# The $q$-binomial theorem 

Shaun Cooper, Massey University<br>s.cooper@massey.ac.nz

Auckland Mathematical Association, HoD Day, 17 May 2013

## Introduction

- Many functions and objects in mathematics have natural perturbations, called $q$-analogues.
- They contain an extra variable $q$.
- When $q=1$, everything goes back to normal.


## Goals of this talk:

- To see an example of a $q$-analogue, and how it arises.
- To see that by making a problem more difficult, it sometimes becomes easier to solve.


## Question 1 (of 3)

Example: 111001010 is a string, made of 0's and 1's, that contains 9 characters.

How many strings are there, made of 0 's and 1 's, that contain 9 characters?

Answer: there are two possibilities for each character, so the number of possible strings is

$$
2 \times 2=2^{9}(=512)
$$

By similar reasoning, there are $2^{n}$ strings, made of 0's and 1's, that contain $n$ characters.

## Question 1, continued

The original question was phrased in terms of 0's and 1's.
Example: 111001010: uses 0's and 1's.
The question could have been phrased in terms of any two symbols, e.g., T and F, $x$ and $y$, etc.

Example: yyyxxyxyx: uses $x$ 's and $y$ 's.
Code: $x=0, y=1$.


The string yyyxxyxyx can be represented by a lattice path.
There are 9 steps.
The start point is $(0,0)$ and the end point is $(4,5)$.

## Question 2 (of 3)

The string yyyxxyxyx can be represented by a lattice path, starting at $(0,0)$ and ending at $(4,5)$.

How many distinct lattice paths are there, starting at $(0,0)$ and ending at $(4,5)$ ?

How many distinct lattice paths are there, starting at $(0,0)$ and ending at $(k, n-k)$ ?

One way of answering it:
Consider strings of length $n:(,,, \quad, \quad$,
Count the number of ways of choosing $k$ positions to insert $x$ 's: $(,,, x, x,, x,, x)$

Fill the remaining positions with $y$ 's

In this example, $n=9$ and $k=4$, and the number of ways of placing the $x$ 's is 126

$$
\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}=\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1) \times(5 \times 4 \times 3 \times 2 \times 1)}=\frac{9!}{4!5!}
$$

In general, the number of distinct lattice paths, starting at $(0,0)$ and ending at $(k, n-k)$, is $\frac{n!}{k!(n-k)!}$. "Binomial coefficient"

Another way to view it:

$$
\begin{aligned}
(x+y)^{9} & =(x+\underline{y})(x+\underline{y})(x+\underline{y})(\underline{x}+y)(\underline{x}+y)(x+\underline{y})(\underline{x}+y)(x+\underline{y})(\underline{x}+y) \\
& =x x x x x x x x x+\cdots+y y y x x y x y x+\cdots+y y y y y y y y y \\
& =x^{9}+\cdots+(\text { how many } ?) x^{4} y^{5}+\cdots+y^{9}
\end{aligned}
$$

What is the expansion of $(x+y)^{9}$ ?
What is the expansion of $(x+y)^{n}$ ?

$$
\begin{array}{lcc}
(x+y)^{0} & = & 1 \\
(x+y)^{1} & = & x+y \\
(x+y)^{2} & = & x^{2}+2 x y+y^{2} \\
(x+y)^{3} & = & x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4} & = & x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
(x+y)^{5} & = & x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5} \\
& & \\
(x+y)^{n}= & \sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
\end{array}
$$

The binomial coefficient $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the number of lattice paths of length $n$, that contain $k x$ 's and $(n-k) y$ 's.

$$
\begin{aligned}
& 1 \\
& \begin{array}{lllll} 
& 1 & & 1 & \\
1 & & & 1
\end{array} \\
& \binom{n}{0} \quad \cdots \quad\binom{n}{k-1} \quad\binom{n}{k} \quad \cdots \quad\binom{n}{n} \\
& \binom{n+1}{0} \quad\binom{n+1}{k} \quad\binom{n+1}{n+1}
\end{aligned}
$$

Formula:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Recurrence relation: $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$

## Question 3 (of 3)



The lattice path $y y y x x y x y x$

How many lattice paths:

- have length 9

Ans: $2^{9}=512$

- and end at $(4,5)$

Ans: $\binom{9}{4}=126$

- and enclose an area of 15 square units? Ans: ?


