(c) Springer-Verlag 1997

A combinatorial interpretation of the Seidel generation of q-derangement numbers

Robert J. Clarke
Pure Mathematics Department, University of Adelaide, Adelaide, South Australia 5005
rclarke@maths.adelaide.edu.au
Guo-Niu Han
I.R.M.A., Université Louis-Pasteur et C.N.R.S., 67084 Strasbourg Cedex, France guoniu@math.u-strasbg.fr
Jiang Zeng
Institut Girard Desargues, Université Claude Bernard (Lyon I), F-69622 Villeurbanne Cedex zeng@desargues.univ-lyon1.fr

Received November 5, 1997

Abstract

In [8] Dumont and Randrianarivony have given several combinatorial interpretations for the coefficients of the Euler-Seidel matrix associated to $n!$. In this paper we consider a q analogue of their results, which leads to the discovery of a new mahonian statistic "maf" on the symmetric group. We then give new proofs and generalizations of some results of Gessel and Reutenauer [12] and Wachs [17].

Keywords: mahonian statistics, permutations, q-derangement numbers, Seidel matrices

1. Introduction

Euler (see [8]) considered the difference table $\left(d_{n}^{k}\right)_{0 \leq k \leq n}$, where the generic coefficients d_{n}^{k} are defined by

$$
\begin{equation*}
d_{n}^{n}=n!\quad \text { and } \quad d_{n}^{k}=d_{n}^{k+1}-d_{n-1}^{k} \quad(1 \leq k \leq n-1) \tag{1.1}
\end{equation*}
$$

Let $a_{n}^{k}=d_{n+k}^{k}(n, k \geq 0)$. Then the above relations can be written as

$$
a_{0}^{k}=k!\quad \text { and } \quad a_{n}^{k}=a_{n}^{k-1}+a_{n+1}^{k-1} \quad(n, k \geq 0)
$$

The matrix $\left(a_{n}^{k}\right)_{n, k \geq 0}$ is also called the Seidel matrix associated to the sequence a_{n}^{0} in the literature (see $[7,9]$). The first terms of these matrices are as follows:
$\left.\begin{array}{c|cccccccc|cccccc}n \backslash k & 0 & 1 & 2 & 3 & 4 & 5 & & & & k \backslash n & 0 & 1 & 2 & 3 \\ \hline\end{array}\right)$

Iterating the difference equation (1.1) we derive

$$
\begin{equation*}
a_{n}^{0}=d_{n}^{0}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right), \tag{1.2}
\end{equation*}
$$

which is the classical derangement number d_{n}, that is, the number of derangements on $\{1,2, \cdots, n\}$ (cf. [16, p. 67]).

In several recent papers $[4,6,12,17]$, the q-maj counting of the derangements on $\{1,2, \cdots, n\}$ has been studied. Consider the q-derangement numbers $d_{n}(q)$ defined by

$$
\begin{equation*}
d_{n}(q)=\sum_{\sigma \in \mathcal{D}_{n}} q^{\text {maj } \sigma} \tag{1.3}
\end{equation*}
$$

where \mathcal{D}_{n} is the set of all derangements on $\{1,2, \cdots, n\}$. Then the following q-analogue of equation (1.2) has been obtained:

$$
\begin{equation*}
d_{n}(q)=[n]_{q}!\sum_{i=0}^{n}(-1)^{i} \frac{q^{\binom{i}{2}}}{[i]_{q}!} \quad(n \geq 1) \tag{1.4}
\end{equation*}
$$

Here, $[n]_{q}=1+q+\cdots+q^{n-1}$ is the q-analogue of the nonnegative integer n and $[n]_{q}!=$ $[1]_{q}[2]_{q} \cdots[n]_{q}$ is the q-analogue of $n!$.

In this paper, we shall put the q-derangement numbers in the context of a Seidel matrix as Dumont and Randrianarivony [8] did for the ordinary derangement numbers. To this end, in section 2 we introduce the notion of q-Seidel matrix. In section 3 we define a new statistic "maf" on permutations and then prove bijectively that this is a mahonian statistic. In section 4 we consider the q-Seidel matrix associated to the q derangement numbers and give combinatorial interpretations for all of the coefficients in this matrix in terms of the new statistic "maf". As a consequence we get a new proof of a formula of Gessel and Reutenauer [12] and of Wachs [17]. Finally we close this paper with some remarks and open questions.

We will need the following notations and results of q-calculus (see [11]). The q binomial coefficients are defined by

$$
\binom{n}{k}_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} \quad(n \geq k \geq 0) .
$$

Define also $(t ; q)_{n}=(1-t)(1-q t) \cdots\left(1-q^{n-1} t\right)$ and $(t ; q)_{\infty}=\lim _{n \rightarrow \infty}(t ; q)_{n}$. Then the two q-analogues of the exponential series $e^{t}=\sum_{n \geq 0} t^{n} / n!$ are defined by

$$
\begin{align*}
e_{q}(t) & =\sum_{n \geq 0} \frac{t^{n}}{[n]_{q}!}=\frac{1}{((1-q) t ; q)_{\infty}}, \tag{1.5}\\
E_{q}(t) & =\sum_{n \geq 0} \frac{q^{\left(\frac{n}{(n)} t^{n}\right.}}{[n]_{q}!}=(-(1-q) t ; q)_{\infty} \tag{1.6}
\end{align*}
$$

Notice that $e_{q}(t) \cdot E_{q}(-t)=1$.

