The characterization theorems and the Rodrigues operator. A general approach

R.S. Costas-Santos

Work supported by DGES grant BFM 2003-06335-C03

Universidad Carlos III de Madrid

Almería, August 31, 2006

A general difference calculus approach of COP

Menu

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

- . Overview of Classical orthogonal polynomials
- 2. Connection with Operator Theory. The Rodrigues operator
- 3. More general Hahn Theorem
- 4. New characterization Theorem for q-polynomials
- 5. Overview of Semiclassical orthogonal polynomials
- A generalization of semiclassical OP. The quasi-semiclassical OP
- 7. An example: The N-Askey-Wilson Polynomials

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

PART I

PART I

First ingredients: The Classical Orthogonal Polynomials

• The definition

• q-Polynomials

 \bullet Standard and Δ

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

First ingredients: The Classical Orthogonal Polynomials

The definition

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

- The definition
- q-Polynomials
- \bullet Standard and Δ

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

Definition 1 The sequence $\{P_n\}_{n\geq 0}$ is said to be a q-classical **OPS** on the lattice x(s) if satisfies the orthogonality conditions $\sum_{s=a}^{b-1} P_n(s)P_m(s)\rho(s)\nabla x_1(s) = d_n^2\delta_{n,m}, \ \Delta s = 1, \ n, m = 0, 1, \dots$

where

(i) $\rho(s)$ is a solution of the *q*-Pearson equation $\Delta[\sigma(s)\rho(s)] = \tau(s)\rho(s)\nabla x_1(s).$

(ii) $\sigma(s) + \frac{1}{2}\tau(s)\nabla x_1(s)$ is a polynomial on x(s) of degree, at most, 2.

(iii) $\tau(s)$ is a polynomial on x(s) of degree 1.

 $[s]_q := \frac{q^{\bar{2}}}{2}$

q-numbers

$$\frac{\overline{2}}{\overline{1}}, \quad q \in \mathbb{C}, |q| \neq 1.$$

A general difference calculus approach of COP

$q\text{-}\mathbf{Polynomials}$

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

- The definition
- q-Polynomials
- \bullet Standard and Δ

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

1. q-classical orthogonal polynomials (or q-Polynomials)

$$\mathfrak{H}_{q} = \sigma(s) \frac{\Delta}{\nabla x_{1}(s)} \frac{\nabla}{\nabla x(s)} + \tau(s) \frac{\Delta}{\Delta x(s)}, x_{k}(s) = x(s + \frac{k}{2}),$$

$$\mathfrak{S}(s) := \tilde{\sigma}(x(s)) - \frac{1}{2} \tilde{\tau}(x(s)) \nabla x_{1}(s), \tau(s) = \tilde{\tau}(x(s)),$$

$$\mathfrak{S}(s) = \sigma(s) \rho(s) = \tau(s) \rho(s) \nabla x_{1}(s),$$

$$\mathfrak{S}(s) = c_{1}q^{s} + c_{2}q^{-s} + c_{3}.$$

Polynomial eigenfunctions of \mathfrak{H}_q

$$P_n(s)_q := \left[\frac{B_n \nabla \rho_1(s)}{\rho_0(s) \nabla x_1(s)}\right] \left[\frac{\nabla \rho_2(s)}{\rho_1(s) \nabla x_2(s)}\right] \cdots \left[\frac{\nabla \rho_n(s)}{\rho_{n-1}(s) \nabla x_{n-1}(s)}\right],$$

Symmetric form of \mathfrak{H}_q

$$\mathfrak{H}_q = \left[\frac{1}{\rho(s)} \frac{\nabla}{\nabla x_1(s)} \rho_1(s)\right] \frac{\Delta}{\Delta x(s)}$$

A general difference calculus approach of COP

Standard and Δ

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

- The definition
- q-Polynomials
- \bullet Standard and Δ

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

1. Standard classical orthogonal polynomials (Hermite, Laguerre, Jacobi)

> $\mathfrak{H} := \tilde{\sigma}(x) \frac{d^2}{dx^2} + \tilde{\tau}(x) \frac{d}{dx}, \qquad \lambda_n = n \tilde{\tau}' + n(n-1) \frac{\tilde{\sigma}''}{2}.$

