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Definition 5 Given u € I/, the sequence of polynomials { P, },,>0
IS said to be quasi-orthogonal with respect u of order o if

<11, Pan> — 07
(u, P, Pp) # 0,

n—m|>o+1,
n —m|=o0.

Definition 6 A sequence of polynomials { P, },,>0 is a sequence of
g-semiclassical quasi-orthogonal polynomials (SQOPS) with respect
u of order o if u is a g-linear semiclassical functional and satisfies
the last quasi-orthogonality relations.

Theorem 7 Let { P,, },>0 be a SQOPS orthogonal with respect to

u € [P such that is complete as orthonormal set in £2([a, b], u).
The following statements are equivalent.

(i) {Pn}n>0is g-quasi-orthogonal semiclassical.
i) {AWP, 1},>0isa QOPS.
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Theorem 8 Let { P, },,>0 be a PS quasi-orthogonal with respect to
u € P on the lattice x(s) and let ¢ be such some boundary
condition hold. Then the following statements are equivalent:

1.

2.

{Pn}nZO Is a g-SQOPS.

The sequence {A(l)Pn}nZO is a SQOPS with respect to u;

where u satisfies the last distributional equation.

For every integer k, the sequence { R, (¢, ug, zx)[1]}n>0 is a
SQOPS with respect to ui where u satisfies last distributional

equation.

' fogeneral difference calculus approach of COP

Slide —25/30



-1

e Menu

PART |

New characterization Theorem for

q-SQOP (cont.)

First ingredients: The
Classical Orthogonal
Polynomials

One foretaste:
Connection with
Operator Theory

The Chef’s Special: The
Main Results

PART I

The late ingredients:
The Semiclassical
Orthogonal Polynomials

Another foretaste:
Connection with
Operator Theory...again

The g-semiclassical
quasi-orthogonal
polynomials

® The definition

® New characterization
Theorem for
g-semiclassical
quasi-orthogonal
polynomials

® New characterization

I Theaorem for g-= QﬂﬂD

4.

(Second order difference equation):

¢(s)

A VP,(s)

Vzi(s) Vz(s)

<>AAZ

P, (s)/Ax(s), respectively.
5. {P,}n>0 can be expressed in terms of the Rodrigues operator.

Aoganeral difference calculus approach of COP

n—+oo

> AinPi(s),

j=n—o1

where o;, 7 = 0, 1, is the order of quasi-orthogonality of F,, and
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