2. q-Seidel matrices

Let us introduce the following generalization of Seidel matrix.
Definition 1. Given a sequence $\left(a_{n}(x, q)\right)(n \geq 0)$ of elements in a commutative ring, we call the q-Seidel matrix asssociated to $\left(a_{n}(x, q)\right)$ the double sequence $\left(a_{n}^{k}(x, q)\right)$ ($n \geq 0, k \geq 0$) given by the recurrence

$$
\begin{cases}a_{n}^{0}(x, q)=a_{n}(x, q), & (n \geq 0) \tag{2.7}\\ a_{n}^{k}(x, q)=x q^{n} a_{n}^{k-1}(x, q)+a_{n+1}^{k-1}(x, q) . & (k \geq 1, n \geq 0)\end{cases}
$$

Moreover $\left(a_{n}^{0}(x, q)\right)$ is called the initial sequence and $\left(a_{0}^{n}(x, q)\right)$ the final sequence of the q-Seidel matrix.

Lemma 1. We have

$$
\begin{equation*}
a_{n}^{k}(x, q)=\sum_{i=0}^{k}\left(x q^{n}\right)^{k-i}\binom{k}{i}_{q} a_{n+i}^{0}(x, q) . \tag{2.8}
\end{equation*}
$$

Proof: Recall that

$$
\binom{n}{k}_{q}=q^{n-1}\binom{n-1}{k-1}_{q}+\binom{n-1}{k}_{q} .
$$

We proceed by recurrence on k. Clearly (2.8) is valid for $k=1$. Suppose (2.8) is true for $k-1$. We then have

$$
\begin{aligned}
a_{n}^{k}(x, q)= & \sum_{i=0}^{k-1}\binom{k-1}{i}_{q}\left(\left(x q^{n}\right)^{k-i} a_{n+i}^{0}(x, q)+\left(x q^{n+1}\right)^{k-1-i} a_{n+1+i}^{0}(x, q)\right) \\
= & \left(x q^{n}\right)^{k} a_{n}^{0}(x, q)+\sum_{i=1}^{k-1}\left(x q^{n}\right)^{k-i}\binom{k-1}{i}_{q} a_{n+i}^{0}(x, q) \\
& \quad+\sum_{i=0}^{k-2}\left(x q^{n+1}\right)^{k-1-i}\binom{k-1}{i}_{q} a_{n+1+i}^{0}(x, q)+a_{n+k}^{0}(x, q) \\
= & \left(x q^{n}\right)^{k} a_{n}^{0}(x, q)+\sum_{i=1}^{k-1}\left(x q^{n}\right)^{k-i}\binom{k}{i}_{q} a_{n+i}^{0}(x, q)+a_{n+k}^{0}(x, q) .
\end{aligned}
$$

Thus completes the proof.

In particular we pass from the initial sequence to the final sequence and conversely by the Gauss inversion formula [2, p. 96]:

$$
\begin{align*}
& a_{0}^{n}(x, q)=\sum_{i=0}^{n} x^{n-i}\binom{n}{i}_{q} a_{i}^{0}(x, q), \tag{2.9}\\
& a_{n}^{0}(x, q)=\sum_{i=0}^{n}(-x)^{n-i} q^{\binom{n-i}{2}}\binom{n}{i}_{q} a_{0}^{i}(x, q) . \tag{2.10}
\end{align*}
$$

Define the generating functions as follows:

$$
a(t)=\sum_{n \geq 0} a_{n}^{0}(x, q) t^{n}, \quad \bar{a}(t)=\sum_{n \geq 0} a_{0}^{n}(x, q) t^{n}
$$

and

$$
A(t)=\sum_{n \geq 0} a_{n}^{0}(x, q) \frac{t^{n}}{[n]_{q}!}, \quad \bar{A}(t)=\sum_{n \geq 0} a_{0}^{n}(x, q) \frac{t^{n}}{[n]_{q}!} .
$$

Proposition 2. The generating functions of the initial and final sequences are related by the following equations:

$$
\begin{align*}
\bar{a}(t) & =\sum_{n \geq 0} a_{n}^{0}(x, q) \frac{t^{n}}{(x t ; q)_{n+1}} \tag{2.11}\\
\bar{A}(t) & =e_{q}(x t) A(t) \tag{2.12}
\end{align*}
$$

Proof: Note that

$$
\frac{1}{(t ; q)_{n+1}}=\sum_{k=0}^{\infty}\binom{n+k}{k}_{q} t^{k} .
$$

Hence

$$
\begin{aligned}
\sum_{n \geq 0} a_{n}^{0}(x, q) \frac{t^{n}}{(x t ; q)_{n+1}} & =\sum_{n, k \geq 0}\binom{n+k}{k}_{q} a_{n}^{0}(x, q) x^{k} t^{n+k} \\
& =\sum_{m \geq 0} t^{m} \sum_{n=0}^{m}\binom{m}{n}_{q} x^{m-n} a_{n}^{0}(x, q) \\
& =\sum_{m \geq 0} a_{0}^{m}(x, q) t^{m}
\end{aligned}
$$

By (1.5) we have

$$
\begin{aligned}
e_{q}(x t) A(t) & =\sum_{i, j \geq 0} \frac{a_{i}^{0}(x, q) t^{i}}{[i]_{q}!} \cdot \frac{x^{j} t^{j}}{[j]_{q}!} \\
& =\sum_{i, j \geq 0}\binom{i+j}{i}_{q} a_{i}^{0}(x, q) x^{j} \frac{t^{i+j}}{[i+j]_{q}!} \\
& =\sum_{n \geq 0}\left(\sum_{i=0}^{n} x^{n-i}\binom{n}{i}_{q} a_{i}^{0}(x, q)\right) \frac{t^{n}}{[n]_{q}!},
\end{aligned}
$$

which completes the proof of (2.12) in view of (2.9).

