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Abstract. It is well known that the classical families of orthogonal polynomials are characterized as the
polynomial eigenfunctions of a second order homogenous linear differential/difference hypergeometric operator
with polynomial coefficients.
In this paper we present a study of the classical orthogonal polynomials sequences, in short classical OPS, in a
more general framework by using the differential (or difference) calculus and Operator Theory.
The Hahn’s Theorem and a characterization Theorem for the q-polynomials which belongs to the q-Askey and
Hahn tableaux are proved. Finally, we illustrate our results applying them to some known families of orthogonal
q-polynomials.
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1. Introduction

Classical orthogonal polynomials constitute a very important and interesting family of special
functions. They are mathematical objects which have attracted attention not only because of
their mathematical value but also because of their connections with physical problems. In fact,
they are also related, among others, to continued fractions, Eulerian series, elliptic functions
[7, 13], and quantum algebras [17, 18, 28].
They also satisfy a three-term recurrence relation (TTRR) [24]

x(s)pn(x(s)) = αnpn+1(x(s)) + βnpn(x(s)) + γnpn−1(x(s)), n ≥ 0,

where γn 6= 0, n ≥ 1, as well as their derivatives (or differences or q-differences) also constitute
a a sequence of orthogonal family (see e.g. [3, 4, 11, 24] for a more recent review).

Indeed, a fundamental role is played by the so-called characterization Theorems, i.e. the
Theorems which collect those properties that completely define and characterize the classical
orthogonal polynomials.
One of the many ways to characterize a family (pn) of classical polynomials (Hermite, Laguerre,
Jacobi, and Bessel), which was first posed by R. Askey and proved by W. A. Al-Salam and T.
S. Chihara [1] (see also [21]), is the structure relation

φ(x)p′n(x) = ãnpn+1(x) + b̃npn(x) + c̃npn−1(x), n ≥ 0, (1)

where φ is a fixed polynomial of degree at most 2 and c̃n 6= 0, n ≥ 1.
A. G. Garcia, F. Marcellán, and L. Salto [14] proved that the relation (1) also character-
izes the discrete classical orthogonal polynomials (Hahn, Krawtchouk, Meixner, and Charlier
polynomials) when the derivative is replaced by the forward difference operator ∆ defined as

∆f(x) := (E + − I )f(x) = f(x+ 1) − f(x),

where E + is the forward shift operator and I the identity operator.
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Later on, J. C. Medem, R. Álvarez-Nodarse, and F. Marcellán [22] (see also [2, 4, 5]) char-
acterized the orthogonal polynomials which belong to the q-Hahn class by a structure relation
obtained from (1) replacing the derivative by the q-difference operator Dq defined as

Dq(f)(x) :=
f(qx) − f(x)

(q − 1)x
, q ∈ C, |q| 6= 0, 1.

The aim of the present paper is to go further in the study of classical polynomials giving
two new structure relations for the q-polynomials which belong to the q-Askey tableau and
the lattice is q-quadratic, i.e. x(s) = c1q

s + c2q
−s + c3, with c1c2 6= 0, being q ∈ C̃ := C \(

{0} ∪
(⋃

n≥1{z ∈ C : zn = 1}
))
.

In fact, we prove that the following relation characterizes the q-polynomials.

M pn(x(s)) = en
∆pn+1(s)

∆x(s)
+ fn

∆pn(s)

∆x(s)
+ gn

∆pn−1(s)

∆x(s)
, n ≥ 0,

where M is the forward arithmetic mean operator:

M :=
1

2
(E + + I ),

and, (en), (fn), and (gn) are sequences of complex numbers such that en 6= 0 and gn 6= γn.
Furthermore, we give a characterization Theorem for classical orthogonal polynomials in a more
general framework using Operator Theory, as well as we deduce some unified expressions for the
second order homogeneous linear differential (or difference) hypergeometric operator and for its
polynomial eigenfunctions.
The structure of this paper is as follows: In Section 2 we introduce some notations and definitions
used throughout the paper. In Section 3 we define the Rodrigues Operator and using Operator
Theory we deduce a unified expression for the linear differential (difference resp.) hypergeometric
operators related to the classical families, and for their polynomial eigenfunctions, as well as
other algebraic properties. In Section 4 we present a new characterization Theorem for q-classical
orthogonal polynomials and we prove the Hahn’s Theorem for the q-polynomials of the q-Askey
tableau. In Section 5 we illustrate our results applying them to some known q-polynomials.

2. Preliminaries

The standard classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) are
eigenfunctions of a second order linear differential operator [26]

H := σ̃(x)
d2

dx2
+ τ̃(x)

d

dx
, (2)

where σ̃ and τ̃ are polynomials of degree at most 2 and 1, respectively. This operator is also said
to be a standard Hamiltonian operator (see [24]).
In fact, a sequence of monic polynomials, (pn), such that

H pn(x) =

(
nτ̃ ′ + n(n− 1)

σ̃′′

2

)
pn(x), n ≥ 0,

is orthogonal with respect to a certain weight function ρ(x) supported on Ω ⊆ R, i.e.

∫

Ω
pn(x)pm(x)ρ(x)dx = d2

nδn,m, n,m ≥ 0. (3)

Notice that Ω is an interval associated with the regular singularities of H .
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Moreover, this weight function ρ(x) fulfills the following Pearson equation

d

dx
(σ̃(x)ρ(x)) = τ̃(x)ρ(x).

On the other hand, we can consider two different discretizations of the operator (2) replacing the
derivative by certain approximations on a lattice. Thus we need first to introduce the concept
of lattice.

DEFINITION 2.1. [11, 24] A lattice is a complex function x ∈ C2(Λ) where Λ is a complex
domain, N0 ⊆ Λ, and x(s), s = 0, 1, . . . are the points where we will discretize (2).

For a first approximation of the operator H , we consider the uniform lattice x(s) = s. Thus the
following second order homogeneous linear difference hypergeometric operator

H∆ := σ(s)∆∇ + τ(s)∆, (4)

can be introduced where ∇ and ∆ are the backward and forward difference operators, respec-
tively, being

∇f(x) = (E − − I )f(x) = f(x) − f(x− 1),

σ(x) := σ̃(x) − 1
2 τ̃(x) is a polynomial of degree at most 2, and τ(x) = τ̃(x).

Indeed, a sequence of polynomials (pn) satisfying

H∆pn(x) =

(
nτ̃ ′ + n(n− 1)

σ̃′′

2

)
pn(x), n ≥ 0,

is orthogonal with respect to a certain weight function ρ(x) supported on Ω ⊆ R, i.e.
∑

x∈Ω

pn(x)pm(x)ρ(x) = d2
nδn,m, n,m ≥ 0, (5)

with some extra boundary conditions (see §2.3 in page 26 of [24]).
As in the continuous case, the weight function ρ fulfills the following ∆-Pearson equation

∆(σ(x)ρ(x)) = τ(x)ρ(x).

