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Some Classes of Generating Functions
for the Laguerre and Hermite Polynomials

By M. E. Cohen

Abstract. In the first half of the article, we present two theorems which give,
as special cases, a number of new classes of generating functions for the Laguerre
polynomial. These formulae extend the recent results of Carlitz (2] and others.
The latter part of our work deals with two theorems involving new generating
functions for the Hermite and generalized Hermite polynomials, thus generalizing
some well-known expansions. The method of proof adopted in this paper

differs from that of previous workers.

I. Introduction. Extending the work done by Chatterjea [3] and Brown [1],
Carlitz [2] gave the generating function

o 1+4+v a+1
a.n > LAty = L—l—_—b);—— exp(— xv),
n=0

where v satisfies v = #(1 + v)°*!, v(0) = 0, and 4, b are arbitrary complex numbers.
The Laguerre polynomial is defined in the usual way [6, Volume II, p. 188].

In our presentation, we derive two theorems which give expansions for the
Laguerre polynomial. A special case of Theorem 1 is seen to be

S L2 [x(1 + an)]
(12) n=0
=1 -2)'"Y[1 —z(b + 2 —ax) + z2(b + 1)] “lexp[xz/(z — 1],

where ¢ = z(1 — z)?exp[axz/(1 — 2)], v, a, b are arbitrary complex numbers and |¢| <
1. Letting a = 0 in (1.2) gives essentially (1.1).

Theorem 2 yields a number of new expressions. One class of generating
functions is

i "
ngo @w+bn +n)

(1.3) 1; xz(1 + b —av)
= ()~ 1(1 — z)"Vexp[xz/(z - )] ,F, vi1+p A-AHD)P

LP*07 [x(1 + an)]

1+ °
where ¢ = z(1 — z)®explaxz/(1 - 2)] and |¢| < 1.
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512 M. E. COHEN

The right-hand side of (1.3) is the incomplete gamma function. See Chapter IV
of Luke [9] for extensive treatment and bibliography of this function. A reduction
of interest involves the case of 1 + b = gqv, and we obtain

S - _
(14) "go a +an) Loravn=n(x(1 + an)] = (1 - 2)~Yexp[xz/(z - 1)],
where ¢t = z(1 — 2)* " lexp[axz/(1 — z)] and || < 1. For a = 0 in (1.3), we deduce
the known result and its extension given by Eq. (4.13) of [4].
A second class of generating functions, a consequence of Theorem 2, may be
expressed as

hd [
- L:’,“’" [x(1 + an)]
ngo (1 +an

1+b-av .
(1.5) —
= (1 = z)"Yexp[xz/(z - 1)] ,F, z

at1l

a L

where ¢ = z(1 — z)®exp[axz/(1 — z)} and |¢] < 1. The right-hand side of (1.5) is the
incomplete beta function [9, p. 299]. Putting b = g + av, we have a simplification
of interest:

1.6) "Z::o -(I—-It-ﬁm Lotantavn (1 + an)] = (1 - z)~ ! ~Yexp[xz/(z — 1)],

where ¢ = z(1 — z)* *%%explaxz/(1 — z)] and [t| < 1. Letting a — 0 in (1.5) gives
the known Carlitz expansion (1.1).

A third class of generating functions may be deduced from Theorem 2, which
assumes the form

e t"
,;::o n+1)

L2*27 [x(1 + an)]

1.7 (1 -z)z(v - b) ! v-b+1;, 172

v—b;
-(1-2b,F, x@-Dl¢,
v->b+1;

where ¢ = z(1 - z)?exp[axz/(1 — z)] and [¢] < 1.
The three classes of generating functions given above are in fact particular
examples of the more general expansion

_ exp[(=xz + x —ax)/(1 - 2)] {F[ v-b; xga—l_)]
1
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= FLEYP [x(1 + an))
ngo (I-v—bn-n)(-v+s—bn—n)s)

(1.8) =4 =2 explxz/z — 1)] é: s (C2f'(1 =2 T D),

" Son=o nirl(l —v +rs — bn — n)
. F I; xz(b +1+al—av+ars)]
"Ho-1+b+1+bn+n-r)p+ 1) (1-2)@ +1)

where ¢ = z(1 — z)%exp[axz/(1 — 2)], v, a, b are arbitrary complex numbers, I, ', s
nonnegative integers, and || < 1. Note that we have assumed J, /', and s to be
nonnegative integers to terminate the series on the right-hand side of (1.8). This
condition is not necessary. The result is valid provided both sides of (1.8) exist for
arbitrary values of the paraméters involved.