Remark: If $x=q=1$ we get the classical formulas [7,9]:

$$
\bar{a}(t)=\frac{1}{1-t} a\left(\frac{t}{1-t}\right) \quad \text { and } \quad \bar{A}(t)=e^{t} A(t)
$$

If $x=0$ we have $\bar{A}(t)=A(t)$.

3. A new mahonian statistic "maf"

Let S_{n} be the set of permutations on $[n]=\{1,2, \ldots, n\}$. Recall that $i \in[n]$ is a fixed point of $\sigma \in S_{n}$ if $\sigma(i)=i$. Let fix σ denote the number of fixed points of σ. The permutation σ has a descent at $i \in\{1,2, \ldots, n-1\}$ if $\sigma(i)>\sigma(i+1)$ and we call i the descent place of σ. The major index of σ, denoted maj σ, is the sum of all the descent places of σ. Let $\operatorname{FIX}(\sigma)=\{i \mid \sigma(i)=i\}$ be the set of all fixed points of σ and $\tilde{\sigma}$ the restriction of σ to $\{1,2, \ldots, n\} \backslash \operatorname{FIX}(\sigma)$.

Definition 2. If $\sigma \in S_{n}$ with $\operatorname{FIX}(\sigma)=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}$, then the statistic "maf" is defined by

$$
\operatorname{maf} \sigma=\sum_{j=1}^{l}\left(i_{j}-j\right)+\operatorname{maj} \tilde{\sigma}
$$

Example 1. Let $\sigma=321659487$. Then $\operatorname{FIX}(\sigma)=\{2,5,8\}$ and $\tilde{\sigma}=316947$. Hence fix $\sigma=3$, maj $\sigma=1+2+4+6+8=21$ and $\operatorname{maf} \sigma=(2-1)+(5-2)+(8-3)+(1+$ 4) $=14$.

We now show that the bistatistics (fix, maf) and (fix, maj) are equidistributed on the symmetric group S_{n} (Corollary 7). In particular, this shows that maf is a Mahonian statistic.

Let $\sigma=x_{1} x_{2} \ldots x_{n} \in S_{n}$. For convenience we put $x_{0}=-\infty$ and $x_{n+1}=+\infty$. For $0 \leq i \leq n$, a pair $(i, i+1)$ of positions is the j-th slot of σ provided that $x_{i} \neq i$, i.e., i is not a fixed point of σ and that σ has $i-j$ fixed points f such that $f<i$. Clearly we can insert a fixed point into the j-th slot to obtain the permutation

$$
\begin{equation*}
(\sigma, j)=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{i}^{\prime}(i+1) x_{i+1}^{\prime} \ldots x_{n}^{\prime} \tag{3.13}
\end{equation*}
$$

where $x^{\prime}=x$ if $x \leq i$ and $x^{\prime}=x+1$ if $x>i$.
More generally, if σ is a derangement in S_{n} and $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ a sequence of integers such that $0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq n$, we can insert m fixed points into the derangement σ successively, finally obtaining

$$
\left(\sigma, i_{1}, \ldots, i_{m}\right)=\left(\left(\sigma, i_{1}, \ldots, i_{m-1}\right), i_{m}\right) .
$$

Note that the fixed points of this last permutation are $i_{1}+1, i_{2}+2, \ldots, i_{m}+m$.
Example 2. Let $\sigma=2143$ and $\left(i_{1}, i_{2}, \ldots, i_{m}\right)=(0,1,1,4)$. Then we have $(\sigma, 0)=$ $13254,(\sigma, 0,1)=143265,(\sigma, 0,1,1)=1534276$ and $(\sigma, 0,1,1,4)=15342768$.

We can of course undertake the reverse operation. That is, if a permutation σ in S_{m+n} has m fixed points we can find a unique derangement $\mathrm{dp}(\sigma) \in S_{n}$, called (following Wachs [17]) the derangement part of σ, and a unique sequence of integers $i_{1} \leq \cdots \leq i_{m}$, which we call the fixed point sequence of σ, such that

$$
\sigma=\left(\operatorname{dp}(\sigma), i_{1}, \ldots, i_{m}\right)
$$

It is easy to see that

$$
\begin{equation*}
\operatorname{maf} \sigma=\operatorname{majdp}(\sigma)+i_{1}+\cdots+i_{m} \tag{3.14}
\end{equation*}
$$

Consider a permutation σ with n slots. The j-th slot $(i, i+1)$ of σ is said to be green if $\operatorname{des}(\sigma, j)=\operatorname{des} \sigma$, red if $\operatorname{des}(\sigma, j)=\operatorname{des} \sigma+1$. We assign values to the green slots of σ from right to left, from 0 to g, and to the red slots from left to right, from $g+1$ to n. Denote the value of the j-th slot by g_{j}. (When we refer to the "largest" slot, we will mean largest in terms of j.)

