(1) pn is a polynomial of exact degree n, i.e. the polynomial sequence (pn) is
normal.

(2) L (pnpm) = 0, m 6= n.
(3) L (p2n) 6= 0.

This third condition is imposed in order to have a unique OPS: if L (p2N ) = 0
then

L ((pN+1 + αpN )xm) = 0, m = 0, . . . , N, ∀α ∈ C.

The next result is a direct consequence of the previous definition [15, §1.2, §1.3, pp.
8-17].

Theorem 2.3. Let L be a moment functional and (pn) a polynomial sequence.
The following statements are equivalent:

(1) (pn)is an OPS with respect to L .
(2) L (πpn) = 0 for all polynomials π, deg π < n, while L (πpn) 6= 0 if the

deg π = n.
(3) L (xmpn(x)) = Knδn,m, where Kn 6= 0, for m = 0, 1, . . . , n.

It is well-known that a monic OPS (pn) satisfies a TTRR of the form (1.2) where
the coefficients γn do not vanish. The converse is also true.

Theorem 2.4. (J. Favard) Let (pn) be a polynomial sequence satisfying the initial
conditions p−1 = 0, p0 = 1 and the TTRR (1.2), where γn 6= 0 for all n ≥ 1. Then
(pn) is a OPS with respect to the canonical moment functional defined as

L (pn) = δn,0, n = 0, 1, 2, . . .

On the other side, if there exists γN = 0, then the sequence (pn) can not be a
OPS since the identity

γN =
L (p2N )

L (p2N−1)
,

shows that condition (3) in definition 2.2 does not hold.
Among the generalizations of OPS, one is given by considering symmetric bilinear

functionals:

Definition 2.5. Given a sequence of polynomials (pn), we say that (pn) is a OPS
with respect to a symmetric bilinear functional B if the following conditions hold:
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(1) (pn) is normal.
(2) B(pn, pm) = 0, m 6= n.
(3) B(pn, pn) 6= 0.

It is usual to write 〈f, g〉 instead of B(f, g) when there is no confusion about the
bilinear functional acting. With this definition, the analog of theorem 2.3 is also
valid but it is not the TTRR.

Notice that a sufficient condition for the existence of the TTRR is the Hankel’s
property, i.e.

〈tf, g〉 = 〈f, tg〉,
for all polynomials f and g, where 〈·, ·〉 acts on the variable t.

Among all the bilinear functionals we focus on the following Sobolev type ones:

〈f, g〉 = L0(fg) + L1(D(f)D(g)),

where L0, L1 are linear functionals and D is the derivative, the difference, or the
q-difference operator.

With all this overview we are going to present an extension of Favard’s theorem
for the case when some γ’s coefficient vanishes.

2.1. Degenerate generalization of Favard’s theorem. Consider the sequences
(βn) and (γn) of complex numbers and the polynomials generated by the following
recurrence relation:

(2.1) pn+1(x) = (x− βn)pn(x)− γnpn−1(x), n = 1, 2, . . . ,

with initial conditions p0(x) = 1 and p1(x) = x− β0. By Favard’s result, we define
for n ≥ 0 the moment functional as

L0(pn) = δn,0.

Notice that in such a case, L0(pnpm) = 0 for all n 6= m.
It is important to point out that if there existsN so that γN = 0, then L (p2N ) = 0

and thus the functional L0 does not determine the complete polynomials sequence
(pn).

In order to give an orthogonality that characterizes the family polynomials (pn),
we need to consider a linear operator T1 : P −→ P, and polynomial sequence (pn,1)
satisfying the following conditions:

(1) deg(T1(p)) = deg(p)− 1 for any polynomial p.
(2) The polynomial sequence (pn,1) is defined by

pn−1,1
def
=

T1(pn)

cn,1
, n ≥ 1,

where cn,1 is the leading coefficient of T1(x
n), and it satisfies, for n ≥ 1,

the recurrence relation

pn+1,1(x) = (x− βn,1)pn,1(x) − γn,1pn−1,1(x),

where the sequence (γn,1) is such that there exists a strictly increasing
mapping

λ : {n ∈ N : γn,1 = 0} −→ {n ∈ N : γn = 0} ,
with λ(n) > n.
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Observe that this last condition basically means that, after the action of T1, the
possible vanishing γ’s are shifted to a lower degree. In fact, for many families of
q-polynomials and their relative natural q-difference operator the condition about
λ writes

(2.2) γn,1 = 0 ⇐⇒ γn+1 = 0.

Under these hypothesis, (pn,1) is also a monic orthogonal polynomials sequence with
respect to some moment functional, namely L1. This procedure can be iterated j
times giving a sequence of operators Tj , recurrence coefficients, (βn,j) and (γn,j),
and moment functionals Lj so that the family

(Tk ◦ · · · ◦ T2 ◦ T1(pn+k)),

is orthogonal with respect to Lk. If we denote by T (k) def
= Tk ◦ · · · ◦ T1, then

pn,k = Cn,kT
(k)(pn+k), Cn,k 6= 0,

pn+1,k = (x − βn,k)pn,k − γn,kpn−1,k, p0,k = 1, p1,k = x− β0,k,(2.3)

Lk(pn,kpm,k) = 0, n 6= m.

Taking into account this construction we can state the degenerate generalization of
Favard’s theorem.

Theorem 2.6. Let (pn) be a polynomials sequence satisfying the TTRR (2.1), so
that there exists a unique N ∈ N so that γN = 0, then (pn) is the unique (monic)
polynomial sequence that fulfills the orthogonality conditions

(2.4) 〈pn, pm〉 = L0(pnpm) + LN(T (N)(pn)T
(N)(pm)) = 0, n 6= m.

The choice of T (N) and its link with LN guarantees that 〈pn, pm〉 = 0 for all
n 6= m. Hence, we only need to check the orthogonality conditions 〈pn, pn〉 6= 0
∀n ≥ 0 in order to prove that (pn) is a MOPS (thus the family (pn) is characterized
by the orthogonality property).