The second way to discretize the operator H is to consider a nonuniform lattice x(s), (see [24])
which leads to the following linear difference hypergeometric operator:

Hq := σ(s)
∆

∇x1(s)

∇
∇x(s) + τ(s)

∆

∆x(s)
, (6)

where x(s) = c1q
s + c2q

−s+ c3, q ∈ C̃, σ(s) := σ̃(x(s))− 1
2τ(x(s))∇x1(s), x1(s) := x(s+ 1

2), and
τ(s) = τ̃(x(s)).

Notice that, in general, σ(s) is not a polynomial on x(s) but if either c1 = 0 or c2 = 0 then
σ(s) is a polynomial on x(s) of degree at most 2, i.e. σ(s) ≡ σ(x(s)).

Indeed, a sequence of monic polynomials (pn) satisfying

Hqpn(x(s)) = [n]q

(
αq(n − 1) τ̃ ′ + [n− 1]q

σ̃′′

2

)
pn(x(s)), n ≥ 0,

where [s]q denotes the q-number (in its symmetric form)

[s]q :=
q

s
2 − q−

s
2

q
1
2 − q−

1
2

, s ∈ C,

and

αq(s) :=
q

s
2 + q−

s
2

2
, s ∈ C,

is orthogonal with respect to a certain linear functional u ∈ P
′, i.e.

〈u, pnpm〉 = d2
nδm,n, m, n ≥ 0.
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REMARK 2.1. Notice that u admits a Lebesgue-Stieltjes integral representation, not necessarily
unique,

〈u, p〉 =

∫

Γ
p(z)dµ(z),

where Γ is a contour in the complex plane and µ is a measure, with supp(µ) = Γ.
In fact, in most of the cases, such an integral can be transformed into a sum in such a way

the linear functional can be written as [16]

〈u, p〉 =
∑

si∈Ω

p(x(si))ρ(si)∇x1(si), si+1 = si + 1, (7)

where the function ρ is supported on Ω ⊆ R. For this reason we will assume the above represen-
tation for the functional although the proofs when u can not be represented in such a way are
analogous and we will omit them.

Moreover, as in the discrete case, the weight function ρ(s) satisfies the following q-Pearson
equation

∆(σ(s)ρ(s))

∇x1(s)
= τ(s)ρ(s). (8)

REMARK 2.2. It is important to point out that in the orthogonality conditions (3), (5), and
(7) one needs to impose some boundary conditions, which follow from the fact that the moments
of the corresponding measure must be finite (see, for instance, [12], [24, p. 27, p. 70], [25]).

An important fact related to these operators is its hypergeometric character, i.e. if y is an
eigenfunction of the linear operator H , H∆, or Hq respectively, its derivative ỹ = y′, its

difference ỹ = ∆y, or its q-difference ỹ = ∆(1)y, respectively, is an eigenfunction of the second
order linear operator of the same kind. For instance, ỹ = ∆(1)y is an eigenfunction of the
following second order linear difference operator:

H̃q := σ(s)
∆

∇x1(s)

∇
∇x(s) +

(
τ(s + 1)

∆x1(s)

∆x(s)
+
σ(s+ 1) − σ(s)

∆x(s)

)
∆

∆x(s)
,

where

∆(m) :=
∆

∆xm−1(s)

∆

∆xm−2(s)
. . .

∆

∆x(s)
, m ≥ 1, xm(s) := x(s+ m

2 ), m ∈ Z.

Throughout the paper we will study some properties related to the difference operator Hq and
its eigenfunctions.

We can rewrite Hq as follows

Hq =
1

∇x1(s)

((
σ(s) + τ(s)∇x1(s)

) ∆

∆x(s)
− σ(s)

∇
∇x(s)

)
. (9)

Moreover, with this definition we can also rewrite the q-Pearson equation (8) as

σ(s+ 1)ρ(s + 1) =
(
σ(s) + τ(s)∇x1(s)

)
ρ(s). (10)

Combining (9) and (10), we get the symmetric or self-adjoint form of (6)

Hq =

[
1

ρ(s)

∇
∇x1(s)

ρ1(s)

]
◦ ∆

∆x(s)
, (11)

where ρ0(s) := ρ(s) and ρ1(s) := ρ(s+ 1)σ(s + 1).
This representation for the difference operator (6) is the key to define the Rodrigues Operator
which we will use in order to unify all the representations in the context of the classical orthogonal
polynomials.
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REMARK 2.3. A direct calculation yields the analogous formulas for the operators H and H∆.

H =

[
1

ρ(x)

d

dx
ρ1(x)

]
◦ d

dx
,

where ρ0(x) := ρ(x) and ρ1(x) := ρ(x)σ(x); and

H∆ =

[
1

ρ(s)
∇ρ1(s)

]
◦ ∆,

where ρ0(s) := ρ(s) and ρ1(s) := ρ(s+ 1)σ(s + 1).

Using this information we can write the polynomial eigenfunctions of the operator Hq as (see
[24, (3.2.10), p. 66])

pn(x(s)) :=

[
Bn
ρ0(s)

∇
∇x1(s)

ρ1(s)

]
◦
[

1

ρ1(s)

∇
∇x2(s)

ρ2(s)

]
◦ · · · ◦

[
1

ρn−1(s)

∇
∇xn(s)

ρn(s)

]
, (12)

or, after some simplifications, as

pn(x(s)) =
Bn
ρ0(s)

∇(n)
0 [ρn(s)], Bn 6= 0,

where ρ0(s) = ρ(s), ρk(s) = ρk−1(s+ 1)σ(s + 1), for every k ∈ Z, and

∇(n) ≡ ∇(n)
0 , ∇(n)

k :=
∇

∇xk+1(s)

∇
∇xk+1(s)

· · · ∇
∇xn(s)

, k = 0, 1, . . . , n− 1.

2.1. The (forward) mean arithmetic process

It is well known that for any pair of polynomials, π and ξ, the following relations hold:

∆(1)(πξ) = (∆(1)π)ξ + (E +π)∆(1)ξ,

∆(1)(πξ) = (∆(1)ξ)π + (E +ξ)∆(1)π.

We will say that we apply the (forward) mean arithmetic process to ∆(1)(πξ) if we get the
arithmetic mean of the above two expressions obtaining in such a case

∆(1)(πξ) = (∆(1)π)M ξ + (∆(1)ξ)Mπ.