2. Δ -classical orthogonal polynomials (Hahn, Meixner, Kravchuk, Charlier, etc)

$$\mathfrak{H}_{\Delta} := \sigma(s)\Delta \nabla + \tau(s)\Delta, \qquad \lambda_n = n\tilde{\tau}' + n(n-1)\frac{\tilde{\sigma}''}{2}.$$

$$\sigma(x) := \tilde{\sigma}(x) - \frac{1}{2}\tilde{\tau}(x), \quad \tau(s) = \tilde{\tau}(x),$$

$$\Delta[\sigma(s)\rho(s)] = \tau(s)\rho(s),$$

$$\Delta f(s) = f(s+1) - f(s), \quad \nabla f(s) = f(s) - f(s-1),$$

> $\frac{d}{dx}[\tilde{\sigma}(x)\rho(x)] = \tilde{\tau}(x)\rho(x).$

Standard and Δ

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

- The definition
- q-Polynomials
- \bullet Standard and Δ

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

1. Standard classical orthogonal polynomials (Hermite, Laguerre, Jacobi)

> $\mathfrak{H} := \tilde{\sigma}(x) \frac{d^2}{dx^2} + \tilde{\tau}(x) \frac{d}{dx}, \qquad \lambda_n = n \tilde{\tau}' + n(n-1) \frac{\tilde{\sigma}''}{2}.$ > $\frac{d}{dx} [\tilde{\sigma}(x) \rho(x)] = \tilde{\tau}(x) \rho(x).$

2. Δ -classical orthogonal polynomials (Hahn, Meixner, Kravchuk, Charlier, etc)

$$> \mathfrak{H}_{\Delta} := \sigma(s)\Delta \nabla + \tau(s)\Delta, \qquad \lambda_n = n\tilde{\tau}' + n(n-1)\frac{\tilde{\sigma}''}{2}.$$

$$> \sigma(x) := \tilde{\sigma}(x) - \frac{1}{2}\tilde{\tau}(x), \tau(s) = \tilde{\tau}(x),$$

$$> \Delta[\sigma(s)\rho(s)] = \tau(s)\rho(s),$$

$$> \Delta f(s) = f(s+1) - f(s), \nabla f(s) = f(s) - f(s-1),$$

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with

Operator Theory

- The Rodrigues Operator
- A very important result
- Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

One foretaste: Connection with Operator Theory

The Rodrigues Operator

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with

Operator Theory

- The Rodrigues Operator
- A very important result
- Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

Definition 2 Given functions σ and ρ , where ρ is supported on Ω , and a lattice x(s), we define the *k*-th Rodrigues operator associated with ($\sigma(s)$, $\rho(s)$, x(s)) as

$$R_0(\sigma, \rho, x) := I, \ R_1(\sigma, \rho, x) := \frac{\nabla}{\rho(s)\nabla x_1(s)} \ \rho_1(s),$$

 $R_k(\sigma, \rho, x) := R_1(\sigma(s), \rho(s), x(s)) \circ R_{k-1}(\sigma(s), \rho_1(s), x_1(s)),$

where $\rho_1(s) = \sigma(s+1)\rho(s+1)$ and I is the identity operator.

The Rodrigues Operator

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with

Operator Theory

- The Rodrigues Operator
- A very important result
- Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

Definition 2 Given functions σ and ρ , where ρ is supported on Ω , and a lattice x(s), we define the *k*-th Rodrigues operator associated with ($\sigma(s)$, $\rho(s)$, x(s)) as

$$R_0(\sigma,\rho,x) := I, \ R_1(\sigma,\rho,x) := \frac{\nabla}{\rho(s)\nabla x_1(s)} \ \rho_1(s),$$

 $R_k(\sigma, \rho, x) := R_1(\sigma(s), \rho(s), x(s)) \circ R_{k-1}(\sigma(s), \rho_1(s), x_1(s)),$

where $\rho_1(s) = \sigma(s+1)\rho(s+1)$ and I is the identity operator.