If n < N then, by hypothesis,

〈pn, pn〉 = L0(p
2
n) = γn · · · γ1 6= 0,

and if n ≥ N then, taking into account (2.3),

〈pn, pn〉 = LN (T (N)(pn)T
(N)(pn)) =

1

C2
N,n−N

LN (pn−N,Npn−N,N)

=
γn−N,Nγn−N−1,N . . . γ1,N

C2
n−N,N

6= 0. �

Remark 2.7. Notice that if there exists N ′ < N such that γn,N ′ > 0, for all n, and
the γ’s coefficients satisfy γ1, . . . , γN−1 > 0 then, the value N in formula (2.4) can
be replaced by N ′, and in such a case the proof of the statement is similar. Now
〈pn, pn〉 depends on the operators L0 and LN ′ and, in this case, it is the sum of
two positive terms which do not vanish simultaneously.

Corollary 2.8. Let (pn) be a polynomial sequence satisfying the TTRR (2.1), and

let Λ
def
= {n ∈ N : γn = 0}. Then (pn) is the unique (monic) polynomial sequence

that fulfills the orthogonality conditions

(2.5) 〈pn, pm〉 = L0(pnpm) +
∑

k∈A

Lk(T
(k)(pn)T

(k)(pm)) = 0, n 6= m,

being A = {N0, N1, . . . } with Nj+1 = Nj +min{n : γn,Nj
= 0}.
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The proof is straightforward taking into account the proof of theorem 2.6.

Remark 2.9. Observe that if Λ is a finite set, then A is also finite as well. Moreover,
in (2.5) for any two polynomials there is always a finite number of non vanishing
terms, so the result of corollary 2.8 remains even if the set A is a infinite set.

Among the operators T satisfying the imposed conditions one of the most nat-
ural ones is as follows:

T1(p)(x)
def
= L0

(
p(t)− p(x)

t− x

)
, pn,1 = T1(pn) = p(1)n ,

here L0 acts on the variable t. This is due the fact that this operator commutes
with the multiplication operator by x, thus the coefficients of the TTRR are shifted
by 1, i.e., for n ≥ 1,

p
(1)
n+1(x) = (x− βn+1)p

(1)
n (x)− γn+1p

(1)
n−1(x).

Notice that, although theorem 2.6 seems to be new, it has been used implicitly in
[16] where the operator Tj is the forward difference operator ∆ and it is applied to
Racah, Hahn dual Hahn, and Krawtchouk polynomials. Orthogonality conditions
of this type were also used in [1, 3, 4, 25] for Laguerre and Jacobi polynomials
where the operator Tj ≡ T is the standard derivative, providing a Sobolev type
orthogonality to these families. We are going to focus throughout this paper on the
orthogonality properties of q-polynomials where the operator Tj is a q-difference
type operator.

2.2. The q-Askey and Nikiforov-Uvarov tableaux. In this section we summa-
rize the data for the classical q-orthogonal families of the q-Hahn tableau assuming
that σ(x) is a monic polynomial (see, e.g., [29, 21, 26, 22, 5]); We also include the

two families of q-polynomials found by R. Álvarez-Nodarse and J. C. Medem in [7],
namely the “0-Jacobi/Bessel” q-polynomials (0JB), and the “0-Laguerre/Bessel”
q-polynomials (0LB) (see also cf. [5, pp. 214–217]).

Family Hyp. Repres. Family Hyp. Repres.
cdqH 3ϕ2(ae

iθ, ae−iθ; ab, ac|q) bqJ 3ϕ2(abq
n+1, x; aq, cq|q)

qH 3ϕ2(αβq
n+1, x;αq, q−N |q) dqH 3ϕ2(q

−x, γδqx+1; γq, q−N |q)
0JB 2ϕ1(aq

n;−|xa−1b−1) bqL 3ϕ2(0, x; aq, bq|q)
lqJ 2ϕ1(abq

n+1; aq|qx) qM 2ϕ1(x; bq| − qn+1c−1)
QqK 2ϕ1(x; q

−N |pqn+1) AqK 2ϕ1(q
−Nx; q−N |xp−1)

qK 2ϕ1(x;xq
N−n+1| − pqn+N+1) dqK 2ϕ1(x;xq

N−n+1|cqx−1)
0LB 2ϕ1(0;−|xa−1) lqL 2ϕ1(0; aq|qx)
qL 2ϕ1(−x; 0|qn+α+1) AqC 2ϕ1(−aqn; 0|qx)
qC 2ϕ1(x; 0| − qn+1a−1) ACI 2ϕ1(x

−1; 0|qxa−1)
ACII 2ϕ1(x;−|qna−1) SW 1ϕ1(; 0| − qn+1x)
Table 1. Basic hypergeometric series representation of some q-polynomials

Notice that the families for which σ is not a polynomial on x(s) are not included
in some of those tables; moreover to simplify the notation, we use for table 1 the
following reduction:

rϕs(~a;~b|z) ≡ rϕs

(
q−n ~a
~b

∣∣∣∣ q; z
)
.
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σ(x) (q − 1)τ(x) pn(x)
(x− aq)(x − cq) (abq2 − 1)x+ q(a+ c− abq − acq) pn(x; a, b, c; q)

(x− 1)(x− αqN ) (αβq2 − 1)x+ 1− α(q − qN + βq1+N ) h
(α,β)
n (x,N ; q)

(x− aq)(x − bq) −x+ q(a+ b− abq) pn(x; a, b; q)
(x− q−N )(x − pq) −x+ q(q−N−1 + q − q−N+1) kAff

n (x; p,N ; q)

(x− 1)(x− a) −x+ 1 + a u
(α)
n (x; q)

x(x − 1) (abq2 − 1)x+ 1− aq pn(x; a, b|q)
x(x − q−N ) −(1 + pq)x+ (pq − q−N ) kn(x; p,N ; q)
x(x − 1) −(aq + 1)x+ 1 kn(x; a; q)
x(x − 1) −x+ 1− aq pn(x; a|q)
x2 (aq − 1)x− abq jn(x; a, b)
x2 −x+ aq ln(x; a)
x− bq qc−1x− qc−1 − 1 + bq mn(x; b, c; q)
x− 1 −pq2−Nx+ q1−N − 1 + pq kqtmn (x; p,N ; q)
x qx− 1 sn(x; q)

x αqx− αq − 1 l
(α)
n (x; q)

x qa−1x− qa−1 − 1 cn(x; a; q)

1 a−1x− a−1 − 1 v
(a)
n (x; q)