The lattice path $y y y x x y x y x$

General question: Suppose $0 \leq j \leq k(n-k)$.
How many lattice paths

- have length $n$
- and end at ( $k, n-k$ )

Ans: $2^{n}$

- and enclose an area of $j$ square units?

Ans: $\binom{n}{k}$


Use a factor of $q$ to record each time a lattice path reduces in area by 1 square unit.

We say that $(x, y)$ is a $q$-Weyl pair if:

- $y x=q x y$
- $q x=x q$
- $q y=y q$


## Example

$$
y x=q x y, \quad q x=x q, \quad q y=y q
$$



$$
\begin{array}{rlll}
y \times y \times y y & =y x(y x) y y & =y x(q \times y) y y & =q y x x y y y \\
& =q(y x) \times y y y & =q(q x y) \times y y y & =q^{2} \times y \times y y y \\
& =q^{2} \times(y x) y y y & =q^{2} \times(q \times y) y y y & =q^{3} \times x y y y y \\
y \times y \times y y & =q^{3} x^{2} y^{4} . & &
\end{array}
$$

$x^{2} y^{4}$ : the path goes from $(0,0)$ to $(2,4)$.
$q^{3}$ : the original path encloses an area of 3 square units.

## An algorithm

## Question

Find the number of lattice paths

- of length $n$
- that go from $(0,0)$ to $(k, n-k)$
- and enclose an area of $j$ square units


## Solution

Expand $(x+y)^{n}$ according to the $q$-Weyl laws

$$
y x=q x y, \quad q x=x q, \quad q y=y q .
$$

Extract the coefficient of $q^{j} x^{k} y^{n-k}$.

$$
(x+y)(x+y)=x x+x y+y x+y y
$$

$$
\text { So } \quad \begin{aligned}
(x+y)^{2} & =x x+x y+q x y+y y \\
& =x^{2}+(1+q) x y+y^{2} .
\end{aligned}
$$

$$
\begin{aligned}
(x+y)^{3} & =(x+y)(x+y)^{2} \\
& =(x+y)\left(x^{2}+(1+q) x y+y^{2}\right) \\
& =x^{3}+(1+q) x^{2} y+x y^{2}+y x^{2}+(1+q) y x y+y^{3} \\
& =x^{3}+(1+q) x^{2} y+x y^{2}+q^{2} x^{2} y+(1+q) q x y^{2}+y^{3} \\
& =x^{3}+\left(1+q+q^{2}\right) x^{2} y+\left(1+q+q^{2}\right) x y^{2}+y^{3} .
\end{aligned}
$$

$q$-Weyl relations: $\quad y x=q x y, \quad q x=x q, \quad q y=y q$

$$
\begin{aligned}
(x+y)^{2}= & x^{2}+(1+q) x y+y^{2} \\
(x+y)^{3}= & x^{3}+\left(1+q+q^{2}\right) x^{2} y+\left(1+q+q^{2}\right) x y^{2}+y^{3} \\
(x+y)^{4}= & x^{4}+\left(1+q+q^{2}+q^{3}\right) x^{3} y \\
& +\left(1+q+2 q^{2}+q^{3}+q^{4}\right) x^{2} y^{2} \\
& +\left(1+q+q^{2}+q^{3}\right) x y^{3}+y^{4} \\
(x+y)^{n}= & \sum_{k=0}^{n} c(n, k) x^{n-k} y^{k}, \quad c(n, k)=?
\end{aligned}
$$

$$
\begin{aligned}
(x & +y)^{n+1} \\
& =(x+y)(x+y)^{n} \\
& =x \sum_{k=0}^{n} c(n, k) x^{n-k} y^{k}+y \sum_{k=0}^{n} c(n, k) x^{n-k} y^{k} \\
& =\sum_{k=0}^{n} c(n, k) x^{n+1-k} y^{k}+\sum_{k=0}^{n} c(n, k) q^{n-k} x^{n-k} y^{k+1}
\end{aligned}
$$