For example,

∆(1)(x(s)pn(x(s))) = M pn(x(s)) + αq(1)x1(s)∆
(1)pn(x(s)) + c3(q)(1 − αq(1)).

In an analogous way we define the (backward) mean arithmetic mean process although we will
not use it.

3. The Rodrigues Operator

The expressions given in the previous section for the difference operator Hq and for its poly-
nomial eigenfunctions (12) suggest us to consider a new operator which we call the Rodrigues
Operator.

DEFINITION 3.1. Given functions σ and ρ, where ρ is supported on Ω, and a lattice x(s), we
define the k-th Rodrigues Operator associated with (σ(s), ρm(s), xm(s)) as

R0(σ(s), ρm(s), xm(s)) := I , R1(σ(s), ρm(s), xm(s)) :=
1

ρm(s)

∇
∇xm+1(s)

ρm+1(s) ◦ I ,

Rk(σ(s), ρm(s), xm(s)) := R1(σ(s), ρm(s), xm(s)) ◦ Rk−1(σ(s), ρm+1(s), xm+1(s)), k ≥ 2.
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For the sake of simplicity, we denote

Rk(ρm(s), xm(s)) := Rk(σ(s), ρm(s), xm(s)), m ∈ Z, k ≥ 0.

Notice that in the continuous case

R1(ρm(x), x) =
1

ρm(x)

d

dx
ρm+1(x) ◦ I ,

and in the discrete case

R1(ρm(s), x(s)) =
1

ρm(s)
∇ρm+1(s) ◦ I .

From this definition the difference operator (11) can be written as

Hq = R1(ρ(s), x(s)) ◦ ∆(1), (13)

and (12) reads
pn(x(s)) = Bn Rn(ρ(s), x(s))(1), Bn 6= 0, n ≥ 0.

Therefore, this is the way to write the operators H (H∆ or Hq, resp.) and their corresponding
polynomial eigenfunctions in a unified way.
Now, let us consider other properties related to the Rodrigues Operator.

LEMMA 3.1. The Pearson-type equation (8) can be written as follows

R1(σ(s), ρ(s), x(s))(1) = τ(s).

As a consequence we get result:

LEMMA 3.2. [24, (3.2.18), p.66] For every integers n, k, 0 ≤ k ≤ n, there exists a constant,
Cn,k, such that

∆(k)pn(x(s)) = Cn,kRn−k(ρk(s), xk(s))(1).

4. The characterization Theorem for the q-classical polynomials

The characterization Theorems constitute a very useful tool to analyze classical orthogonal
polynomials as we stated in the introduction. Recently, in [4] and [2] a characterization of q-
classical polynomials in the q-linear lattice x(s) = cq±s + d is presented. We will extend these
results for the q-quadratic lattice

x(s) = c1q
s + c2q

−s + c3, q ∈ C̃. (14)

For our purpose, we need to redefine the concept of q-classical OPS. Moreover, because the
measures are supported on the real line, we will consider Ω as the interval1 [a, b].

DEFINITION 4.1. The sequence (pn), where pn is a polynomial on x(s) of degree n for all
n ∈ N0, is said to be a q-classical OPS on the lattice x(s) if it satisfies the property of orthogonality
(7) where

(i) ρ(s) is a solution of the q-Pearson equation

∆(σ(s)ρ(s)) = τ(s)ρ(s)∇x1(s). (15)

1 If |b| < |a| = ∞ (resp. |a| < |b| = ∞) then we write (a, b] (resp. [a, b)); if |b| = |a| = ∞ then we write (a, b).



8 R. S. Costas-Santos and F. Marcellán

(ii) σ(s) + 1
2τ(s)∇x1(s) is a polynomial on x(s) of degree, at most, 2.

(iii) τ(s) is a polynomial on x(s) of degree 1.

(σ(s), ρ(s), x(s)) is said to be q-classical if it satisfies (i)-(iii).

Notice that the above definition coincides with Definition 1.1 given in [4] for the q-linear lattices
and generalizes it to the q-quadratic lattice.

LEMMA 4.1. [24, (3.2.5), p. 62] For every polynomial π and every integer k, π(xk(s))+π(xk(s−
1)) is a polynomial on xk−1(s) of degree deg(π).

LEMMA 4.2. If (σ(s), ρ(s), x(s)) is q-classical, then for every integer k and every polynomial
π, the function

R1(ρk(s), xk(s))(π(xk+1(s)))

is a polynomial on xk(s) of degree deg(π) + 1.

Proof: By hypothesis, we know that σ̂(x(s)) := σ(s) + 1
2τ(s)∇x1(s) and τ(s) are polynomials

on x(s) of degree, at most 2, and 1, respectively. From a direct calculation we get that

R1(ρk(s), xk(s))(1) =
σ(s + k) + τ(s+ k)∇x1(s+ k) − σ(s)

∇xk+1(s)
,

is a polynomial on xk(s) of degree 1.
Furthermore, for every integer k and every polynomial π, we get

R1(ρk(s), xk(s))(π(xk+1(s))) =
(σ(s+ k) + τ(s+ k)∇x1(s + k))

∇xk+1(s)
π(xk+1(s)) −

σ(s)

∇xk+1(s)

×π(xk+1(s− 1)) =
Θ(s+ k)

∇xk+1(s)
π(xk+1(s)) −

σ(s)

∇xk+1(s)
π(xk+1(s− 1)),

being Θ(s) := σ(s) + τ(s)∇x1(s).
So, R1(ρk(s), xk(s))(π(xk+1(s))) is a polynomial on xk(s) if and only if

Θ(s+ k
2 )

∇x1(s)
π(x1(s)) −

σ(s − k
2 )

∇x1(s)
π(x−1(s)) (16)

is a polynomial on x(s). But we can rewrite this expression in the form

Θ(s+ k
2 ) − σ(s− k

2 )

∇x1(s)
π(x1(s)) +

σ(s− k
2 )

∇x1(s)

(
π(x1(s)) − π(x−1(s))

)
,

or, equivalently,

Θ(s+ k
2 ) − σ(s− k

2 )

∇x1(s)
π(x−1(s)) +

Θ(s+ k
2 )

∇x1(s)

(
π(x1(s)) − π(x−1(s))

)
.