Example 3. Let $\sigma=2143$. Then $(\sigma, 0)=13254,(\sigma, 1)=32154,(\sigma, 2)=21354$, $(\sigma, 3)=21543,(\sigma, 4)=21435$. Hence slots 0,2 and 4 are green, while 1 and 3 are red. Therefore

$$
\begin{equation*}
\left(g_{0}, \ldots, g_{n}\right)=(2,3,1,4,0) \tag{3.15}
\end{equation*}
$$

It is easy to see that every slot is either green or red. In fact, one can see that $(i, i+1)$ is green if either $x_{i+1}<x_{i} \leq i$, or $i<x_{i+1}<x_{i}$, or $x_{i} \leq i<x_{i+1}$. So $(i, i+1)$ is red if either $x_{i+1} \leq i<x_{i}$, or $i<x_{i}<x_{i+1}$ or $x_{i}<x_{i+1} \leq i$. (Expressed in terms of cyclic intervals (cf. [13]), slot $(i, i+1)$ is green if $i+1 \in \rrbracket x_{i}, x_{i+1} \rrbracket$.)

Denote by d_{j} the number of descents of (σ, j) that lie to the right of x_{i}^{\prime} in (3.13).
Lemma 3. Let σ be a permutation in S_{n}. If the j-th slot $(i, i+1)$ is green then $\operatorname{maj}(\sigma, j)-\operatorname{maj} \sigma=d_{j}$, if $(i, i+1)$ is red then $\operatorname{maj}(\sigma, j)-$ maj $\sigma=d_{j}+i$.
Proof: Let $(i, i+1)$ be a green slot. Since no new descents are formed by inserting a fixed point into the j-th slot of $\sigma, \operatorname{maj}(\sigma, j)-$ maj σ equals the number of descents of σ that are displaced to the right when this fixed point is inserted. This number equals d_{j}. The case in which $(i, i+1)$ is red is dealt with similarly.

Remark: If σ is a derangement in S_{n}, the j-th slot of σ is just $(j, j+1)$ for $0 \leq j \leq n$.
Lemma 4. If σ is a derangement in S_{n}, then

$$
\operatorname{maj}(\sigma, j)=\operatorname{maj} \sigma+g_{j} \quad \text { for } \quad 0 \leq j \leq n
$$

Proof: Let i and j be slots. It follows from Lemma 3 that if i and j are both green and $i<j$ then $\operatorname{maj}(\sigma, i) \geq \operatorname{maj}(\sigma, j)$, while if i and j are both red and $i<j$ then $\operatorname{maj}(\sigma, i) \leq$ $\operatorname{maj}(\sigma, j)$. Therefore 0 is the green slot of σ of highest value, and if i is red and j is green we have maj $(\sigma, i) \geq \operatorname{maj}(\sigma, j)$. This is because for any red slot i we have $\operatorname{maj}(\sigma, i) \geq \operatorname{maj}(\sigma, 0)$ by Lemma 3. Hence, if m is the largest red slot of σ, i.e., $g_{m}=n$, for any two slots i and j with $g_{i}<g_{j}$ we have

$$
\operatorname{maj} \sigma \leq \operatorname{maj}(\sigma, i) \leq \operatorname{maj}(\sigma, j) \leq \operatorname{maj}(\sigma, m)
$$

It therefore suffices to show that

$$
\operatorname{maj}(\sigma, m)=\operatorname{maj} \sigma+n
$$

Now, consider a green slot $(i, i+1)$. If $i+1$ is a non-excedance place, i.e., $x_{i+1} \leq i+1$, then, as σ is a derangment, $x_{i+1} \leq i$. Hence $x_{i+1}<x_{i} \leq i$. Thus i is a non-excedance place. Since n is a non-excedance place and $m+1, m+2, \ldots, n$ are green slots, we have

$$
m+1>x_{m+1}>\cdots>x_{n} .
$$

As the slot m is red, either m is a non-excedance place and m is a non-descent or m is an excedance place and m is a descent. In each case, inserting a fixed point into the m-th slot introduces a new descent for $i=m+1$ and moves $n-(m+1)$ descents one place further to the right. Hence

$$
\operatorname{maj}(\sigma, m)=\operatorname{maj} \sigma+(m+1)+(n-m-1)=\operatorname{maj} \sigma+n
$$

as required.