Table 2. Basic data of some monic q-polynomials of the q-Hahn tableau

Legend

particular case

limiting case ✟✟✟✟✟✟✟

✚
✚

✚
✚

✚
✚

✚

✂
✂
✂
✂
✂
✂

❙
❙
❙
❙
❙

❅
❅
❅
❅
❅
❅

�
�

�
�

�
�

◗
◗
◗
◗
◗

✧
✧

✧
✧

✧
✧

AW≡ qR

bqJ≡ qH cdqH≡dqH

0JB bqL≡AqK qM≡QqK lqJ≡qK

0LB lqL ACI ACII qL qC AqC

SW

Figure 1. Most of the known links between q-polynomials

On the other hand, since the characterization theorems characterize the q-poly-
nomials (see e.g. [2, 6, 17]) then it is a direct calculation by using table 2 to check
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the following identities:

pn(x+ aq; a, a; q) =ln(x; a− a2q),

pn(x+ aq; a, b, a; q) =jn(x; abq, 1 + ab−1 − b−1q−1 − aq).

Although most of the identities we present here are already known (see [21, §4]) we
believe it is a good idea to show them here (see table 5).

3. The Askey-Wilson polynomials

This family of q-polynomials, which were introduced by R. Askey and J. Wilson
in [10], are located at the top of the q-Askey tableau. The monic Askey-Wilson
polynomials can be written as a basic hypergeometric series [21, p. 63]

pn(x; a, b, c, d|q) =
(ab; q)n(ac; q)n(ad; q)n
(2a)n(abcdqn−1; q)n

4ϕ3

(
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad
q; q

)
,

with x = cos θ. Moreover they fulfill, for n ≥ 0, the TTRR

(3.1) xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x),

where βn =
(
a+ a−1 −An − Cn

)
/2, and γn = An−1Cn/4 being

An =
(1− abqn)(1− acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1− abcdq2n)
,

Cn =
a(1− qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1− abcdq2n−2)(1 − abcdq2n−1)
.

Observe that, since Λ = {n ∈ N : γn = 0}, then

Λ = ∅ ⇐⇒ ab, ac, ad, bc, bd, cd /∈ Ω(q)
def
= {q−k : k ∈ N0}.

In the forthcoming sections we only consider normal polynomials sequences there-
fore abcd 6∈ Ω(q).

3.1. The orthogonality conditions for |q| < 1. It is known that if the pa-
rameters a, b, c, and d are real, or occur in complex conjugate pairs if complex,
max{|a|, |b|, |c|, d|} < 1, the family fulfills the orthogonality conditions [11]

(3.2)
1

2π

∫ 1

−1

pm(x)pn(x)
ω(x)√
1− x2

dx = d2(AW )
n δn,m, n,m ≥ 0,

where d
2(AW )
n is the squared norm of the monic Askey-Wilson polynomial of degree

n

(3.3) d2(AW )
n =

(abcdq2n; q)∞
4n(abcdqn−1; q)n(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞

,

and

ω(x) =

∣∣∣∣
(e2iθ; q)∞

(aeiθ, beiθ, ceiθ, deiθ; q)∞

∣∣∣∣
2

=
h(x, 1)h(x,−1)h(x, q

1
2 )h(x,−q

1
2 )

h(x, a)h(x, b)h(x, c)h(x, d)
,

with

h(x, α)
def
=

∞∏

k=0

(1 − 2αxqk + α2q2k) = (αeiθ, αe−iθ; q)∞, x = cos θ.



A SURVEY ON q-POLYNOMIALS AND THEIR ORTHOGONALITY PROPERTIES 9

Observe that the orthogonality conditions given in (3.2) are a particular case of
the non-hermitian complex orthogonality conditions

(3.4)

∫

Γ

pn

(
z + z−1

2

)
pm

(
z + z−1

2

)
W (z)dz = d2(AW )

n δn,m, n 6= m,

which were obtained by Askey and Wilson (see [10]), being

W (z) =
1

z
w

(
z + z−1

2

)
.

The poles of w are

αqk + (αqk)−1

2
, α = a, b, c, d, k ∈ N0 ,

therefore W has convergent poles, since |q| < 1, at

aqk, bqk, cqk, dqk, k ∈ N0,

and divergent poles at

a−1q−k, b−1q−k, c−1q−k, d−1q−k, k ∈ N0.

The contour Γ is a curve separating the divergent poles from the convergent poles,
encircling them only once. In fact, if the parameters satisfies max{|a|, |b|, |c|, |d|} <
1 then Γ can be taken as the unit circle, otherwise it is a deformation of the unit
circle.

The poles can be separated only if

a2, b2, c2, d2, ab, ac, ad, bc, bd, cd /∈ Ω(q),

so in the following we focus our attention when this does not occur. Looking at the
expression of the coefficient γn, it vanishes only if

ab, ac, ad, bc, bd, cd /∈ Ω(q),

and since any rearrangement of the parameters does not change the polynomial, it
is enough to study the following three key cases:

• only a2 ∈ Ω(q),
• only ab ∈ Ω(q),
• or only a2 = q−M and ab = q−N , with M < N − 1, belong to Ω(q).

3.1.1. a2 ∈ Ω(q) and ab, ac, ad, bc, bd, cd /∈ Ω(q). Although the poles can not be
separated, there is no γn vanishing in the TTRR, so we look for a simple reformu-
lation of (3.4). Let us assume a2 = q−M with M ∈ N0, then the poles that can not
be separated are

Z = {q−M/2, q1−M/2, . . . , qM/2}, or Z = {−q−M/2, −q1−M/2, . . . , −qM/2}.
Notice that if some of these poles coincide with the generated by b, then ab ∈ Ω(q)
which is not possible in this case. Hence Z has empty intersection with the rest of
the poles of W .