Standard COP:
$$R_1(\sigma, \rho) := \frac{1}{\rho(x)} \frac{d}{dx} \rho_1(x), \rho_1(x) := \rho(x) \tilde{\sigma}(x).$$

$$\Delta \text{-COP: } R_1(\sigma, \rho) := \frac{\nabla}{\rho(s)} \rho_1(s), \ \rho_1(s) := \rho(s+1)\sigma(s+1).$$

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste:

Connection with

Operator Theory

• The Rodrigues Operator

• A very important result

Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

Theorem 1 If (σ, ρ, x) is a q-classical tern, then for every integer k, if $\pi \in \mathbb{P}_m[x_{k+1}]$,

$$R_1(\sigma, \rho_k, x_k)[\pi] = \widetilde{\pi} \in \mathbb{P}_{m+1}[x_k].$$

If π monic, the leading coefficient of $\widetilde{\pi}$ is

$$-\lambda_{m+1+2k}/[m+1+2k].$$

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste:

Connection with

Operator Theory

• The Rodrigues Operator

• A very important result

• Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

Theorem 1 If (σ, ρ, x) is a q-classical tern, then for every integer k, if $\pi \in \mathbb{P}_m[x_{k+1}]$,

$$R_1(\sigma, \rho_k, x_k)[\pi] = \widetilde{\pi} \in \mathbb{P}_{m+1}[x_k].$$

If π monic, the leading coefficient of $\widetilde{\pi}$ is

$$-\lambda_{m+1+2k}/[m+1+2k].$$

Theorem 2

$$\{P_n\}_{n\geq 0}$$
 is q-classical $\iff \left\{\frac{\Delta P_{n+1}}{\Delta x(s)}\right\}_{n\geq 0}$ is q-classical.

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste:

Connection with

Operator Theory

• The Rodrigues Operator

• A very important result

• Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

Theorem 1 If (σ, ρ, x) is a q-classical tern, then for every integer k, if $\pi \in \mathbb{P}_m[x_{k+1}]$,

$$R_1(\sigma, \rho_k, x_k)[\pi] = \widetilde{\pi} \in \mathbb{P}_{m+1}[x_k].$$

If π monic, the leading coefficient of $\widetilde{\pi}$ is

$$-\lambda_{m+1+2k}/[m+1+2k].$$

Theorem 2

$$\{P_n\}_{n\geq 0} \text{ is } q \text{-classical } \iff \left\{\frac{\Delta P_{n+1}}{\Delta x(s)}\right\}_{n\geq 0} \text{ is } q \text{-classical.}$$

$$\mathbf{Theorem 3} \{P_n\}_{n\geq 0} \text{ is } q \text{-classical } \iff \{R_n(\sigma, \rho_{-1}, x_{-1})[1]\}_{n\geq 0} \text{ is } q \text{-classical.}$$

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste:

Connection with

Operator Theory

• The Rodrigues Operator

• A very important result

• Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

Theorem 1 If (σ, ρ, x) is a q-classical tern, then for every integer k, if $\pi \in \mathbb{P}_m[x_{k+1}]$,

$$R_1(\sigma, \rho_k, x_k)[\pi] = \widetilde{\pi} \in \mathbb{P}_{m+1}[x_k].$$

If π monic, the leading coefficient of $\widetilde{\pi}$ is

$$-\lambda_{m+1+2k}/[m+1+2k].$$

Theorem 2

$$\{P_n\}_{n\geq 0} \text{ is } q \text{-classical } \iff \left\{\frac{\Delta P_{n+1}}{\Delta x(s)}\right\}_{n\geq 0} \text{ is } q \text{-classical.}$$

$$\text{Theorem 3 } \{P_n\}_{n\geq 0} \text{ is } q \text{-classical } \iff \{R_n(\sigma, \rho_{-1}, x_{-1})[1]\}_{n\geq 0} \text{ is } q \text{-classical.}$$

 $R_{n+1}(\sigma, \rho_{-1}, x_{-1}) = R_1(\sigma, \rho_{-1}, x_{-1}) \circ R_n(\sigma, \rho, x).$