$$
\begin{aligned}
(x & +y)^{n+1} \\
& =(x+y)^{n}(x+y) \\
& =\sum_{k=0}^{n} c(n, k) x^{n-k} y^{k} x+\sum_{k=0}^{n} c(n, k) x^{n-k} y^{k} y \\
& =\sum_{k=0}^{n} c(n, k) q^{k} x^{n+1-k} y^{k}+\sum_{k=0}^{n} c(n, k) x^{n-k} y^{k+1}
\end{aligned}
$$

Equate coefficients of $x^{n+1-k} y^{k}$ :

$$
\begin{gathered}
c(n, k)+q^{n+1-k} c(n, k-1)=q^{k} c(n, k)+c(n, k-1) \\
c(n, k)=\frac{\left(1-q^{n+1-k}\right)}{\left(1-q^{k}\right)} c(n, k-1)
\end{gathered}
$$

$$
\begin{aligned}
c(4,2) & =\frac{\left(1-q^{3}\right)}{\left(1-q^{2}\right)} c(4,1) \\
& =\frac{\left(1-q^{3}\right)\left(1-q^{4}\right)}{\left(1-q^{2}\right)(1-q)} c(4,0) \\
& =\frac{\left(1-q^{4}\right)\left(1-q^{3}\right)\left(1-q^{2}\right)(1-q)}{\left(1-q^{2}\right)(1-q)\left(1-q^{2}\right)(1-q)}
\end{aligned}
$$

$$
\text { cf. } \quad\binom{4}{2}=\frac{4!}{2!2!}=\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}
$$

$$
\begin{aligned}
c(4,2) & =\frac{\left(1-q^{4}\right)\left(1-q^{3}\right)\left(1-q^{2}\right)(1-q)}{\left(1-q^{2}\right)(1-q)\left(1-q^{2}\right)(1-q)} \\
& =\frac{\frac{1-q^{4}}{1-q} \frac{1-q^{3}}{1-q} \frac{1-q^{2}}{1-q} \frac{1-q}{1-q}}{1-q} \frac{1-q}{1-q} \frac{1-q^{2}}{1-q} \frac{1-q}{1-q} \\
& =\frac{\left(1+q+q^{2}+q^{3}\right)\left(1+q+q^{2}\right)(1+q)(1)}{(1+q)(1)(1+q)(1)}
\end{aligned}
$$

The $q$-integer:
$[n]_{q}=1+q+q^{2}+q^{3}+\cdots+q^{n-1} \quad(=n$, when $q=1)$
The $q$-factorial:
$n!_{q}=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q} \quad(=n!$, when $q=1)$

The solution of

$$
c(n, k)=\frac{\left(1-q^{n+1-k}\right)}{\left(1-q^{k}\right)} c(n, k-1), \quad c(n, 0)=1
$$

is given by the $q$-binomial coefficient

$$
c(n, k)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{n!_{q}}{k!_{q}(n-k)!_{q}}
$$

where

$$
n!_{q}=1(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+q^{2}+q^{3}+\cdots+q^{n-1}\right) .
$$

Suppose $y x=q x y, q x=x q$ and $q y=y q$. Then

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{n-k} y^{k}
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{n!_{q}}{k!_{q}(n-k)!_{q}}
$$

and

$$
n!_{q}=1(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+q^{2}+q^{3}+\cdots+q^{n-1}\right) .
$$

## Example, again

How many lattice paths:

- have length 9
- and end at $(4,5)$

Ans: $2^{9}=512$
Ans: $\binom{9}{4}=126$

- and enclose an area of 15 square units? Ans: ?