We consider this case as the limit for pn(•;α, b, c, d; q) with α → a, so the poles
of W (•;α, b, c, d; q) can be separated adequately. Thus the orthogonality conditions
(3.4) are valid and can be expressed as

0 =

∫

Γ′

1
∪Γ′

2

pn

(
z + z−1

2

)
pm

(
z + z−1

2

)
W (z)dz,
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where the curves Γ′
1 and Γ′

2 separate the poles. Therefore these curves can be
deformed in order to obtain the integral through two curves, Γ1 and Γ2, such that
they separate the convergent poles from the divergent ones, but the poles in Z
which stand between the two curves, with several residues added (see next figures).

r

r

r

r

r

r

r

❜ ❜

❜

❜

❜

❜

❜

Γ′

1

Γ′

2

r

❜

r

r

❜

r

❜ ❜

❜

r

r

❜

❜

r

Γ1

Γ2

When α → a, the poles αqk with k ≤ M and α−1q−(M−k) converges to aqk and
it can be seen that the sum of the two residues at this points tends to zero. So the
limit α → a yields

∫

Γ1∪Γ2

pn

(
z + z−1

2

)
pm

(
z + z−1

2

)
W (z)dz = d2nδn,m,

with d2n the normalizing factor given by (3.3).

3.1.2. ab = q−N+1 and a2, b2 /∈ {q0, . . . , q−N+2}, i.e γN = 0, so N ∈ Λ. The
orthogonality conditions depend on the size of Λ (see corollary 2.8), so we show
how it is in the simplest case Λ = {N}, i.e., ac, ad, bc, bd, cd /∈ Ω(q) \ {q−N}.

Since monic q-Racah polynomials can be written in terms of the basic hyperge-
ometric functions as [21, (3.2.1)]

rn(µ(x);α, β, γ, δ|q) = 4ϕ3

(
q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq

∣∣∣∣ q; q
)
,

with µ(x) = q−x+γδqx+1, the following identity linking Askey-Wilson and q-Racah
polynomials holds

pn(x; a, b, c, d; q) = rn(2ax; q
−N , cdq−1, adq−1, ad−1; q),

and it yields the moment functional L0 in theorem 2.6 which is the one known for
q-Racah polynomials

(3.5) L0(p) =

N−1∑

j=0

(q−N+1, ac, ad, a2; q)j
(q, a2qN , ac−1q, ad−1q; q)j

(1− a2q2j)

(cdq−N )j(1− a2)
p

(
q−j + a2qj

2a

)
.

Notice that the assumptions on a2 and b2 guarantees the definition of L0.
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Furthermore, since

Dqpn(x; a, b, c, d; q) =
qn − 1

q − 1
pn−1(x; aq

1/2, bq1/2, cq1/2, dq1/2; q),

where the q-difference operator, also called the Hahn’s operator, is

Dq(f)(z)
def
=





f(z)− f(qz)

(1− q)z
, z 6= 0 ∧ q 6= 1,

f ′(z), z = 0 ∨ q = 1,

the operator T can be chosen as Dq and the condition (2.2) holds. Hence, for
n ≥ N ,

D
N
q pn(x; a, b, c, d; q) =

(qn−N+1; q)N
(1− q)N

pn−N(x; aqN/2, bqN/2, cqN/2, dqN/2; q),

so LN is the moment functional associated with the Askey-Wilson polynomials
with parameters aqN/2, bqN/2, cqN/2, and dqN/2, i.e.

LN (p) =

∫

Γ

p

(
z + z−1

2

)
1

z
w

(
z + z−1

2

)
dz,

where
w(z) = w(z; aqN/2, bqN/2, cqN/2, dqN/2; q),

and Γ is a contour which separates the poles. Then, by theorem 2.6, the poly-
nomial sequence (pn(x; a, b, c, d)) is uniquely determined, up to a constant, by the
orthogonality conditions, for n 6= m,

〈pn(•; a, b, c, d; q), pm(•; a, b, c, d; q)〉 = L0(pnpm) + LN(DN
q (pn)D

N
q (pm)) = 0.

3.1.3. ab = q−N+1 and a2 = q−M , with M ∈ {0, . . . , N − 2}. Also the form of the
orthogonality depends on the numbers of elements of Λ. For simplicity, we see only
the case when the cardinal of Λ is one, and when Λ is greater, the orthogonality is
given by corollary 2.8.

The orthogonality is basically the same that in the case 3.1.2, but now L0 is not
valid since it has lost several orthogonality conditions. The adequate form of L0 is
obtained as a limit case. Let us consider the linear functional

L
α
0 (p) =

N−1∑

j=0

Aj(α)p (µj(α)) ,

with µj(x;α) = (αqj + α−1q−j)/2, and

Aj(α) =
(q−N+1, αc, αd, α2; q)j

(q, α2qN , αc−1q, αd−1q; q)j

(1− α2q2j)

(cdq−N )j(1− α2)
.

Straightforward computations yields

Aj(a) = 0,

for j ∈ {M + 1, . . . , N − 1} and j = M/2 if M is even, and

Aj(a) +AM−j(a) = 0, µj(a) = µM−j(a),

for j ∈ {0, . . . ,M} but j = M/2 ifM is even. Thus L α
0 tends to the null functional.

But since it is possible to consider any normalization, we remove the common factor
(α− a),

lim
α→a

Aj(α)

α− a
p(µj(α)) = A′

j(a)p(µ(a)),
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for j = M + 1, . . . , N and if M is even j = M/2, and also

lim
α→a

Aj(α)p(µj(α)) +AM−j(α)p(µM−j(α))

α− a

= (A′
j(a) +A′

M−j(a))p(µj(a)) +Aj(a)(q
j − qM−j)p′(µj(a))

for j = 0, . . . ,M but if M is even j 6= M/2.
Hence we define L0 as

L0(p) =

(M−1)/2∑

j=0

(A′
j(a) +A′

M−j(a))p(µj(a)) +Aj(a)(q
j − qM−j)p′(µj(a))

+

N−1∑

j=M+1

A′
j(a)p(µj(a))

if M is odd, and

L0(p) =

M/2−1∑

j=0

(A′
j(a) +A′

M−j(a))p(µj(a)) +Aj(a)(q
j − qM−j)p′(µj(a))

+

N−1∑

j=M+1

A′
j(a)p(µj(a)) + A′

M/2(a)p(µM/2(a))

if M is even. The Askey-Wilson polynomials of degree at most N with ab = q−N+1,
a2 = q−M and M = 0, . . .N − 2 are uniquely determined by the orthogonality
property:

L0(pnpm) = 0, 0 ≤ m < n ≤ N.

In particular, pN has simple roots on µj(a), j = M + 1, . . . , N and on µM/2(a) if
M is even; the rest of the roots, µj(a), j = 0, . . . , [(M − 1)/2] are double.