Some well-known result

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with

- **Operator Theory**
- The Rodrigues Operator
- A very important result

• Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

1. $R_1(\sigma, \rho, x)[1] = \tau(s)$. *q*-Pearson equation. 2. For every integers, $n, k, n \ge \max\{k, 0\}$, there exists a constant, $C_{n,k}$ such that

$$\Delta^{(k)} P_n(s)_q = C_{n,k} R_{n-k}(\sigma, \rho_k, x_k) [1],$$

Where $x_k(s) := x(s + \frac{k}{2})$, $\rho_k(s) := \rho_{k-1}(s+1)\sigma(s+1)$, being $\rho_0 \equiv \rho$, and

$$\Delta^{(k)} := \begin{cases} \frac{\Delta}{\Delta x_{k-1}} \frac{\Delta}{\Delta x_{k-2}} \cdots \frac{\Delta}{\Delta x}, & \text{if } k \ge 1, \\ R_k(\sigma, \rho_k, x_k), & \text{if } k \le 0. \end{cases}$$

Some well-known result

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste:

- Connection with
- **Operator Theory**
- The Rodrigues Operator
- A very important result

• Some well-known result

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

A general difference calculus approach of COP

1. $R_1(\sigma, \rho, x)[1] = \tau(s)$. 2. For every integers, $n, k, n \ge \max\{k, 0\}$, there exists a constant, $C_{n,k}$ such that

$$\Delta^{(k)}P_n(s)_q = C_{n,k}R_{n-k}(\sigma,\rho_k,x_k)[1]$$

Where $x_k(s) := x(s + \frac{k}{2})$, $\rho_k(s) := \rho_{k-1}(s+1)\sigma(s+1)$, being $\rho_0 \equiv \rho$, and

$$\Delta^{(k)} := \begin{cases} \frac{\Delta}{\Delta x_{k-1}} \frac{\Delta}{\Delta x_{k-2}} \cdots \frac{\Delta}{\Delta x}, & \text{if } k \ge 1, \\ R_k(\sigma, \rho_k, x_k), & \text{if } k \le 0. \end{cases}$$

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

- New Hahn's Theorem
- New characterization Theorem for *q*-polynomials

New characterization
 Theorem for

q-polynomials (cont.)

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The Chef's Special: The Main Results

New Hahn's Theorem

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

- New Hahn's Theorem
- New characterization
- Theorem for
- q-polynomials
- New characterization

Theorem for *q*-polynomials (cont.)

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

Theorem 4 Let $\{P_n\}_{n\geq 0}$ be an OPS with respect to $\rho(s)$ such that is complete as orthonormal set in $\ell^2([a, b], \langle ., . \rangle_{\rho})$. The following statements are equivalent.

(i) $\{P_n\}_{n\geq 0}$ is q-classical and the following boundary conditions hold

$$x^{k}(s)x_{-1}(s)^{l}\sigma(s)\rho(s)\Big|_{s=a}^{s=b} = 0, \quad k, l = 0, 1, \dots (*)$$

(ii) $\{\Delta^{(1)}P_{n+1}\}_{n\geq 0}$ is an OPS with respect to $\widetilde{\rho}(s)$ and the following boundary conditions hold

$$x^{k}(s)x_{-1}(s)^{l}\widetilde{\rho}(s-1)\Big|_{s=a}^{s=b} = 0, \quad k, l = 0, 1, \dots$$

New characterization Theorem for *q*-polynomials

Menú

PART I

First ingredients: The **Classical Orthogonal** Polynomials

One foretaste: Connection with **Operator Theory**

The Chef's Special: The Main Results

- New Hahn's Theorem
- New characterization
- Theorem for
- *q*-polynomials
- New characterization Theorem for q-polynomials (cont.)

PART II

The late ingredients: The Semiclassical **Orthogonal Polynomials**

Another foretaste: Connection with Operator Theory...again

The q-semiclassical quasi-orthogonal polynomials

Theorem 5 Let $\{P_n\}_{n>0}$ be an OPS with respect to $\rho(s)$ on the lattice x(s) and let $\sigma(s)$ be such that boundary condition (*) holds. Then the following statements are equivalent:

- 1. $\{P_n\}_{n>0}$ is a q-classical OPS.
- 2. The sequence $\{\Delta^{(1)}P_n\}_{n\geq 0}$ is an OPS with respect to $\rho_1(s)$ where ρ satisfies the last q-Pearson equation.
- For every integer k, the sequence $\{R_n(\rho_k(s), x_k(s))[1]\}_{n\geq 0}$ is 3. an OPS with respect to the weight function $\rho_k(s)$ where $\rho_0(s) = \rho(s), \rho_k(s) = \rho_{k-1}(s+1)\sigma(s+1)$ and ρ satisfies last q-Pearson equation.
- 4. (Second order difference equation):

Abgesseral difference calculus approach of COP

New characterization Theorem for q-polynomials (cont.)