Taking the arithmetic mean of the above expressions, using Lemma 4.1 as well as the relation

Θ(s+ k
2 ) − σ(s − k

2 ) = q1(x(s))∇x1(s),

where q1 is a polynomial of degree 1, we deduce that (16) is a polynomial on x(s) of degree, at
most, deg(π) + 1. Moreover, from a straightforward calculation the coefficient of xm+1 is

αq(m+ 2k) τ ′ + [m+ 2k]q
σ̂′′

2
6= 0, m = deg(π),

where σ̂(x) = σ̂′′

2 x
2 + σ̂′(0)x+ σ̂(0) and τ(x) = τ ′x+ τ(0). Hence the result follows. 2

Taking into account all these results, we can state the preliminary results related to our main
Theorem.
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THEOREM 4.1. Let (pn) be a q-classical OPS with respect to ρ(s) on x(s) such that

xk(a)xl−1(a)σ(a)ρ(a) = xk(b)xl−1(b)σ(b)ρ(b) = 0, k, l ≥ 0. (17)

Then, (∆(1)pn+1) is a q-classical OPS with respect to the function ρ1(s) on x1(s).
Furthermore, if the condition (17) holds then the converse is also true.

REMARK 4.1. Observe that if, for instance, |a| = ∞ (the case |b| = ∞ is analogous) the
relations regarding to a into (17) need to be replaced by

lim
t→−∞

xk(t)xl−1(t)σ(t)ρ(t) = 0, k, l ≥ 0.

Proof: Let (pn) be a q-classical OPS with respect to ρ(s) on x(s). From Lemma 4.2 the function
Qk(x(s)) := R1(ρ(s), x(s))(pk−1(x1(s))) is a polynomial on x(s) of degree k. Therefore for any
n > k ≥ 1

0 =
b−1∑

s=a

pn(s)Qk(s)ρ(s)∇x1(s)

=
b−1∑

s=a

pn(s)
(
R1(ρ(s), x(s))(pk−1(x1(s)))

)
ρ(s)∇x1(s)

=
b−1∑

s=a

pn(s)∇
(
ρ1(s)pk−1(x1(s))

)
.

Taking into account the Leibniz rule, i.e.

∇(f(s)g(s)) = (∇f(s))g(s) + f(s− 1)(∇g(s)),

the following formula holds

b−1∑

s=a

g(s)(∇f(s)) = f(s)g(s+ 1)
∣∣∣
s=b−1

s=a−1
−

b−1∑

s=a

f(s)(∆g(s)) (18)

Thus we get

0 = pn(s + 1)ρ1(s)pk−1(x1(s))
∣∣∣
s=b−1

s=a−1
−

b−1∑

s=a

(∆pn(s))ρ1(s)pk−1(x1(s))

= pn(s)ρ(s)σ(s)pk−1(x−1(s))
∣∣∣
s=b

s=a
−

b−1∑

s=a

(∆pn(s))ρ1(s)pk−1(x1(s)) (∆x(s) = ∇x2(s))

= pn(s)σ(s)ρ(s)pk−1(x−1(s))
∣∣∣
s=b

s=a
−

b−1∑

s=a

(∆(1)pn(s))pk−1(x1(s)) ρ1(s)∇x2(s).

Hence (∆(1)pn+1) is an OPS with respect to ρ1(s) on the lattice x1(s).
Now, we prove that ρ1(s) satisfies a q-Pearson equation as (15) on the lattice x1(s). Indeed since
(pn) is a classical OPS we get

∆(σ(s)ρ1(s))

ρ1(s)
=

σ(s+ 1)ρ1(s+ 1)

ρ1(s)
− σ(s)

= σ(s+ 1) + τ(x(s+ 1))∇x1(s+ 1) − σ(s)

= σ̂(s+ 1) − σ̂(s) +
1

2
τ(s+ 1)∇x1(s+ 1) +

1

2
τ(s)∇x1(s),

where σ̂(s) = σ(s) + 1
2τ(x(s))∇x1(s) is a polynomial on x(s) of degree at most 2, and after

a straightforward calculation we deduce that this expression is equal to τ̂1(x1(s))∇x2(s) with
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deg(τ̂1) ≤ 1.
Moreover, using the last expressions we get

σ(s) +
1

2
τ̂1(x1(s))∇x2(s) =

1

2

(
σ̂(s+ 1) + σ̂(s) +

1

2
τ(s+ 1)∇x1(s+ 1) − 1

2
τ(s)∇x1(s)

)
,

is a polynomial on x1(s) of degree, at most, 2 and hence the result holds.
For the converse, we know that there exist two polynomials on x1(s), σ̂(s) and τ1, of degree at
most 2 and 1, respectively, such that

∆[σ(s)ρ1(s)] = τ1(x1(s))ρ1(s)∇x2(s),

here σ(s) := σ̂(s) − 1
2τ1(x1(s))∇x2(s).

So, we only need to check that

τ(s) :=
∇x(s)
∇x1(s)

(
τ1(x1(s − 1)) − ∇σ(s)

∇x(s)

)
,

and σ(s) + 1
2τ(s)∇x1(s) are polynomials on x(s) of degree at most 1 and 2, respectively, which

is a direct calculation and hence the result follows. 2

REMARK 4.2. Notice that in the case a = −∞ (the case b = ∞ is analogous) one should write
the formula (18) as

b−1∑

s=−∞

g(s)∇(f(s)) = f(b− 1)g(b) −
(

lim
t→−∞

f(t)g(t+ 1)

)
−

b−1∑

s=−∞

f(s)∆(g(s)).

THEOREM 4.2. Let (pn) be a q-classical OPS with respect to ρ(s) on x(s) such that

xk(a)xl−1(a)ρ(a) = xk(b)xl−1(b)ρ(b) = 0, ∀ k, l = 0, 1, . . . (19)

If p−1 = 0, then the sequence (Rn(ρ−1(s), x−1(s))(1)) is a q-classical OPS with respect to the
weight function ρ−1(s) = ρ(s− 1)/σ(s) on x−1(s). Furthermore, if the condition (17) holds then
the converse is also true.

The proof follows the same steps as in Theorem 4.1 taking into account the properties of ∆(m)

and the basic relations of ρm(s) and xm(s) for every integer m.

REMARK 4.3.

(i) The relation between the statements of Theorems 4.1 and 4.2 follows from

R1(ρ−1(s), x−1(s)) ◦ Rn(ρ(s), x(s)) = Rn+1(ρ−1(s), x−1(s)), n = 0, 1, 2, . . .

(ii) If the property of orthogonality

b−1∑

s=a

pn(x(s))pm(x(s))ρ(s)∇x1(s) = 0,

and the boundary conditions (17) holds, then for every integer k we get

b−k−1∑

s=a−k

(
∆(k)pn(xk(s))

)(
∆(k)pm(xk(s))

)
ρk(s)∇xk+1(s) = 0,

where if k ≥ 0
∆(−k) := Rk(ρ−k(s), x−k(s)).
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Now we can state the first main result of this paper.

THEOREM 4.3. Let (pn) be an OPS with respect to ρ(s) on the lattice x(s) defined in (14) and
let σ(s) be such that (19) holds. Then the following statements are equivalent.