Letting @ = 0 and ' = 0 in (1.8) gives essentially Eq. (3.4) of Zeitlin [10].

As the Bessel polynomial is expressed as [6, Volume I, p. 195] and the
Poisson-Charlier polynomial as [6, Volume I, p. 268], then the formulae given for the
Laguerre polynomial may be converted to generate the above-mentioned polynomials.

Theorems 3 and 4 involve the Hermite and generalized Hermite polynomials.

A special case is the generating function

g Yan
y (4+m™ f’" t"H [x(1 + an)/(1 + bn)*]
n=0 n.

19) ) ) i
= exp[—z* — 2xz] [1 + 2bz* + 2axz]

where t = (- z)exp[bz? + 2axz] and |2axzexp[bz? + 2axz + 1]|1 < 1. The
Hermite polynomial is defined in [6, Volume II, p. 193]. The special case a = b =
0 in (1.9) gives the old and well-known result [6, Volume II, p. 194, Eq. (19)]. If
b =0and 2 = 0 in (1.9), then the equations (2.14) and (2.16), respectively, of
Cohen [4], present themselves.

From Theorem 4, one class of new generating functions that may be deduced is

(1 + bn)#(1—2)
n!

H, [x(1 + an)/(1 + bn)”]

-]
2
n=0

1
(1.10) = exp[- 2% - 2xz] |F, 2xz(b — a)/b},

b+1
b

3

where ¢ = (- z)exp(bz® + 2axz) and |2axzexp(bz® + 2axz + 1)| < 1. If b — 0
and 2 — 0 in (1.10), then Egs. (2.14) and (2.17), respectively, of [4] are obtained.
A special case of interest may be derived from (1.10) for 2 = b to give
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514 M. E. COHEN

oo + ¥ (n-2)
(1.11) > (1 +an)
n=0 n!
where t = (- z)exp(az® + 2axz) and |2axzexplaz? + 2axz + 1]1 < 1.
A second class of generating functions is a special case of Theorem 4, and may

be expressed as

i 2A Bt an(1 + bny%]

n=o n!(1 +an)

H, [x(1 + an)”] = exp[- 2% - 2xz],

(1.12) )
=exp[-2? ~ 2z Fi| 1 + 9 2@ - b)af ,
2a 3

where ¢ = (- z)exp[bz? + 2axz] and [2axzexp[bz? + 2axz + 1]| < 1. Letting b —
0 and ¢ — 0 in (1.12) give the known Eqs. (2.15) and (2.16), respectively, of [4].

2. Generating Functions. The method of proof in the four theorems is a
modification and extension of the one employed in obtaining new generating functions
for the Jacobi polynomial in [S]. Asin [5], no appeal is made to the Lagrange
Theorem. It differs from that of previous workers, including the approach in [4].

THEOREM 1. For a, 8, s arbitrary complex numbers and r a positive integer

>

t*(a + 1 + sk), [ Ak, r);
k=0

x(8 + sk)]
Q.1 A(—a—sk -k, r);

=(1-2)*T1(1 + sz + rsy) " Yexp[- By],

where t = (- 2)(1 — 2)"*"texp(sy), x = (= ») [(z — 1)/z]", (@), = [(@ + k)/T(a),
quotient of gamma functions = a(@ + 1Xa + 2) .. . (@ + k — 1) for k a positive
integer, and Ak, ry=—klr,Ck+ Dfr,...,Ck+r-Dfr. [t]<1,and F,is
the generalized hypergeometric polynomial [9, p. 155].