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste:

Connection with

Operator Theory

The Chef's Special: The Main Results

- New Hahn's Theorem
- New characterization

Theorem for

q-polynomials

New characterization

Theorem for

q-polynomials (cont.)

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

5. $\{P_n\}_{n\geq 0}$ can be expressed in terms of the Rodrigues operator $P_n(s) = B_n R_n(\rho(s), x(s))[1] = \frac{B_n}{\rho(s)} \frac{\nabla}{\nabla x_1(s)} \cdots \frac{\nabla[\rho_n(s)]}{\nabla x_n(s)},$

6. (First structure relation):

 $\phi(x_1(s))\frac{\Delta P_n(s)}{\Delta x(s)} = a_n M P_{n+1}(s) + b_n M P_n(s) + c_n M P_{n-1}(s) + j_n x_1(s) M P_n(s).$

7. (Second structure relation):

$$MP_n(s) := \frac{P_n(s+1) + P_n(s)}{2} = e_n \frac{\Delta P_{n+1}(s)}{\Delta x(s)} + f_n \frac{\Delta P_n(s)}{\Delta x(s)} + g_n \frac{\Delta P_{n-1}(s)}{\Delta x(s)},$$

where $e_n \neq 0$, $g_n \neq \gamma_n$ for all $n \ge 0$, and γ_n is the corresponding coefficient of the following three-term recurrence relation $x(s)P_n(s) = \alpha_n P_{n+1}(s) + \beta_n P_n(s) + \gamma_n P_{n-1}(s)$.

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

PART II

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

The definitions
q-semiclassical orthogonal polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

The late ingredients: The Semiclassical Orthogonal Polynomials

The definitions

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

 The definitions
 q-semiclassical orthogonal polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

Definition 3 The sequence $\{P_n\}_{n\geq 0}$ is said to be a *q*-semiclassical OPS on the lattice x(s) if there exists $\mathbf{u} \in \mathbb{P}'$ such that $\langle \mathbf{u}, P_n P_m \rangle = d_n^2 \delta_{n,m}, \ n, m = 0, 1, \dots$

where

- (i) **u** is a solution of the distributional equation $\frac{\Delta}{\nabla x_1(s)}[\phi \mathbf{x}] = \psi \mathbf{x}$.
- (ii) $\widehat{\phi}(s) := \phi(s) + \frac{1}{2}\psi(s)\nabla x_1(s)$ is a polynomial on x(s) of degree $p \ge 0$.
- (iii) ψ is a polynomial on x(s) of degree, $t \ge 1$. $(\widehat{\phi}, \psi)$ is an Admisible pair if $t \ne p-1$, or if t=p-1 and

$$\frac{q^{\frac{m}{2}} + q^{-\frac{m}{2}}}{2}b_t + [m]_q a_p \neq 0, \quad m \in \mathbb{N}_0.$$

 n_0 -singularity, order and a_0 of \mathbf{u} .

A general difference calculus approach of COP

q-semiclassical orthogonal polynomials

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

The definitions
q-semiclassical
orthogonal polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

$$\phi(s) \frac{\Delta}{\nabla x_1(s)} \frac{\nabla P_n(s)}{\nabla x(s)} + \psi(s) \frac{\Delta P_n(s)}{\Delta x(s)} = \sum_{j=n-\sigma}^{n+t} \lambda_{n,j} P_j(s),$$