Remark: Suppose that σ is a derangement in S_{n} and $0 \leq i \leq n$. It follows from Lemmas 3 and 4 that $d_{i}=g_{i}$ if i is green and $d_{i}=g_{i}-i$ if i is red. If i is green then

$$
\operatorname{maj}(\sigma, i, i)=\operatorname{maj}(\sigma, i)+g_{i} .
$$

Hence, if $j \leq i$, it follows from Lemma 4 that

$$
\operatorname{maj}(\boldsymbol{\sigma}, j, i)=\operatorname{maj}(\boldsymbol{\sigma}, i)+g_{j}
$$

On the other hand, if i is red, then

$$
\operatorname{maj}(\sigma, i, i)=\operatorname{maj}(\sigma, i)+g_{i}-i
$$

Now one can easily see that, if k is the largest green slot to the left of slot $i, g_{k}=g_{i}-i$. Hence, if $j<i$, it follows again from Lemma 4 that

$$
\operatorname{maj}(\sigma, j, i)=\operatorname{maj}(\sigma, i)+g_{j}+1
$$

We are now ready to state the key result of this section. Let $S(\sigma, m)$ denote the set of permutations in S_{n+m} with derangement part $\sigma \in \mathcal{D}_{n}$. Note that

$$
S(\sigma, m)=\left\{(\boldsymbol{\sigma}, \mathbf{i}) \mid \mathbf{i}=\left(i_{1}, \ldots, i_{m}\right) \text { and } 0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq n\right\} .
$$

Theorem 5. There is a bijection Ψ on $S(\sigma, m)$ such that if $\Psi(\sigma, \mathbf{i})=(\sigma, \mathbf{j})$ then

$$
\begin{equation*}
\operatorname{maj}(\sigma, \mathbf{i})=\operatorname{maf}(\sigma, \mathbf{j}) \tag{3.16}
\end{equation*}
$$

Proof: We divide the proof into two parts.
The definition of Ψ. We will define such a bijection Ψ by induction on $m \geq 0$.

First, Ψ is the identity mapping on $S(\sigma, 0)$. Next, we define Ψ on $S(\sigma, 1)$ by

$$
\Psi(\sigma, i)=\left(\sigma, g_{i}\right) .
$$

Then using equation (3.14) and Lemma 4 we see that Ψ satisfies equation (3.16).
Let $m>1$ and suppose that Ψ has been defined on $S(\sigma, k)$ for $0 \leq k \leq m-1$. Consider $\tau=\left(\sigma, i_{1}, \ldots, i_{m}\right)$. Suppose that the i_{m}-th slot of $\left(\sigma, i_{1}, \ldots, i_{m-1}\right)$ is green. Then, if

$$
\Psi\left(\sigma, i_{1}, \ldots, i_{m-1}\right)=\left(\sigma, j_{2}, \ldots, j_{m}\right)
$$

we define

$$
\Psi(\tau)=\left(\sigma, g_{i_{m}}, j_{2}, \ldots, j_{m}\right)
$$

Suppose that the i_{m}-th slot of $\left(\sigma, i_{1}, \ldots, i_{m-1}\right)$ is red. Then the slots i_{1}, \ldots, i_{m} cannot be all the same. Let k be the smallest positive integer such that $i_{m-k}<i_{m}$. Thus $i_{m-k}<$ $i_{m-k+1}=\cdots=i_{m}$. Then, if

$$
\Psi\left(\sigma, i_{1}, \ldots, i_{m-k}\right)=\left(\sigma, j_{1}, \ldots, j_{m-k}\right),
$$

we define

$$
\Psi(\tau)=(\sigma, \underbrace{g_{i_{m}}-i_{m}, \ldots, g_{i_{m}}-i_{m}}_{k-1 \text { terms }}, j_{1}+1, \ldots, j_{m-k}+1, g_{i_{m}}) .
$$

The following lemma is easily proved by induction.
Lemma 6. Let $\tau=\left(\sigma, i_{1}, \ldots, i_{m}\right)$ and $\Psi(\tau)=\left(\sigma, j_{1}, \ldots, j_{m}\right)$.
Suppose that at least one of the slots i_{1}, \ldots, i_{m} is either green or is repeated. Let i_{l} be the largest such slot. If i_{l} is green then $j_{1}=g_{i_{l}}$. If i_{l} is red and is repeated then $j_{1}=g_{i_{l}}-i_{l}$.

If on the other hand all of the slots i_{1}, \ldots, i_{m} are red and are distinct, then $j_{1}=g_{i_{1}}$.
Suppose that at least one of the slots i_{1}, \ldots, i_{m} is red. If i_{l} is the largest red slot then $j_{m}=g_{i l}$.

If on the other hand all of these slots are green then $j_{m}=g_{i_{1}}$.
It follows from this lemma that j_{1}, \ldots, j_{m} as defined above are in ascending order.
We now show by induction on m that Ψ satisfies equation (3.16).
If i_{m} is green, then using Lemma 4 we have

$$
\begin{aligned}
\operatorname{maj}\left(\sigma, i_{1}, \ldots, i_{m}\right) & =\operatorname{maj}\left(\sigma, i_{1}, \ldots, i_{m-1}\right)+g_{i_{m}} \\
& =\operatorname{maf}\left(\sigma, j_{2}, \ldots, j_{m}\right)+g_{i_{m}} \\
& =\operatorname{maf}\left(\sigma, g_{i_{m}}, j_{2}, \ldots, j_{m}\right)
\end{aligned}
$$