The moment functional LN in theorem 2.6 is the same that the one given in
section 3.1.2.

3.2. The orthogonality conditions for |q| ≥ 1. Taking into account the relation
between basic hypergeometric series [21, p. 9]

(3.6) 4ϕ3

(
q−n, a, b, c
d, e, f

∣∣∣∣ q; q
)

= 4ϕ3

(
qn, a−1, b−1, c−1

d−1, e−1, f−1

∣∣∣∣ q
−1;

abcq−n

def

)
.

We can relate each family of q-polynomials on the parameter q into another family
of q-polynomials on the parameter q−1. In fact in this case it provides

pn(x; a, b, c, d|q−1) = pn(x; a
−1, b−1, c−1, d−1|q).

Therefore if |q| > 1 we can get analogous orthogonality conditions just using this
relation and the orthogonality conditions given in Section 3.1 for |q| < 1.

If q is a primitive root of unity, i.e. q = e2πiM/N with gcd(N,M) = 1 then
{kN : k ∈ N} ⊆ Λ, so, by corollary 2.8, for k = 1 we need to construct the
following orthogonality property for the Askey-Wilson polynomials up to degree N
[14], i.e.

(3.7)

N−1∑

s=0

pn(xs)pm(xs)ωs = γ1 · · · γnδn,m,



A SURVEY ON q-POLYNOMIALS AND THEIR ORTHOGONALITY PROPERTIES 13

where n,m = 0, 1, . . . , N−1, {xs}N−1
s=0 are the zeroes of pN , and the weight function

is

ωs =
γ1 · · · γN−1

pN−1(xs)p′N (xs)
.

Observe that the only requirement to be added is that all zeros xs must be simple.
Since the method considered in [32] to obtain ωs can be applied to obtain such

weights functions to other families of q-polynomials, next we give a brief outline of
it.

It is known that Askey-Wilson polynomials are polynomial eigenfunctions of the
second order homogeneous linear difference operator:

σ(−s)
∆pn(x(s))

∆x(s)
+ σ(s)

∇pn(x(s))

∇x(s)
− λn∆x(s− 1

2 )pn(x(s)) = 0,

being σ(s) = −(q1/2 − q−1/2)2q−2s+1/2(qs − a)(qs − b)(qs − c)(qs − d), and their
corresponding eigenvalues

λn = −4q−n+1(1− qn)(1 − abcdqn−1).

Notice that such difference operator can be rewritten, by using the definition of
the difference operators ∆ and ∇, as [21, Eq. (3.1.7)], [32, Eq. (3.6)]

A(z−1)pn(q
−1z)− (A(z) +A(z−1))pn(z) +A(z)pn(qz) = λnpn(z),

where A(z) = (1 − az)(1 − bz)(1 − cz)(1 − dz)/((1 − z2)(1 − qz2)). Therefore,
multiplying the previous equation by a function ρ(s) satisfying the only requirement
of periodicity ρ(s + N) = ρ(s), and combining it with a similar equation for the
polynomials pm(xs), one can get a bilinear relation:

Asσ(s) (pn(xs−1)pm(xs)− pn(xs)pm(xs−1))
+Csσ(s) (pn(xs+1)pm(xs)− pn(xs)pm(xs+1))

= (λn − λm)σ(s)pn(xs)pm(xs).

Choose ρ(s) in such a way that

(3.8) As+1ρ(s+ 1) = Csρ(s),

summing from s = 0 to s = N − 1 and using the obvious periodicity property of
ρ(s) we get the orthogonality property:

(λn − λm)

N−1∑

s=0

pn(xs)pm(xs)ρ(s) = 0, n 6= m.

Hence ωs = ω0ρ(s), with ω0 is the normalization constant, is determined from the
relation (3.8).

Spiridonov and Zhedanov found that the polynomials (pn(•; a, b, c, d; e2πiM/N )),
with 0 ≤ n ≤ N , under the assumptions

abcd, ab, ac, ad, bc, bd, cd 6= qk, k = 0, . . . , N − 1 ,

are uniquely determined by the orthogonality conditions

L0(pnpm) = d2nδn,m, d2n 6= 0,

being

L0(p) =

N−1∑

j=0

( q

abcd

)j (1− rq2j)(ar, br, cr, dr; q)j
(1 − r2)(qr/a, qr/b, qr/c, qr/d; q)j

p
(
rqj + r−1q−j

)
,
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and r the root with minimal argument of the equation

rN = EN/2 +
√
E2

N/4− 1,

being

EN =
aN + bN + cN + dN − (abc)N − (abd)N − (acd)N − (bcd)N

1− (abcd)N
.

Remark 3.1. A straightforward computation shows that

ρ(s)
def
=
( q

abcd

)s (1− rq2s)(ar, br, cr, dr; q)s
(1− r2)(qr/a, qr/b, qr/c, qr/d; q)s

,

satisfies the condition (3.8). A hint for such calculation can be found in [17, Lemma
5.1].

Due to the cyclic behavior of the TTRR coefficients and since γN = 0, these
polynomials satisfy the identity

pn = pℓNpm, n = ℓN +m, 0 ≤ m < N,

which explains the behavior of the polynomial for greater degrees. However corol-
lary 2.8 is applicable. For n ≥ N

D
N
q pn(x; a, b, c, d; q) =

(qn−N+1; q)N
(1− q)N

pn−N ((−1)Mx; a, b, c, d; q),

so the orthogonality conditions that characterizes all polynomials are the following:

• If M is even:

〈pn, pm〉 =
∞∑

j=0

L0(D
Nj
q (pn)D

Nj
q (pm)).

l
• If M is odd:

〈pn, pm〉 =
∞∑

j=0

L0(D
2jN
q (pn)D

2jN
q (pm)) + LN (D(2j+1)N

q (pn)D
(2j+1)N
q (pm)),

being

LN (p) =
N−1∑

j=0

( q

abcd

)j (1− rq2j)(ar, br, cr, dr; q)j
(1− r2)(qr/a, qr/b, qr/c, qr/d; q)j

p
(
−rqj − r−1q−j

)
.