1. (pn) is q-classical.

2. The sequence (∆(1)pn) is an OPS with respect to the weight function ρ1(s) = σ(s+1)ρ(s+1)
where ρ satisfies (15).

3. For every integer k, the sequence (Rn(ρk(s), xk(s))(1)) is an OPS with respect to the weight
function ρk(s) where ρ0(s) = ρ(s), ρk(s) = ρk−1(s + 1)σ(s + 1), and ρ satisfies (15).

4. (Second order linear difference equation): (pn) satisfies the following second order linear
difference equation of hypergeometric type

σ(s)
∆

∇x1(s)

∇pn(s)
∇x(s) + τ(s)

∆pn(s)

∆x(s)
+ λnpn(s) = 0, (20)

where σ̂(s) = σ(s) + 1
2τ(s)∇x1(s) and τ(s) are polynomials on x(s) of degree at most 2 and

1, respectively, and λn is a constant.

5. (pn) can be expressed in terms of the Rodrigues Operator as follows

pn(s) = BnRn(ρ(s), x(s))(1) =
Bn
ρ(s)

∇
∇x1(s)

∇
∇x2(s)

. . .
∇

∇xn(s)
(ρn(s)) , (21)

where Bn is a non zero constant.

6. (Second structure relation): There exist three sequences of complex numbers, (en), (fn), and
(gn), such that the following relation holds for every n ≥ 0, with the convention p−1 = 0,

M pn(x(s)) = en
∆pn+1(s)

∆x(s)
+ fn

∆pn(s)

∆x(s)
+ gn

∆pn−1(s)

∆x(s)
,

where M is the forward arithmetic mean operator:

M f(s) :=
f(s+ 1) + f(s)

2
,

en 6= 0, gn 6= γn for all n ≥ 0, and γn is the corresponding coefficient of the three-term
recurrence relation [24]

x(s)pn(s) = αnpn+1(s) + βnpn(s) + γnpn−1(s), n ≥ 0.

REMARK 4.4. If we consider a q-linear lattice, i.e. either c1 = 0 or c2 = 0, this result is
“equivalent” to Theorem 1.3 stated in [4], because τ(s)∇x1(s) is a polynomial on x(s) of degree
2 and xk(s) = qαkx(s) + δk, where αk, δk are independent of s for every integer k.

Assuming the theorem proved let us state and proof the second main result.

THEOREM 4.4. Under the hypothesis of Theorem 4.3 the following statements are equiva-
lent.

(i) (pn) is q-classical.

(ii) (∆(1)pn+1) is a OPS.
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Proof: Of course (i)⇒(ii) is a consequence of Theorem 4.1.
(ii)⇒(i): This proof is analogous to the proof given by W. Hahn in [15]. We know that the SPO
(pn) satisfies the TTRR

pn(x(s)) = (x(s) − an)pn−1(x(s)) − bnpn−2(x(s)), n ≥ 1,

with initial conditions p−1 = 0 and p0 = 1. Thus applying the (forward) arithmetic mean process
we get

∆(1)pn(x(s)) = M pn−1(x(s)) − bn∆
(1)pn−2(x(s)) + (αq(2)x1(s) − ãn)∆

(1)pn−1(x(s)), (22)

with ãn = an − c3(q)(1 − αq(2)).

Moreover, by hypothesis, the sequence of monic polynomials ([n]−1
q ∆(1)pn) also satisfies a

TTRR, i.e.

1

[n]q
∆(1)pn(x(s)) = (x1(s)−a′n)

1

[n − 1]q
∆(1)pn−1(x(s))−

b′n
[n− 2]q

∆(1)pn−2(x(s)), n ≥ 1. (23)

Combining (22) and (23) to eliminate ∆(1)pn−2 (resp. ∆(1)pn) we get

(
b′n

[n−2]q
− bn

[n]q

)
∆(1)pn(x(s)) =

((
αq(2)b′n
[n−2]q

− bn
[n−1]q

)
x1(s) − b′nãn

[n−2]q
+ bna

′

n

[n−1]q

)
∆(1)pn−1(x(s))

+ b′n
[n−2]q

M pn−1(x(s)),

(24)
and

1
[n]q

M pn−1(x(s)) =
(

[n]q−[n−2]q
2[n−1]q[n]q

x1(s) − a′n
[n−1]q

+ ãn

[n]q

)
∆(1)pn−1(x(s))

−
(

b′n
[n−2]q

− bn
[n]q

)
∆(1)pn−2(x(s)).

Setting n+ 1 instead of n in the above expression the following expression fulfills:

1
[n+1]q

M pn(x(s)) =

(
[n+1]q−[n−1]q

2[n]q[n+1]q
x1(s) −

a′n+1

[n]q
+ ãn+1

[n+1]q

)
∆(1)pn(x(s))

+

(
bn+1

[n+1]q
− b′n+1

[n−1]q

)
∆(1)pn−1(x(s)).

(25)

In order to simplify further calculations in this proof we denote by en := b′n
[n−2]q

− bn
[n]q

, k(x;n) =

[n+1]q−[n−1]q
2[nq][n+1]q

x− a′n+1

[n] + ãn+1

[n+1]q
and by l(x;n) =

(
αq(2)b′n
[n−2]q

− bn
[n−1]q

)
x− b′nãn

[n−2]q
+ bna

′

n

[n−1]q
.

Taking into account (24) and (25) in order to eliminate ∆(1)pn we obtain

en

[n+ 1]q
M pn(x(s)) =

b′
n

[n− 2]q
k(x1(s);n)M pn−1(x(s))+k(x1(s);n)(l(x1(s);n)−en+1en)∆(1)pn−1(x(s)).

(26)

By using (25) and (26) to eliminate pn we get

M (l(x−1(s);n)∇pn−1(x(s)))
∇x1(s)

+ b′n
[n−2]q

M ((∇x(s))M pn−1(x(s−1)))
∇x1(s)

= [n+1]qb′n
[n−2]q

∇(k(x1(s);n)M pn−1(x(s)))
∇x1(s)

+ [n+1]q
∇((l(x1(s);n)k(x1(s);n)−enen+1)∆(1)pn−1(x(s)))

∇x1(s)
.

(27)

On the other hand, combining (24) and (25) to eliminate ∆(1)pn−1 we get

b′nen+1

[n−2]q
M pn−1(x(s)) = l(x1(s);n)

[n+1]q
M pn(x(s)) − (k(x1(s);n)l(x1(s);n) − enen+1)∆

(1)pn(x(s)).