$$\frac{\Delta}{\nabla x_1(s)} [\phi \mathbf{u}] = \psi \mathbf{u},$$

$$x(s) = c_1 q^s + c_2 q^{-s} + c_3,$$

where

$$\sigma := \max\{t - 1, p - 2\} \quad \text{order of } \mathbf{u}$$

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again • The Rodrigues

Operator

• A very important result

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

Another foretaste: Connection with Operator Theory...again

The Rodrigues Operator

• Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

• The Rodrigues Operator

• A very important result

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

Definition 4 Given a function ϕ and $\mathbf{u} \in \mathbb{P}'$, and a lattice x(s), we define the *k*-th Rodrigues operator associated with ($\phi(s)$, \mathbf{u} , x(s)) as follows: $R_k : \mathbb{P}[x_{k+1}] \mapsto \mathbb{P}[x]$

$$R_1(\phi, \rho, x)[f] := g \iff \frac{\Delta}{\nabla x_1(s)}[f\phi \mathbf{u}] = g\mathbf{u},$$
$$R_k(\phi, \mathbf{u}, x) := R_1(\phi, \mathbf{u}, x) \circ R_{k-1}(\phi, \mathbf{u}_1, x_1),$$

where

$$\langle \mathbf{u}_k, P(s) \rangle := \langle \mathbf{u}_{k-1}, \phi P(s-1) \rangle, \quad k = 1, 2, \dots$$

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with

Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again • The Rodrigues

Operator

• A very important result

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

Theorem 6 If (σ, ρ, x) is a *q*-semiclassical tern, then for every integer k, if $\pi \in \mathbb{P}_m[x_{k+1}]$,

 $R_1(\sigma, \rho_k, x_k)[\pi] = \widetilde{\pi} \in \mathbb{P}_{m+1}[x_k].$

If π monic, the leading coefficient of $\widetilde{\pi}$ is

$$\frac{q^{m+(\sigma+2)k}+q^{-m-(\sigma+2)k}}{2}b_r + [m+(\sigma+2)k]_q a_p.$$

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with

Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

• The Rodrigues Operator

• A very important result

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

Theorem 6 If (σ, ρ, x) is a *q*-semiclassical tern, then for every integer k, if $\pi \in \mathbb{P}_m[x_{k+1}]$,

$$R_1(\sigma, \rho_k, x_k)[\pi] = \widetilde{\pi} \in \mathbb{P}_{m+1}[x_k].$$

If π monic, the leading coefficient of $\widetilde{\pi}$ is

$$\frac{q^{m+(\sigma+2)k}+q^{-m-(\sigma+2)k}}{2}b_r + [m+(\sigma+2)k]_q a_p.$$

Remark 1

 $\{P_n\}_{n\geq 0}$ is q-semiclassical $\Leftrightarrow \left\{\frac{\Delta P_{n+1}}{\Delta x(s)}\right\}_{n\geq 0}$ is q-semiclassical.

Remark 2

 $\{P_n\}_{n\geq 0}$ is $q\text{-semiclassical} \Leftrightarrow \{R_n(\phi,\mathbf{u},x_{-1})[1]\}_{n\geq 0}$ is q-semiclassical.

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

- The definition
- New characterization Theorem for
- q-semiclassical
- quasi-orthogonal

polynomials

New characterization

Theorem for q-SQOP

Aogeneral difference calculus approach of COP

The *q*-semiclassical quasi-orthogonal polynomials

The definition

• Menu

PART

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The definition
 New characterization
 Theorem for

q-semiclassical

quasi-orthogonal

polynomials

• New characterization Theorem for α -SQOP **Definition 5** Given $\mathbf{u} \in \mathbb{P}'$, the sequence of polynomials $\{P_n\}_{n\geq 0}$ is said to be quasi-orthogonal with respect \mathbf{u} of order σ if

 $\langle \mathbf{u}, P_n P_m \rangle = 0, \quad |n - m| \ge \sigma + 1, \\ \langle \mathbf{u}, P_n P_m \rangle \neq 0, \quad |n - m| = \sigma.$

Definition 6 A sequence of polynomials $\{P_n\}_{n\geq 0}$ is a sequence of q-semiclassical quasi-orthogonal polynomials (SQOPS) with respect \mathbf{u} of order σ if \mathbf{u} is a q-linear semiclassical functional and satisfies the last quasi-orthogonality relations.