4. The big q-Jacobi polynomials

The big q-Jacobi polynomials, which were introduced by Hahn in 1949, are lo-
cated at the top of the q-Hahn tableau. The monic big q-Jacobi polynomials can
be written in terms of basic hypergeometric series as [21, p. 73]

(4.1) pn(x; a, b, c; q) =
(aq, cq; q)n
(abqn+1; q)n

3ϕ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q; q
)
.

In fact they are the most general family of q-polynomials on the q-exponential
lattice, also called q-linear lattice; and they appear, among others branches of
physics, in the representation theory of the quantum algebras [33]. The monic big
q-Jacobi polynomials fulfill, for n ≥ 1, the following TTRR:

(4.2) xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x),



A SURVEY ON q-POLYNOMIALS AND THEIR ORTHOGONALITY PROPERTIES 15

with βn = 1− Ân − Ĉn, and γn = Ân−1Ĉn being

(4.3)
Ân =

(1 − aqn+1)(1− abqn+1)(1 − cqn+1)

(1− abq2n+1)(1 − abq2n+2)
,

Ĉn = −acqn+1 (1− qn)(1− abc−1qn)(1− bqn)

(1− abq2n)(1 − abq2n+1)
.

Remark 4.1. Observe that if a = 0 then the coefficients γn = 0 for all n ∈ N0, and
if b = 0, or c = 0, then the big q-Jacobi polynomials become the big q-Laguerre or
the little q-Jacobi polynomials respectively, which are located below in the q-Askey
tableau thus we omit these cases.

A slightly less detailed study on orthogonality conditions for the big q-Jacobi
can be found in [27].

4.1. The orthogonality conditions for |q| < 1. It is known that if 0 < q < 1,
0 < a, b < q−1, and c < 0 the family of big q-Jacobi polynomials fulfills the
orthogonality conditions [21, p. 73]

(4.4)

∫ aq

cq

(a−1x, c−1x; q)∞
(x, bc−1x; q)∞

pn(x; a, b, c; q)pm(x; a, b, c; q)dqx = d2(BqJ)
n δn,m,

where the Jackson q-integral (see [20, 21]) is defined as follows
∫ b

a

f(t)dqt = a(q − 1)
∞∑

s=0

f(aqs)qs − b(q − 1)
∞∑

s=0

f(bqs)qs.

The aim of this section is to give orthogonality conditions for the big q-Jacobi
polynomials for general complex parameters, including complex |q| < 1, except for
those for which the family is not normal, i.e. ab ∈ Ω(q).

In fact, notice that if the parameters belong to compact sets where the integrand
in (4.4) is bounded, hence such series converges uniformly. Thus we can apply the
Weierstrass theorem and analytic prolongation in order to asserts that (4.4) is valid
for

a, b, c, abc−1 /∈ Ω(q),

which it is equivalent to Λ = ∅, therefore in the following we focus our attention in
the case Λ 6= ∅. More precisely, we study the cases for which this set has exactly
one element, namely N . If this set is greater we refer the reader to corollary 2.8.

4.1.1. c = q−N and a, b, abc−1 /∈ Ω(q) \ {q−N}. Taking into account that the big
q-Jacobi and q-Hahn polynomials are linked through the relation

pn(x; a, b, q
−N ; q) = h(a,b)

n (x;N − 1; q),

the moment functional L0 in theorem 2.6 is the one known for the q-Hahn polyno-
mials [21] with parameters a, b and N − 1.

(4.5) L0(p) =

N−1∑

x=0

(aq, q−N+1; q)x
(q, b−1q−N+1; q)x

(abq)−x p(q−x).

Moreover, since

Dq−1h(α,β)
n (x;M ; q) =

q−n − 1

q−1 − 1
h
(αq,βq)
n−1 (x;M − 1; q),
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the operator T in theorem 2.6 can be chosen as Dq−1 and the condition (2.2) holds
(see the relation between q-Hahn and big q-Jacobi polynomials and the expression
(4.3) for the coefficients γn). Also, for n ≥ N ,

D
N
q−1pn(x; a, b, q

−N ; q) =
(q−n; q)N
(1 − q−1)N

pn−N (x; aqN , bqN , 1; q).

Accordingly with these expressions and the weight function for the big q-Jacobi
polynomials with parameters aqN , bqN and 1, if we define

LN (p) =

∫ aqN+1

q

(a−1q−Nx; q)∞
(bqNx; q)∞

p(x) dqx,

then, by theorem 2.6, the orthogonality conditions for n 6= m,

〈pn(•; a, b, q−N ; q), pm(•; a, b, q−N ; q)〉 = L0(pnpm) + LN (DN
q−1 (pn)D

N
q−1(pm)) = 0,

determine uniquely the big q-Jacobi polynomials for all non-negative integer degrees
up to a constant factor.

4.1.2. a = q−N , b, c, abc−1 /∈ Ω(q) \ {q−N}. By using the identity

(4.6) pn(x; a, b, c; q) = pn(x; c, abc
−1, a; q),

which can be obtained easily from the hypergeometric representation (4.1) or from
the TTRR (4.2), this case is reduced to subsection 4.1.1.

4.1.3. b = q−N and a, c, abc−1 /∈ Ω(q) \ {q−N}. The orthogonality in this case can
be obtained taking the limit b → q−N .

Multiplying relation (4.4) by the factor (b − q−N ), taking limit b → q−N , and
removing some non-vanishing constants one gets, for n 6= m,
(4.7)
N−1∑

s′=0

(a−1
cq

s′+1
, q

s′+1; q)∞ q
−N

q
s′

(cqs′+1; q)∞ (q−N+s′+1; q)N−s′−1

pn(cq
s′+1; a, q−N

, c; q)pm(cqs
′+1; a, q−N

, c; q) = 0.

The others terms of the two series in the series representation for the Jackson
q-integral, vanish after taking the limit since these series converges uniformly for b
in a compact neighborhood of q−N .

Reversing the summation and using the identity

(α; q)s = (α−1q1−s; q)s(−α)sq(
s

2),

orthogonality property (4.7) can be rewritten as
(4.8)
N−1∑

s=0

(ac−1
q
−N+1

, q
−N+1; q)s

(c−1q−N+1, q; q)s

q
(N−1)s

as
pn(cq

N
q
−s; a, q−N

, c; q)pm(cqNq
−s; a, q−N

, c; q) = 0.