If i_{m} is red, let k be the smallest positive integer such that $i_{m-k}<i_{m}$, then

$$
\begin{aligned}
& \operatorname{maj}\left(\sigma, i_{1}, \ldots, i_{m}\right) \\
& \quad=\operatorname{maj}\left(\sigma, i_{1}, \ldots, i_{m-k}\right)+(m-k)+(k-1)\left(g_{i_{m}}-i_{m}\right)+g_{i_{m}} \\
& =\operatorname{maf}\left(\sigma, j_{1}, \ldots, j_{m-k}\right)+(m-k)+(k-1)\left(g_{i_{m}}-i_{m}\right)+g_{i_{m}} \\
& \quad=\operatorname{maf}(\sigma, \underbrace{g_{i_{m}}-i_{m}, \ldots, g_{i_{m}}-i_{m}}_{k-1 \text { terms }}, j_{1}+1, \ldots, j_{m-k}+1, g_{i_{m}}) .
\end{aligned}
$$

This is because inserting the first fixed point i_{m} into ($\sigma, i_{1}, \ldots, i_{m-k}$) adds a descent and increases maj by $g_{i_{m}}+(m-k)$. Inserting each of the remaining fixed points i_{m} has the same affect as inserting a fixed point into a green slot of value $g_{i_{m}}-i_{m}$.
Ψ is a bijection. It remains to show that Ψ is a bijection on $S(\sigma, m)$. It suffices to show that Ψ is an injection.

We use induction on m. The result is clearly true for $m=0$ and $m=1$.
Let $\tau=\left(\sigma, i_{1}, \ldots, i_{m}\right)$ and $\Psi(\tau)=\left(\sigma, j_{1}, \ldots, j_{m}\right)$. Suppose that $\Psi(\tau)=\Psi\left(\tau^{\prime}\right)$, where $\tau^{\prime}=\left(\sigma, i_{1}^{\prime}, \ldots, i_{m}^{\prime}\right)$.

If both i_{m} and i_{m}^{\prime} are green or red then it is easy to show using the induction hypothesis that $\tau=\tau^{\prime}$. So suppose that i_{m} is green and i_{m}^{\prime} is red. Thus $j_{1}=g_{i_{m}}, j_{m}=g_{i_{m}^{\prime}}$.

Suppose that i_{1}, \ldots, i_{m} are all green. Then $j_{m}=g_{i_{1}}$. Hence $i_{1}=i_{m}^{\prime}$, contradiction.
Let i_{u} be the largest red slot amongst i_{1}, \ldots, i_{m}. Then $j_{m}=g_{i_{u}}$. Hence $i_{m}^{\prime}=i_{u}<i_{m}$.
Case 1: Suppose that one of the slots $i_{1}^{\prime}, \ldots, i_{m}^{\prime}$ is either green or is repeated. Let i_{v}^{\prime} be the largest such slot. If i_{v}^{\prime} is green, then

$$
\Psi\left(\tau^{\prime}\right)=\left(\sigma, g_{i_{v}^{\prime}}+(m-v), \ldots, g_{i_{m}^{\prime}}\right)
$$

Hence $j_{1}=g_{i_{m}}=g_{i_{v}^{\prime}}+(m-r)$. Since i_{m} and i_{v}^{\prime} are both green, this means that $i_{m} \leq$ $i_{v}^{\prime}<i_{m}^{\prime}$, contradiction.

If i_{v}^{\prime} is red, then

$$
\Psi\left(\tau^{\prime}\right)=\left(\sigma, g_{i_{v}^{\prime}}-i_{v}^{\prime}+(m-v), \ldots, g_{i_{m}^{\prime}}\right)
$$

Hence $j_{1}=g_{i_{m}}=g_{i_{v}^{\prime}}-i_{v}^{\prime}+(m-r)$. But $g_{i_{v}^{\prime}}-i_{v}^{\prime}$ is the value of the largest green slot i_{w} less than i_{v}^{\prime}. As i_{m} is green this means that $i_{m} \leq i_{w}<i_{v}^{\prime} \leq i_{m}^{\prime}$, contradiction.

Case 2: Suppose that all of the slots $i_{1}^{\prime}, \ldots, i_{m}^{\prime}$ are red and distinct. Then

$$
\Psi\left(\tau^{\prime}\right)=\left(\sigma, g_{i_{1}^{\prime}}+(m-1), \ldots, i_{m}^{\prime}\right)
$$

Hence $j_{1}=g_{i_{m}}=g_{i_{1}}^{\prime}+(m-1)>g_{i-1}^{\prime}$. This is a contradiction, since i_{m} is green and i_{1}^{\prime} is red.

Example 4. Let $\sigma=2143$ and consider $(\sigma, 0,1,1,4) \in S(\sigma, 4)$. Then the values of the slots of σ have been calculated in (3.15). The bijection Ψ goes as follows: since slot 0 is green in σ we have

$$
\Psi(\sigma, 0)=\left(\sigma, g_{0}\right)=(\sigma, 2)
$$

since slot 1 is red we have

$$
\Psi(\sigma, 0,1)=\left(\sigma, 2+1, g_{1}\right)=(\sigma, 3,3)
$$

again, since slot 1 is red we have

$$
\Psi(\sigma, 0,1,1)=\left(\sigma, g_{1}-1,2+1, g_{1}\right)=(\sigma, 2,3,3)
$$

Finally, since slot 4 is green we obtain

$$
\Psi(\sigma, 0,1,1,4)=\left(\sigma, g_{4}, 2,3,3\right)=(\sigma, 0,2,3,3) \in S(\sigma, 4)
$$

Let $\tau=(\sigma, 0,1,1,4)$ and $\tau^{\prime}=(\sigma, 0,2,3,3)$. Then $\tau=15342768$ and $\tau^{\prime}=13248675$. It is easy to see that maj $\tau=12$ and maf $\tau^{\prime}=12$. Hence we have checked equation (3.16).