(28)
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By using the expressions (25) and (28) to eliminate pn−1 we get

1
[n+1]q

M ((∇x(s))M pn(x(s−1)))
∇x1(s)

− M (k(x−1(s);n)∇pn(x(s)))
∇x1(s)

=
[n−2]q
b′n[n+1]q

∇(l(x1(s);n)M pn(x(s)))
∇x1(s)

− [n−2]q
b′n

∇((l(x1(s);n)k(x1(s);n)−enen+1)∆(1)pn(x(s)))
∇x1(s)

.

(29)

The following result has a technical role and it will be used in to proof of this Theorem.

LEMMA 4.3. For any two polynomials π and ξ, the following relation holds:

M (π(x−1(s))∇ξ(x(s)))
∇x1(s)

= ∇(π(x1(s))M ξ(x(s)))
∇x1(s)

+ (∇(1)π(x1(s)))ξ(x(s))

= M (π(x−1(s))∇x(s))
∇x1(s)

M
∇ξ(x(s))
∇x(s) + ∇(π(x1(s))∆x(s))

∇∆(1)ξ(x(s))
∇x1(s) .

Moreover, the functions M (π(x−1(s))∇x(s))
∇x1(s)

and ∇(π(x1(s))∆x(s)) are polynomials on x(s).

The proof of this result is straightforward and we leave it as an exercise for the reader.
Therefore, using Lemma 4.3 and doing some extra calculations, we obtain that the expressions

(27) and (29) become the following two second order homogeneous linear difference equations:

φ2(x(s), n)∇(1)∆(1)pn(x(s)) + φ1(x(s), n)M
∇pn(x(s))
∇x(s) + φ0(n)pn(x(s)) = 0,

φ2(x(s), n)∇(1)∆(1)pn−1(x(s)) + φ1(x(s), n)M
∇pn−1(x(s))

∇x(s) + φ̃0(n)pn−1(x(s)) = 0,

where the indices indicate the degree of the polynomial coefficients.
Moreover, replacing n by n + 1 in the last expression we obtain the second order linear

difference equation:

φ2(x(s), n + 1)∇(1)∆(1)pn(x(s)) + φ1(x(s), n + 1)M
∇pn(x(s))
∇x(s) + φ̃0(n+ 1)pn(x(s)) = 0. (30)

So, we have two difference equations for pn which only differ in a constant factor.
Therefore pn satisfies the following two second order linear difference equations:

ϕ2(x(s))∇(1)∆(1)pn(x(s)) + ϕ1(x(s))M
∇pn(x(s))
∇x(s) + ϕ0(x(s))pn(x(s)) = 0,

ψ2(x(s))∇(1)∆(1)pn(x(s)) + ψ1(x(s))M
∇pn(x(s))
∇x(s) + ψ0(x(s))pn(x(s)) = 0,

where, again, the indices indicate the degree of the polynomial coefficients. Denoting by σ(s) :=
ϕ2(x(s)) + ϕ1(x(s))∇x1(s), ζ(s) := ψ2(x(s)) + ψ1(x(s))∇x1(s), the above expressions can be
rewritten as

σ(s)∇(1)∆(1)pn(x(s)) + ϕ1(x(s))∆
(1)pn(x(s)) + ϕ0(n)pn(x(s)) = 0,

ζ(s)∇(1)∆(1)pn(x(s)) + ψ1(x(s))∆
(1)pn(x(s)) + ψ0(n)pn(x(s)) = 0.

Notice that σ and ζ are not always polynomials on x(s).
So,

(ϕ1(x(s))ζ(s) − σ(s)ψ1(x(s)))∆
(1)pn(x(s))

+(ϕ0(n)ζ(s) − σ(s)ψ0(n))pn(x(s)) = 0.

If n > 3, we get that pn and ∆(1)pn, has a common zero but pn has not no multiple zeros. Hence,
after dividing by the common factor, the polynomial coefficients of the difference equations for
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pn+1, pn, and pn−1 are the same. Taking this into account follow the coefficients do not depend
on n, so pn(x) satisfies the second order linear difference equation

φ(x(s))∇(1)∆(1)pn(x(s)) + ψ(x(s))M
∇pn(x(s))
∇x(s) + λnpn(x(s)) = 0,

where deg φ ≤ 2, degψ ≤ 1, and λn = −[n]q(αq(n − 1)bψ + [n − 1]aφ) depends on n since pn is
a polynomial, being aφ and bψ the leading coefficients of φ and ψ, respectively.

Hence, according to the 4th condition of Theorem 4.3, (pn) is q-classical. 2

Let us prove now Theorem 4.3. From Theorem 4.1, Theorem 4.2, and its Corollary, as well
as Remark 4.3 we know that (1) → (2) → (3) → (1).

PROPOSITION 4.1. ((1)→ (4)) If (pn) is a q-classical OPS with respect to ρ(s) satisfying
the boundary relations (19) then (pn) satisfies the second order linear difference equation of
hypergeometric type (20).

Proof: By Lemma 4.2 the function R1(ρ(s), x(s))(∆
(1)pn(x(s)) is a polynomial on x(s) of degree

n. On the other hand, by Theorem 4.1 (∆(1)pn) is a q-classical OPS with respect to ρ1(s) on
x1(s). Thus, for 0 ≤ k < n,

b−1∑

s=a

Qk(x(s))R1(ρ(s), x(s))(∆
(1)pn(x(s)))ρ(s)∇x1(s)

=
b−1∑

s=a

Qk(x(s))∇(ρ1(s)∆
(1)pn(x(s)))

(18)
= Qk(x(s))σ(s)ρ(s)∆(1)pn(x(s − 1))

∣∣∣
s=b

s=a
−
b−1∑

s=a

∆(1)(pn(x(s)))∆
(1)(Qk(x(s))) ρ1(s)∇x2(s).

By hypothesis and Theorem 4.1 the last expression vanishes and, as a consequence, there exists
a non zero constant λn, independent of s, such that

R1(ρ(s), x(s))(∆
(1)pn(x(s))) = −λnpn(x(s)),

since (pn) is an OPS with respect to ρ(s) on x(s).
Finally, using that the above expression is indeed Hq (see (13)) it is clear that the above
expression (20) and hence the result holds. 2

(4)→(5): This is a well-known property. See, for instance, §3.2.2 in page 64 of [24].
(5)→(1): By setting n = 1 in the Rodrigues formula we obtain the Pearson type equation (15)
that the weight function ρ(s) satisfies.

PROPOSITION 4.2. ((6) ↔ (1)). Let (pn) be an OPS with respect to ρ(s) on the lattice x(s)
defined in (14) and let σ(s) be such that (19) holds. The sequence (pn) is q-classical if and only
if there exist sequences of complex numbers, (en), (fn), and (gn), such that the following relation
holds

M pn(x(s)) = en
∆pn+1(x(s))

∆x(s)
+ fn

∆pn(x(s))

∆x(s)
+ gn

∆pn−1(x(s))

∆x(s)
,

with the convention p−1 = 0, where en 6= 0, gn 6= γn for all n ≥ 0.