$$
\begin{gathered}
(x+y)^{9}=\sum_{k=0}^{9}\left[\begin{array}{l}
9 \\
k
\end{array}\right]_{q} x^{k} y^{n-k} \\
{\left[\begin{array}{l}
9 \\
4
\end{array}\right]_{q}=\frac{\left(1-q^{9}\right)\left(1-q^{8}\right)\left(1-q^{7}\right)\left(1-q^{6}\right)}{\left(1-q^{4}\right)\left(1-q^{3}\right)\left(1-q^{2}\right)(1-q)}} \\
= \\
q^{20}+q^{19}+2 q^{18}+3 q^{17}+5 q^{16}+6 q^{15}+8 q^{14}+9 q^{13} \\
\\
+11 q^{12}+11 q^{11}+12 q^{10}+11 q^{9}+11 q^{8}+9 q^{7}+8 q^{6} \\
\\
+6 q^{5}+5 q^{4}+3 q^{3}+2 q^{2}+q+1
\end{gathered}
$$

## $q$-binomial coefficients; also called Gaussian polynomials

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{n!_{q}}{k!_{q}(n-k)!_{q}}
$$

$$
\begin{aligned}
{\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q} } & =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+q^{n+1-k}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q} \\
& =q^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q}
\end{aligned}
$$

The $q$-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is a polynomial in $q$ of degree $k(n-k)$.

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \rightarrow\binom{n}{k} \quad \text { as } q \rightarrow 1
$$

What are $x$ and $y$ if $y x=q x y, q x=x q, q y=y q$ ?
Obviously, $x$ and $y$ are not numbers (real or complex).

$$
x=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & q & 0 & \cdots & 0 \\
0 & 0 & q^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & q^{n-1}
\end{array}\right), \quad y=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

Define operators $x$ and $y$ by

$$
x(f(t))=t f(t), \quad y(f(t))=f(q t)
$$

Then $y x(f(t))=q x y(f(t))$.

Prove that

$$
\begin{aligned}
(a+b)(a & +q b)\left(a+q^{2} b\right) \cdots\left(a+q^{n-1} b\right) \\
& =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{k(k-1) / 2} a^{n-k} b^{k}
\end{aligned}
$$

assuming all variables commute.

Prove that

$$
\prod_{k=1}^{\infty}\left(1+x q^{2 k-1}\right)\left(1+x^{-1} q^{2 k-1}\right)\left(1-q^{2 k}\right)=\sum_{k=-\infty}^{\infty} q^{k^{2}} x^{k}
$$

Hints: Write

$$
(a+b)(a+q b)\left(a+q^{2} b\right) \cdots\left(a+q^{n-1} b\right)=\sum_{k=0}^{n} f(n, k) a^{k} b^{n-k}
$$

Then

$$
\begin{aligned}
& (a+b)(a+q b)\left(a+q^{2} b\right) \cdots\left(a+q^{n-1} b\right)\left(a+q^{n} b\right) \\
& =(a+b)(a+q b)\left(a+q^{2} b\right) \cdots\left(a+q^{n-1} b\right)\left(a+q^{n} b\right)
\end{aligned}
$$

So

$$
\sum_{k=0}^{n} f(n, k) a^{k} b^{n-k}\left(a+q^{n} b\right)=(a+b) \sum_{k=0}^{n} f(n, k) a^{k}(q b)^{n-k}
$$

See where this leads. (When $q=1$, it slips though our fingers...)

Start with

$$
\begin{aligned}
(a+b)(a & +q b)\left(a+q^{2} b\right) \cdots\left(a+q^{n-1} b\right) \\
& =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{k(k-1) / 2} a^{n-k} b^{k} .
\end{aligned}
$$

Replace $q$ with $q^{2}, n$ with $2 n, b$ with $x q^{1-2 n}$ and let $a=1$.
Then take the limit as $n \rightarrow \infty$.
The result is

$$
\prod_{k=1}^{\infty}\left(1+x q^{2 k-1}\right)\left(1+x^{-1} q^{2 k-1}\right)\left(1-q^{2 k}\right)=\sum_{k=-\infty}^{\infty} q^{k^{2}} x^{k}
$$

We have seen $q$-analogues of:

- integers
- factorials
- binomial coefficients
- the binomial theorem

The $q$-binomial coefficients have combinatorial significance.

The extra variable $q$ allowed us to deduce the $q$-binomial theorem instead of just verifying it.

The end!