Proof. Let us begin with the expression

22) DD —|2’TD"[xa—6+"a'"{xﬁ(1 X1 - x5 ym3],
m=0 n=0 h:m:

where D = d/dx and § = xd/dx. Now
(2.3) D™ [x2BTrgm (xB(1 — xSy (1 ~ xSy}

(— M) (= m), (B + sk +s'p)y™ (@ + 1 + sk + §'p), Xk +s'p
kip!

n m

24) =3 3
k=0 p=0
Taking (2.3) and (2.4) for x = 1, and putting the results in (2.2), one has
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m o 2"y"(-n) (- m), +sk +5p)"(@+1+sk+5p),

Int
m=0n=0 p=0 k=0 klp'nim!

_ i i (= 52)*(= s'y)Y"(m + n)!

m=0n=0 n'm!
2.7 =[1+sz+sy]" L.

We go from (2.6) to (2.7) using the binomial expansions. Now applying the series
transformation

©o

(2.8) i i }rf Zn: fin,m k,p)= 3 fn+k m+pk p)
m=0n=0 p=0 k=0

n,m,k,p=0
to (2.5), and simplifying, gives

(—2)* (- yPexp[y(B + sk + s'P)] B + sk + s'p)P(a + 1 + sk + 5'p),
kipl(1 — Z)a+l+sk+k+s'p ’

(2.9)

™M s

2
k=0 p=0

The summation of the series over n and m is achieved with the aid of the binomial
and exponential expansions. Equating (2.7) and (2.9), and employing

o [r/k]
(2.10) 2 2 k=3 ¥ flp.k-m
p=0 k=0

k=0 p=0

with r = s'[s, and some algebra, gives the required theorem.
THEOREM 2. For a, B, s, s’ arbitrary complex numbers, 1, I', s’ nonnegative
integers and r a positive integer

m (@ + 1 + sk), £
2: k
k=0 (@+1+1+sk)k!((@+1+1+s" +sk)s"),

A(— &, 1); Y
+
Ar A(—a-sk —k, r) G s

(- 2)* 1+ Lexn(— By) . r 1+s"q (- Q1 - z)s"q-—k(_ l')q(— /- an)k

(2.11)

" =0 K=o kig@+1+ 1 +5"q + sk)

1;
 F, . . yB-a-1-1-5"9|,
(a+!l+1+5s +5r+sk)s;
where t = (- 2)(1 — z)~5" lexp(sy), x = (- ¥)[(z = 1)/z]", and 1t| < 1. Other

symbols are defined in Theorem 1.

Proof. We first evaluate the integral
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@12)  [ox1 - x"Y D xeTE e (681 - (L - )"

Expanding the operators as in Theorem 1, we have

(= n) (= m), (B + sk +spY"(a + 1 + sk +5p),

(2.13)

[t wresoi o

The integral in (2.13) may be evaluated to give

I
(@+1+1+sk+spXa+!1+1+s" +sk+sp)s’)
Going back to (2.12), and expanding (1 — x‘”)" gives

(2.14)

— l' ' 1]
( )q xl+s apn [xa—-3+n8m {xﬁ(l - x.v)n\(l - x5 )m}] dx.

(2.15)

Now integrating by parts n times, then expanding (1 — x*)" and (1 - x")"’ and
integrating again, (2.15) reduces to

romoa (=1, (1 -5"q) (- n) (- m), (B + sk +sp)’"
2.16
(2.16) =0 ,,Z::O kz gipkl@+1+1+5"qg+ sk +5'p)
Equating (2.13) and (2.14) to (2.16), multiplying both sides of the resulting equation
by
o0 oo zn]:m

and proceeding as in Theorem 1, we have, after simplification

2)*(pPexp[y(B + sk +5'p)](B + sk +s'p)P(a + 1 + sk +5'p),

p=0 iZ0 kIp!(1 —z)* 1Sk HRAS P 4y 4 f sk +sSpX(at]+s" + 1 +sk+sp)sT),

N TN B ) o () AR LI G OWCT RN
(2.17) =3 X
I'' §=o k=0 kKlga +1+1 +5 g +s5k)