Comparing (4.5) and (4.8), we get

pn(x; a, q
−N , c; q) = cnqnNh(ac−1q−N ,c)

n (c−1q−Nx;N − 1; q)

= cnqnNpn(c
−1q−Nx; ac−1q−N , c, q−N ; q).(4.9)

The used identities are not valid for several configurations of the parameters, how-
ever (4.9) is also valid for these configurations by using analytic continuation. Thus
the case treated in this subsection can be reduced to the case considered in subsec-
tion §4.1.1 by setting x 7→ c−1q−Nx.
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It is curious that identity (4.9) has the hypergeometric form

3ϕ2

(
q−n, aqn−N+1, x

aq, cq

∣∣∣∣ q; q
)

=
cnqnN (ac−1q−N+1, q−N+1; q)n

(aq, cq; q)n
3ϕ2

(
q−n, aqn−N+1, c−1q−Nx

ac−1q−N+1, q−N+1

∣∣∣∣ q; q
)
,

which coincides with [20, (3.2.6)]

3ϕ2

(
q−n, âqn, b̂

d̂, ê

∣∣∣∣∣ q;
d̂ê

âb̂

)
=

(âq/d̂, âq/ê; q)n

(d̂, ê; q)n

(
d̂ê

âq

)n

3ϕ2

(
q−n, âqn, âb̂q/d̂ê

âq/d̂, âq/ê

∣∣∣∣∣ q;
q

b̂

)

in the parameters but it does not in the arguments if one sets â = aq−N+1, b̂ = x,

d̂ = aq, and ê = cq.

4.1.4. abc−1 = q−N and a, b, c /∈ Ω(q) \ {q−N}. Once again, by (4.6), this case can
be reduced to the case in subsection §4.1.3.

4.2. The orthogonality conditions for |q| ≥ 1. Identities (3.6) and (3.2.2) in
[20]

3ϕ2

(
q−n, a, b

d, e

∣∣∣∣ q; q
)

=
(e/a; q)n
(e; q)n

an3ϕ2

(
q−n, a, d/b
d, aq1−n/e

∣∣∣∣ q;
bq

e

)
,

yield

3ϕ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q; q
)

=
(c(abq)−1; q−1)n

(cqn; q−1)n
(ab)nqn

2+n
3ϕ2

(
qn, (ab)−1q−n−1, (aq)−1x

(aq)−1, c(abq)−1

∣∣∣∣ q
−1; q−1

)
.

which in terms of big q-Jacobi polynomials writes as

pn(x; a, b, c; q) =
1

(a−1q−1)n
pn(a

−1q−1x; a−1, b−1, ca−1b−1; q−1).

Hence the orthogonality conditions for big q-Jacobi polynomials with |q| > 1 follow
from section 4.1.

If q is a primitive root of unity, i.e. q = e2πiM/N with gcd(N,M) = 1 then
{kN : k ∈ N} ⊆ Λ, and as we did for the Askey-Wilson polynomials, the set of big
q-Jacobi polynomials (pn(x; a, b, c; q))

N
n=0 under the assumptions

a, b, c, ab, abc−1 6= qk, k = 0, . . . , N − 1,

are uniquely determined by the orthogonality conditions

L0(pnpm) = d2nδn,m, d2n 6= 0,

being

L0(p) =

N−1∑

j=0

ω0
(ra−1qj , rc−1qj ; q)∞
(rqj , rbc−1qj ; q)∞

qsp(rqj),

with initial condition L0(1) = 1, and r the root with minimal argument of the
equation

rN =
aN + cN − (ab)N − (ac)N

1− (ab)N
.
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Moreover, since for n ≥ N

D
N
q pn(x; a, b, c; q) =

(qn−N+1; q)N
(1− q)N

pn−N (x; a, b, c; q),

the orthogonality conditions that characterizes big q-Jacobi polynomials in such
case are

〈pn, pm〉 =
∞∑

j=0

L0(D
Nj
q (pn)D

Nj
q (pm)).

Remark 4.2. In [32] the particular case c = 1 is considered and, in such a case, they
got

ωs =
(1− aN )(1− abq)(b; q)s

aq(b− 1)(1− aNbN)(a−1; q)s
qs.

5. Extending orthogonality properties valid up to degree N

The aims of this section are for one side to present the factorization for those
q-polynomials for which there exists an N such that γN = 0, and hence an orthog-
onality until degree N takes place, and for the other we extend that orthogonality
properties for all non-negative degrees obtaining a Sobolev type orthogonality prop-
erties.

Taking into account the basic idea about how the factorization process works is
already known (see e.g. [16]) we only show the sketch regarding the factorization
for the q-polynomials.

Since q-polynomials fulfill, for n ≥ 0, the TTRR

pn+1(x) = (x− βn)pn(x)− γnpn−1(x),

with p−1 ≡ 0, p0(x) = 1, observe that if there exists some integer N > 0 so that
γN = 0, then it is straightforward to check that, for n ≥ N , the following relation
holds:

(5.1) pn = pNp
(N)
n−N ,

where (p
(N)
n ) is the family of Nth associated polynomials which fulfills, for n ≥ 0,

the recurrence relation:

p
(N)
n+1(x) = (x− βn+N )p(N)

n (x)− γn+Np
(N)
n−1(x),

with initial conditions p
(N)
−1 (x) ≡ 0, p

(N)
0 (x) = 1.

Notice that in the case of q-polynomials the existence of an integer N so that
γN = 0 is directly related with the fact that there is a term of the form q−N+1

in the denominator parameters of one of the hypergeometric representations (see
(3.1) and (4.2)). In such a case the hypergeometric function pϕp−1 with a suitable
normalization factorizes as follows:
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Let a = {a1, . . . , ap−1} and b = {b1, . . . , bp−2}, then

(q−N+1; q)n+Npϕp−1

(
q−n−N , a
q−N+1, b

∣∣∣∣ q; z
)

=
(q−n−N ; q)N (a; q)NzN

(b; q)N (q; q)N

n∑

k=0

(q−n; q)k(aq
N ; q)kz

k

(bqN ; q)k(qN+1; q)k

(q; q)n
(q; q)k

=
(qN+1; q)n(a; q)NzN

(b; q)N
(−1)NqN(−n−N)+N(N−1)/2

pϕp−1

(
q−n, aqN

qN+1, bqN

∣∣∣∣ q; z
)
.