Theorem 7 Let $\{P_n\}_{n\geq 0}$ be a SQOPS orthogonal with respect to $\mathbf{u} \in \mathbb{P}'$ such that is complete as orthonormal set in $\ell^2([a, b], \mathbf{u})$. The following statements are equivalent.

(i) $\{P_n\}_{n\geq 0}$ is q-quasi-orthogonal semiclassical. (ii) $\{\Delta^{(1)}P_{n+1}\}_{n\geq 0}$ is a QOPS.

New characterization Theorem for q-semiclassical quasiorthogonal polynomials

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

- The definition
- New characterization Theorem for
- q-semiclassical
- quasi-orthogonal

polynomials

New characterization

Theorem for *q*-SQOP Acogeneral difference calculus approach of COP

Theorem 8 Let $\{P_n\}_{n\geq 0}$ be a PS quasi-orthogonal with respect to $\mathbf{u} \in \mathbb{P}'$ on the lattice x(s) and let ϕ be such some boundary condition hold. Then the following statements are equivalent:

- 1. $\{P_n\}_{n\geq 0}$ is a *q*-SQOPS.
- 2. The sequence $\{\Delta^{(1)}P_n\}_{n\geq 0}$ is a SQOPS with respect to \mathbf{u}_1 where \mathbf{u} satisfies the last distributional equation.
- 3. For every integer k, the sequence $\{R_n(\phi, \mathbf{u}_k, x_k)[1]\}_{n \ge 0}$ is a SQOPS with respect to \mathbf{u}_k where \mathbf{u} satisfies last distributional equation.

New characterization Theorem for q-SQOP (cont.)

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

- The definition
- New characterization
 Theorem for
- q-semiclassical
- quasi-orthogonal

polynomials

New characterization

Theorem for q-SQOP

kogeneral difference calculus approach of COP

4. (Second order difference equation):

$$\phi(s)\frac{\Delta}{\nabla x_1(s)}\frac{\nabla P_n(s)}{\nabla x(s)} + \psi(s)\frac{\Delta P_n(s)}{\Delta x(s)} = \sum_{j=n-\sigma_1}^{n+\sigma_0} \Lambda_{j,n}P_j(s),$$

where σ_i , i = 0, 1, is the order of quasi-orthogonality of P_n and $\Delta P_n(s)/\Delta x(s)$, respectively.

5. $\{P_n\}_{n\geq 0}$ can be expressed in terms of the Rodrigues operator.

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

• The *N*-Askey-Wilson polynomials

• The coffee: Relevant references

• Thanks

The dessert

The N-Askey-Wilson polynomials

M	er	าน	

PART /

First/ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical **Orthogonal Polynomials**

Another foretaste: Connection with Operator Theory...again

The q-semiclassical quasi-orthogonal polynomials

The dessert

• The N-Askey-Wilson polynomials

• The coffee: Relevant references

• Thanks

See attached file.

The coffee: Relevant references

Menu

PART I

First ingredients: The Classical Orthogonal Polynomials

One foretaste: Connection with Operator Theory

The Chef's Special: The Main Results

PART II

The late ingredients: The Semiclassical Orthogonal Polynomials

Another foretaste: Connection with Operator Theory...again

The *q*-semiclassical quasi-orthogonal polynomials

The dessert

 \bullet The $N\mbox{-}\mbox{Askey-Wilson}$ polynomials

• The coffee: Relevant references

Thanks

- [1] W. Al-Salam and T. S. Chihara. Another characterization of the classical orthogonal polynomials. SIAM J. Math. Anal. 3 (1972) 65-70
- [2] M. Alfaro and R. Álvarez-Nodarse. A characterization of the classical orthogonal discrete and q-polynomials. J. Comput.
 Appl. Math. (2006). In press
- [3] R. Álvarez-Nodarse. On characterization of classical polynomials. J. Comput. Appl. Math. **196** (2006) 320-337
- [4] R. Koekoek and R. F. Swarttouw. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, volume 98-17. Reports of the Faculty of Technical Mathematics and Informatics. Delft, The Netherlands, 1998.

[5] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov. Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Press, Springer-Verlag, Berlin, 1991

A general difference calculus approach of COP