L
“F, , . , yB-a-1-1-sq)}.
(@+!+s +1+s'qg+sk)fs;

Applying the series transformation (2.10) and simplifying, gives Theorem 2.
THEOREM 3. For o B, s’ arbitrary complex numbers and r a positive integer

5 ﬂﬁi_sez Fo [A(—p, m; ;"”("’fs'r’?)]
218)  5=0 @ +sp)

= exp(- By —azX1 +s'y + r'z)" 1,
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CLASSES OF GENERATING FUNCTIONS 517

where t =(— y)exp(s'y + 5'z), x = (—2)(¥)", and |s'yexp(s'y +5'z + 1)| < 1. See
Theorem 1 for other symbols.
Proof. Consider

(2.19) Z Z

m=0n= On’m

T an x5 (xB(1 - x°Y(1 — %Y.

At x = 1 we have, after expansion

o n (—n)(—m) (@ + sk +sp)@+ sk +sp)”

220) 3 Z " DS kP )
m=0 a=0 n'm! p=0 k=0 k'p!

But at x = 1, (2.19) also reduces to

oo oo - ne  J.om + !
221) 5 3 Cs2)"C sV + m)!

m=0 n=0 n'm!

Equating (2.20) to (2.21), and proceeding as in Theorem 1, with applying series
transformations and simplifying, gives

(- 2)(= yPexply(8 + sk +5'p) + z(a + sk + 5'p)] (@ + sk +5'p) (B + sk +5'p)

p=0 k=0 k!p!

= +zs+ys) "

Using the series transformation (2.10) and some manipulation results in Theorem 3.
Note that for s’ = 0 in the above theorem, the A& hypergeometric polynomial is

essentially the generalized Hermite polynomial which occurs in probability problems.
It has been studied by Gould and Hopper [7], Gupta and Jain [8], Cohen [4], and

others.
THEOREM 4. For o, B, s, s’ arbitrary complex numbers and r, r' positive integers
(a)
r + !
MZ)_ F AC-p, P); ;xr(alsf’)]
s=o0 Pl +sp) (B +sp)
(2.23)

L,
- exp(C oz = ) (a‘;z B)IF,[ .y y(ﬁ—a],
(a+5s)s,;

where t = (- y)exp(s'y + 5'2), x = (- 2)(»)", and Is'y exp(s'y + 5’z + 1)| < 1.

(b)
i Lot AP s:,k_ltlk‘ +o [A(— k, ), —; X@ + sk) fk]
k=0 : (a + sk)
(2.24)

— oz - 1
- el e IFI[ ym_a]
(@ +rs)frs
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where t' = (— z)exp(sy + s2), x' = (- y)(z)"', and |szexp(sy +sz + 1)| < 1. Other
symbols are defined in Theorem 1.
Proof. Let us evaluate the expression

225 3 Z L =[x 1am xR (1 - (L - Y] di.

m=0 n=

Expanding and operating as in the previous theorems, we have

(- m)(B+sk+sp)’”(a+sk+sp)n—1

(2.26) )E y 22 ] Z Z k'p!

m=0 n=0

Going back to (2.25) and integrating, we find the only contribution comes from n =
0 and hence (2.25) may be evaluated to give

(2.27) - [V(B - a)] m’m!,
=o m!(a)(a + 5)/s),,

Equating (2.26) and (2.27), using the series transformation, and reducing the summa-
tion over n and m, one obtains the expression

oo

3 i (= 2)* (= y)P(B + sk + s'p)P(a + sk +s'p)* ~exp[z(a + sk + s'p) + y(B + sk +5'p)]
p=0 k=0 kp!
(2.28) L

=, F| T ye-o).
(@a+s)s’;

Now applying (2.10) to (2.28) twice, with p and k interchanged, and some algebra,
gives the two parts of the theorem. Note that r = s/s’, and ¥’ = §'/s.
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