Proof: If (pn) is an OPS then it satisfies a TTRR, i.e. there exist three sequences of complex
numbers, (αn), (βn), and (γn), with γn 6= 0, such that

x(s)pn(x(s)) = αnpn+1(x(s)) + βnpn(x(s)) + γnpn−1(x(s)), n ≥ 0. (31)

If (pn) is q-classical, then (∆(1)pn+1) is an OPS, and therefore there exist sequences of complex

numbers, (α
(1)
n ), (β

(1)
n ), and (γ

(1)
n ), with γ

(1)
n 6= 0, such that

x1(s)∆
(1)pn(x(s)) = α(1)

n ∆(1)pn+1(x(s)) + β(1)
n ∆(1)pn(x(s)) + γ(1)

n ∆(1)pn−1(x(s)). (32)
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But
∆(1)(x(s)pn(x(s))) = (Mx(s))∆(1)pn(x(s)) + M pn(x(s)). (33)

So combining (31), (32), and (33) we get

M pn(x(s))=

(
αn −

[2]q
2
α(1)
n

)
∆(1)pn+1(x(s)) + β̂n∆

(1)pn(x(s)) +

(
γn −

[2]q
2
γ(1)
n

)
∆(1)pn−1(x(s)),

where

β̂n = (βn − c3) −
[2]q
2

(β(1)
n − c3).

Moreover, the coefficient of ∆(1)pn−1 is different from γn because γ
(1)
n 6= 0.

Conversely, if there exist sequences of complex numbers, (en), (fn), and (gn), such that the
following relation holds

M pn(x(s)) = en
∆pn+1(x(s))

∆x(s)
+ fn

∆pn(x(s))

∆x(s)
+ gn

∆pn−1(x(s))

∆x(s)
, n ≥ 0,

assuming p−1 = 0, then from (33) we get

[2]q
2
x1(s)∆

(1)pn(x(s)) = (αn − en)∆
(1)pn+1(x(s)) + β̂(1)

n ∆(1)pn(x(s)) + (γn − gn)∆
(1)pn−1(x(s)),

where

β̂(1)
n = βn − c3 − fn +

[2]q
2
c3.

By hypothesis gn 6= γn, hence by Favard’s Theorem (∆(1)pn+1) is an OPS, and by Hahn’s
Theorem the result holds. 2

5. The examples

5.1. The Askey-Wilson Polynomials

The Askey-Wilson polynomials, which were introduced by R. Askey and J. Wilson, are located in
the top of the q-Askey tableau [16]. These polynomials can be written as a basic hypergeometric
series

pn(x(s); a, b, c, d|q) =
(ab; q)n(ac; q)n(ad; q)n

an
4ϕ3

(
q−n, abcdqn−1, aqs, aq−s

ab, ac, ad
q; q

)
,

where a, b, c, d, ab, ac, ad, bc, bd, cd 6∈ {qm : m ∈ Z}.

REMARK 5.1. Notice that although this family does not satisfy a property of orthogonality
(7) it is orthogonal with respect the linear functional uAW which has the following integral
representation [16, (3.1.2), p. 63]

〈uAW , p〉 =

∫ 1

−1
p(x)ω̃(x)dx =

∫ 1

−1

p(x)√
1 − x2

∣∣∣∣∣
(e2iθ; q)∞

(aeiθ, beiθ, ceiθ , deiθ; q)∞

∣∣∣∣∣

2

dx, x = cos θ.

Furthermore, such a functional fulfills the distributional equation

∆(1)(σAWuAW ) = p1(x(s); a, b, c, d|q)uAW ,

and it is straightforward to check that (σAW (s), ω(s), x(s)) is q-classical, where x(s)= 1
2 (qs+q−s),

i.e. c1 = c2 = 1
2 and c3 = 0, σAW (s) = −κ2

qq
−2s+ 1

2 (qs − a)(qs − b)(qs − c)(qs − d), and hence we
can apply Theorem 4.3 to Askey-Wilson polynomials.
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These polynomials are the polynomial eigenfunctions of the linear difference operator [16, (3.1.6)]

H
AW
q =

1

∇x1(s)

(
σAW (−s) ∆

∆x(s)
− σAW (s)

∇
∇x(s)

)
.

Notice that if τAW (x(s)) = p1(x(s); a, b, c, d|q) a straightforward calculation yields to

σAW (−s) = σAW (s) + τAW (x(s))∇x1(s). (34)

Here, as before, κq = q
1
2 − q− 1

2 . With these parameters, let us consider the following function

ρAW (s) = q−2s2(a, b, c, d; q)s(a, b, c, d; q)−s,

where (a; q)0 = 1, (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1), k ≥ 1, and

(a; q)−k =
1

(1 − aq−1)(1 − aq−2) · · · (1 − aq−k)
, k ≥ 1,

LEMMA 5.1. The function ρAW (s) satisfies the Pearson-type equation

σAW (s+ 1)ρ(s + 1) = σAW (−s)ρ(s). (35)

Proof:

ρAW (s+ 1)

ρAW (s)
=

q−2(s+1)2

q−2s2
(a, b, c, d; q)s+1(a, b, c, d; q)−s−1

(a, b, c, d; q)s(a, b, c, d; q)−s

=
q−4s−2(1 − aqs)(1 − bqs)(1 − cqs)(1 − dqs)

(1 − aq−s−1)(1 − bq−s−1)(1 − cq−s−1)(1 − dq−s−1)

=
q2s(q−s − a)(q−s − b)(q−s − c)(q−s − d)

q−2s−2(qs+1 − a)(qs+1 − b)(qs+1 − c)(qs+1 − d)
=

σAW (−s)
σAW (s+ 1).

2

Notice that from (34), the equation (35) becomes the Pearson-type equation (15).
Taking into account that ρn(s) = ρn−1(s + 1)σ(s + 1), n ≥ 1, with ρ0(s) = ρ(s), a straight-

forward calculation gives

ρAWn (s) = κ2n
q q

−2s2−2sn−n2+ 3
2
n(a, b, c, d; q)s+n(a, b, c, d; q)−s.