Hence it is straightforward combining to obtain the following factorization:

(q−N+1; q)n+Npϕp−1

(
q−n−N , a
q−N+1, b

∣∣∣∣ q; z
)
= q−nN (qN+1; q)n(q

−N+1; q)N

× pϕp−1

(
q−N , a
q−N+1, b

∣∣∣∣ q; z
)

pϕp−1

(
q−n, aqN

qN+1, bqN

∣∣∣∣ q; z
)
.

(5.2)

Notice that the first hypergeometric function of the right-hand side of (5.2), with
its corresponding normalization coefficient, is the polynomial of degree N and the
second one is theNth associated polynomial in the factorization (5.1) for n → n+N .
Table 3 shows the Nth associated polynomial.

In the sequel we are going to assume that no element of b belongs to Ω(q),
therefore theorem 2.6 is applicable in such a case. Let us go on to describe how to
obtain functionals L0, LN and the linear operator T (N) = T N in (2.4).

Obviously L0(p)
def
= 〈u, p〉 where u is the linear form with respect to the co-

rresponding family of q-polynomials (pn)
N
n=1 is orthogonal. Moreover, due the

difference properties of such families T is going to be a difference operator and

LN(p)
def
= 〈v, p〉 where v is the linear form with respect to the polynomial sequence

(T (N)pn+N ) is orthogonal [17].
Let us describe briefly the most complicated case: the q-Racah polynomials.
Notice that setting α = q−N then the Nth γ’s coefficient for q-Racah polyno-

mial vanishes [21, (3.2.3)], i.e. γN = 0, and therefore we can apply theorem 2.6,
obtaining:

r(N)
n (x; qN , β, γ, δ; q) = pn(µ(x)/(2

√
γδq); qN

√
γδq,

√
q/γδ, β

√
δq/γ,

√
γq/δ; q),

Moreover, taking into account that for these polynomials

∆

∆µ(x)
rn(µ(x);α, β, γ, δ|q) =

q−n − 1

q−1 − 1
rn−1(µ(x);αqβq, γq, δ|q),

and their connection with the Askey-Wilson polynomials (see table 5) it is clear
that the operator T = ∆/∆µ(x) for which we obtain that T N (rn(x;α, β, γ, δ; q))
is, up to a constant, equal to

pn(µ(x)/(2
√

γδqN+1);
√
γδqN+1,

√
q/γδqN , β

√
δqN+1/γ,

√
γqN+1/δ; q).

Thus the linear functional v is related with the linear operator of Askey-Wilson

polynomials with parameters
√
γδqN+1,

√
q/γδqN , β

√
δqN+1/γ, and

√
γqN+1/δ.
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Family and condition Nth associated polynomial
qH N 7→ N − 1 bqJ pn(xq

N ;αqN , βqN , qN ; q)

dqH N 7→ N − 1 cdqH pn(µ(x)/(2
√
γδq); qN

√
γδq,

√
q/γδ,

√
γq/δ|q)

qK N 7→ N − 1 bqJ pn(xq
N ; qN ,−pqN−1, 0; q)

QqK N 7→ N − 1 qM mn(xq
N ; qN ,−p−1q−N ; q)

AqK N 7→ N − 1 bqL pn(xq
N ; pqN , qN ; q)

dqK N 7→ N − 1 cdqH pn(λ(x)/(2
√

cq1−N);
√

cqN+1,
√
qN+1/c, 0|q)

Table 3. Nth associated polynomials involved in the factorization (5.1)

pn T T N(pn+N )

qH ∆
∆q−x pn(x;αq

N , βqN , 1; q)

dqH ∆
∆µ(x) pn(µ(x)/(2

√
γδqN+1);

√
γδqN+1,

√
q/γδqN ,

√
γqN+1/δ|q)

qK ∆
∆q−x pn(x; 1,−pq2N−1, 0; q)

QqK ∆
∆q−x mn(x; 1,−p−1q−N ; q)

AqK ∆
∆q−x pn(x; pq

N , 1; q)

dqK ∆
∆λ(x) pn(λ(x)/(2

√
cq);

√
cq,
√
q/c, 0|q)

Table 4. Unnormalized T (N)(pn+N ) involved in factorization (5.1)

qR→ AW rn(x;α, β, γ, δ; q) pn

(
x

2
√
γδq

;
√
γδq, α

√
q
γδ , β

√
δq
γ ,
√

γq
δ ; q

)

AW→ qR pn(x; a, b, c, d; q) rn

(
2ax; abq ,

cd
q ,

ad
q , a

d ; q
)

bqJ→ qH pn(x; a, b, c; q) hn(x; a, b,−1− logq c ; q)
qH→bqJ hn(x; a, b,N ; q) pn(x; a, b, q

−N−1; q)

dqH→cdqH rn(x; γ, δ,N ; q) pn

(
x

2
√
γδq

;
√
γδq,

√
γq
δ , 1

qN
√
γδq

|q
)

cdqH→dqH pn(x; a, b, c|q) rn

(
2ax; abq ,

a
b ,− logq(ac); q

)

QqK→ qM kqtmn (x; p,N ; q) mn

(
x; q−N−1,− 1

p ; q
)

qM→QqK mn(x; b, c; q) kqtmn

(
x;−1− logq b,− 1

c ; q
)

QqK→AqK kqtmn (x; p,N ; q) kaffn

(
xqN ; p−1, N ; q−1

)

AqK→QqK kaffn (x; p,N ; q) kqtmn (xq−N ; p−1, N ; q−1)
qK→lqJ kn(x; p,N ; q) pn(xq

N ;−pqN , q−N−1; q)
lqJ→ qK pn(x; a, b; q) kn(bqx;−abq,−1− logq b; q)
AqK→bqL kaffn (x; p,N ; q) pn(x; p, q

−N−1; q)
bqL→AqK pn(x; a, b; q) kaffn (x; a,−1− logq N ; q)
lqJ→bqJ pn(x; a, b; q) pn(bqx; b, a, 0; q)
qK→ bqJ kn(x; p,N ; q) pn(x; q

−N−1,−pqN , 0; q)
Table 5. Some unnormalized identities between q-polynomials.
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