Using theorem 5, we obtain the following result.
Corollary 7. (a) There is a bijection $\phi: S_{n} \rightarrow S_{n}$ such that for any $\sigma \in S_{n}$ we have

$$
(\mathrm{fix}, \mathrm{maf}) \boldsymbol{\sigma}=(\mathrm{fix}, \mathrm{maj}) \phi(\boldsymbol{\sigma}) .
$$

(b) The bi-statistic (fix, maf) is equidistributed with the bi-statistic (fix, maj) on the symmetric group S_{n}.

The following result was first proved by Wachs [17, corollary 3].
Corollary 8. Let σ be a derangement in S_{n} and $m \geq 0$. We have

$$
\sum_{\pi \in S(\sigma, m)} q^{\operatorname{maj} \pi}=q^{\operatorname{maj} \sigma}\binom{m+n}{n}_{q} .
$$

Proof: By theorem 5 we have

$$
\begin{aligned}
\sum_{\pi \in S(\sigma, m)} q^{\operatorname{maj} \pi} & =\sum_{\pi \in S(\sigma, m)} q^{\operatorname{maf} \pi} \\
& =q^{\operatorname{maj} \sigma} \sum_{0 \leq i_{1} \leq \cdots \leq i_{m} \leq n} q^{i_{1}+i_{2}+\cdots i_{m}} \\
& =q^{\operatorname{maj} \sigma}\binom{m+n}{n}_{q}
\end{aligned}
$$

The last line follows from a well-known result [1, p. 33].

4. q-derangement matrices

We first prove the following result.
Proposition 9. Let $\left(a_{n}^{k}(x, q)\right)$ be a q-Seidel matrix. Then the following three conditions are equivalent:

$$
\begin{align*}
& a_{n}^{0}(x, q)=[n]_{q}!\sum_{i=0}^{n}(-1)^{i} \frac{q^{\left(\frac{i}{2}\right)}}{[i]_{q}!}, \tag{4.17}\\
& a_{0}^{n}(x, q)=[n]_{q}!\left(1+\sum_{i=1}^{n} \frac{(x-1)(x-q) \cdots\left(x-q^{i-1}\right)}{[i]_{q}!}\right), \tag{4.18}\\
& a_{0}^{n}(1, q)=[n]_{q}!\quad \text { and } \quad a_{n}^{0}(x, q) \quad \text { is independent of } x . \tag{4.19}
\end{align*}
$$

Proof: By the q-binomial formula [11, p.7]

$$
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} t^{n}=\frac{(a t ; q)_{\infty}}{(t ; q)_{\infty}},
$$

we have in view of (1.5) and (1.6),

$$
1+\sum_{n=1}^{\infty} \frac{(x-1)(x-q) \cdots\left(x-q^{n-1}\right)}{[n]_{q}!} t^{n}=e_{q}(x t) E_{q}(-t)
$$

Therefore the generating functions of (4.17), (4.18) and (4.19) are respectively the following:

$$
\begin{align*}
A(t) & =\sum_{n \geq 0} a_{n}^{0}(x, q) \frac{t^{n}}{[n]_{q}!}=\frac{E_{q}(-t)}{1-t}, \tag{4.20}\\
\bar{A}(t) & =\sum_{n \geq 0} a_{0}^{n}(x, q) \frac{t^{n}}{[n]_{q}!}=\frac{e_{q}(x t) E_{q}(-t)}{1-t}, \tag{4.21}\\
\left.\bar{A}(t)\right|_{x=1} & =\sum_{n \geq 0} a_{0}^{n}(1, q) \frac{t^{n}}{[n]_{q}!}=\frac{1}{1-t} . \tag{4.22}
\end{align*}
$$

So, it suffices to prove that the equivalence of (4.20), (4.21) and (4.22). Indeed,
(4.20) $\Longleftrightarrow(4.21)$: this follows from proposition 2 ;
$(4.21) \Longrightarrow(4.22)$: this is obvious;
(4.22) $\Longrightarrow(4.20)$: since $A(t)$ is independent of x, equation (4.20) follows then from (2.12) by setting $x=1$.

Definition 3. A q-derangement matrix is the q-Seidel matrix satisfying any of the three conditions of proposition 8 .

If $x=1$, then $a_{0}^{n}(x, q)=[n]_{q}$! and the q-derangement matrix is as follows :