Then the Askey-Wilson polynomials can be written for every nonnegative integer n as

pn(x(s); a, b, c, d|q) =
Bnκ

2n
q q

2s2

(a, b, c, d; q)s(a, b, c, d; q)−s
∇(n) (a, b, c, d; q)s+n(a, b, c, d; q)−s

q2s
2+2sn+n2− 3

2
n

,

where Bn = 2−nκ−nq q
n(3n−5)

4 .
Furthermore, since this family fulfills the following difference relation [16, (3.1.8)]

∆(1)pn(x(s); a, b, c, d|q) = 2[n]q(1 − abcdqn−1)pn−1(x1(s); aq
1
2 , bq

1
2 , cq

1
2 , dq

1
2 |q),

and the coefficients of the second structure relation are

en =
2[n]q(1 − abcdqn−1)2 − [2]q[n+ 1]q(1 − abcdqn)2

4[n]q(1 − abcdqn−1)(1 − abcdq2n−1)(1 − abcdq2n)
,

fn =
1 − q

4
(a− a−1q−1) − 1

2

(
An(a, b, c, d|q) + Cn(a, b, c, d|q)

− [2]q
2

(An−1(aq
1
2 , bq

1
2 , cq

1
2 , dq

1
2 |q) +Cn−1(aq

1
2 , bq

1
2 , cq

1
2 , dq

1
2 |q))

)
,

gn =
(1 − abcdq[n−2]q)(1 − abcdq2n−2)(1 − abcdq2n−1)

4[n]q(1 − abcdqn−1)2

(
2[n]q(An−1Cn)(a, b, c, d|q)

(1 − abcdq[n−2]q)2

−
[2]q[n− 1]q(A[n−2]qCn−1)(aq

1
2 , bq

1
2 , cq

1
2 , dq

1
2 |q)

(1 − abcdqn−1)2


 .
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REMARK 5.2. Notice that in [19] T.H. Koornwinder has obtained a different explicit structure
relation for Askey-Wilson polynomials by using the difference operator theory.

5.2. The q-Racah polynomials

We consider the q-Racah polynomials uα,βn (x(s), a, b)q on the lattice

x(s) = [s]q[s+ 1]q = q
1
2κ−2

q qs + q−
1
2κ−2

q q−s − [2]qκ
−2
q .

They were introduced in [20, 24] and deeply studied in [6]. These polynomials can be written in
terms of a basic hypergeometric series [6] as follows

uα,βn (x(s), a, b)q = Dn 4ϕ3

(
q−n, qα+β+n+1, qa−s, qa+s+1

qa−b+1, qβ+1, qa+b+α+1

∣∣∣∣ q , q
)
,

where

Dn =
q−

n
2
(2a+α+β+n+1)(qa−b+1; q)n(q

β+1; q)n(q
a+b+α+1; q)n

κ2n
q (q; q)n

.

Observe that from the above formulas the polynomials uα,βn (x(s), a, b)q are multiples of the
standard q-Racah polynomials Rn(µ(qb+s); qα, qβ , qa−b, q−a−b|q).

These polynomials are the polynomial eigenfunctions of the second order homogeneous linear
difference hypergeometric operator

H
qR
q =

1

∇x1(s)

(
σqR(−s− 1)

∆

∆x(s)
− σqR(s)

∇
∇x(s)

)
,

where

σqR(s) = − q−2s

κ4
qq

α+β

2

(qs−qa)(qs−q−b)(qs−qβ−a)(qs−qb+α) = [s−a]q[s+b]q[s+a−β]q[b+α−s]q.

Furthermore, taking into account the q-difference relation

∆(1)uα,βn (x(s), a, b)q = [α+ β + n+ 1]qu
α+1,β+1
n−1 (x1(s), a+ 1

2 , b− 1
2)q.

The coefficients for the second structure relation are

en =
2[n+ α+ β + 1]q − [2]q[n+ α+ β + 2]q

2[2n + α+ β + 1]q[2n + α+ β + 2]q
[n+ 1]q,

fn = βn(a, b, α, β) − [2]q
2
βn(a+ 1

2 , b− 1
2 , α+ 1, β + 1),

gn =
[a+ b+ α+ n]q[a+ b− β − n]q[α+ n]q[β + n]q[b− a+ α+ β + n]q[b− a− n]q

2[α + β + 2n]q[α+ β + 2n+ 1]q[n+ α+ β + 1]q

×(2[n+ α+ β + 1]q − [2]q[n+ α+ β]q).

5.3. The q-Meixner polynomials

This family of q-polynomials has the following representation as a basic hypergeometric series

Mn(x; b, c; q) =
(bq; q)n(−c)n

qn2 2ϕ1

(
q−n, x
bq

∣∣∣∣ q;−
qn+1

c

)
, x(s) = q−s ≡ x.



18 R. S. Costas-Santos and F. Marcellán

They are the polynomial eigenfunctions of the linear difference operator of hypergeometric type
[16, (3.13.5)]

H
qM
q =

1

∇x1(s)

(
(x− 1)(x+ bc)

∆

∆x(s)
− q−1c(x− bq)

∇
∇x(s)

)
,

In this case

en = 1 − [2]q[n+ 1]q
2[n]q

q−
1
2 ,

fn =
1 − q

2
+
q−2n−1

2
(c− cbqn+1)(2 − q − q2) +

q−2n

2
(c+ qn)(2 − q − q2 + qn − qn−1),

gn =
cq−4n+1(1 − bqn)(c + qn)

2[n]q
(2[n]q(1 − qn) − (q + q2)[n − 1]q(1 − qn−1)).

5.4. The Al-Salam & Carlitz polynomials I and II

The Al-Salam & Carlitz polynomials I (and II) appear in certain models of q-harmonic oscillator,
see e.g. [8, 9, 10, 23]. They are polynomials orthogonal on the q-linear lattice x(s) = qs ≡ x,
defined [16] by

U (a)
n (x; q) = (−a)nq(

n

2) 2ϕ1

(
q−n, x−1

q;
qx

a0

)
.

These polynomials are the polynomial eigenfunctions of the linear difference operator of hyper-
geometric type [16, (3.24.5)]

H
ACI
q =

1

∇x1(s)

(
a

∆

∆x(s)
− (x− 1)(x − a)

∇
∇x(s)

)
,

In this case [16, (3.24.7)] ∆(1)U
(a)
n (x; q) = q

n−1
2 [n]qU

(a)
n−1(x; q), so the second structure relation

coefficients are

en = 1 − (1 + q)[n+ 1]q
2q[n]q

, fn = (1 + a)qn
(

1 − [2]q
2
q−

3
2

)
,

gn =
aqn−

5
2

2[n]q

(
2[n]q

3
2 (qn − 1) − [2]q[n− 1]q(q

n−1 − 1)

)
.

Taking into account that [16, p. 115]

V (a)
n (x; q) = U (a)

n (x; q−1),

all the information related to the Al-Salam & Carlitz polynomials II can be deduced from the
information for the Al-Salam & Carlitz polynomials I in a simple way by changing q to q−1.
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