$k \backslash n$	0	1	2	3	4
0	1	0	q	$q+q^{2}$	$\binom{q+2 q^{2}+2 q^{3}}{+2 q^{4}+q^{5}+q^{6}}$
1	1	q	$q+q^{2}+q^{3}$	$\left(\begin{array}{c}q+2 q^{2}+2 q^{3} \\ \left.+3 q^{2}+2 q^{5}+q^{6}\right)\end{array}\right.$	
2	$1+q$	$q+2 q^{2}+q^{3}$	$\left(\begin{array}{c}q+2 q^{2}+3 q^{3} \\ \left.+4 q^{4}+3 q^{5}+q^{6}\right)\end{array}\right.$		
3	$[3]_{q}!$	$\left(\begin{array}{c}q+3 q^{2}+5 q^{3} \\ \left.+5 q^{4}+3 q^{5}+q^{6}\right)\end{array}\right.$			
4	$[4]_{q}!$				

$$
\left(a_{n}^{k}(1, q)\right)
$$

Denote by S_{n}^{k} the set of permutations on $[n+k]$ of which all the fixed points are included in $\{n+1, n+2, \ldots, n+k\}$. In particular S_{n}^{0} is the set of permutations without fixed points on $[n]$ and \mathcal{S}_{0}^{k} the set of all permutations on $[k]$. The following result generalizes a result of Dumont and Randrianarivony [8].
Theorem 10. The coefficients $a_{n}^{k}(x, q)(n, k \geq 0)$ in a q-derangement matrix have the following combinatorial interpretation:

$$
\begin{equation*}
a_{n}^{k}(x, q)=\sum_{\sigma \in S_{n}^{k}} x^{\mathrm{fix} \sigma} q^{\mathrm{maf} \mathrm{\sigma}} \tag{4.23}
\end{equation*}
$$

Proof: Notice that $S_{n+1}^{k-1} \subset \mathcal{S}_{n}^{k}$. Set

$$
\Delta_{n}^{k}=S_{n}^{k} \backslash S_{n+1}^{k-1}=\left\{\sigma \in S_{n}^{k} \mid \sigma(n+1)=n+1\right\}
$$

We construct a bijection $\varphi: \Delta_{n}^{k} \rightarrow S_{n}^{k-1}$ such that for all $\sigma \in \Delta_{n}^{k}$,

$$
\begin{aligned}
\operatorname{maf} \sigma & =n+\operatorname{maf}(\varphi(\sigma)) \\
\operatorname{fix} \sigma & =1+\operatorname{fix}(\varphi(\sigma))
\end{aligned}
$$

Indeed, if $\sigma \in \Delta_{n}^{k}$ we define $\varphi(\sigma)$ as the word obtained from σ by deleting $n+1$ and reduce all the values strictly bigger than $n+1$. It is readily verified that φ is the desired bijection. Therefore

$$
\begin{equation*}
\sum_{\sigma \in S_{n}^{k}} x^{\mathrm{fix} \sigma} q^{\mathrm{maf} \sigma}=x q^{n} \sum_{\sigma \in S_{n}^{k-1}} x^{\mathrm{fix} \sigma} q^{\mathrm{maf} \sigma}+\sum_{\sigma \in S_{n+1}^{k-1}} x^{\mathrm{fix} \sigma} q^{\mathrm{maf} \sigma} \tag{4.24}
\end{equation*}
$$

which is the recurrence (2.7). So it remains to check the initial condition. Now $S_{0}^{n}=S_{n}$ and it is well-known [14] that $\sum_{\sigma \in S_{n}} q^{\operatorname{maj} \sigma}=[n]_{q}$!, so it follows from corollary 7 that

$$
a_{0}^{n}(1, q)=\sum_{\sigma \in S_{n}} q^{\operatorname{maf} \sigma}=\sum_{\sigma \in \mathcal{S}_{n}} q^{\operatorname{maj} \sigma}=[n]_{q}!.
$$

The theorem follows then from proposition 9 , since $a_{n}^{0}(x, q)$ is clearly independent of x.

Remark: Since (fix, maf) and (fix, maj) are not equidistributed on S_{1}^{2} we cannot replace maf by maj in the above theorem.

From Corollary 7, proposition 9 and theorem 10 we derive the following result.
Corollary 11. The final sequence of the q-derangement matrix has the following interpretation:

$$
\begin{align*}
a_{0}^{n}(x, q) & =\sum_{\sigma \in \mathcal{S}_{n}} x^{\mathrm{fix} \sigma} q^{\mathrm{maf} \sigma} \tag{4.25}\\
& =\sum_{\sigma \in \mathcal{S}_{n}} x^{\mathrm{fix} \sigma} q^{\mathrm{maj} \sigma} \tag{4.26}\\
& =[n]_{q}!\left(1+\sum_{i=1}^{n} \frac{(x-1)(x-q) \cdots\left(x-q^{i-1}\right)}{[i]_{q}!}\right) \tag{4.27}
\end{align*}
$$

Note that the last equation has been obtained by Gessel and Reutenauer [12] and by Wachs [17] in the special $x=0$ case using different methods.

5. An open problem about q-succession numbers

Let σ be a permutation in S_{n}. For convenience put $\sigma(0)=0$. We say that an element p (with $1 \leq p \leq n$) is a succession of σ if $\sigma(p)=\sigma(p-1)+1$. The p is called the succession position, while $\sigma(p)$ is called the succession value. Let $\operatorname{SUC}(\sigma)$ be the set of succesion values of σ and let suc σ be the number of successions of σ. For example, if

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 4 & 3 & 8 & 9 & 5 & 6 & 7 & 2
\end{array}\right)
$$

then $\operatorname{SUC}(\sigma)=\{1,9,6,7\}$ and suc $\sigma=4$.
We use a variant of Foata's first fundamental transformation [10] to show that the statistics fix and suc are equidistributed on \mathcal{S}_{n}.

Given a permutation $\sigma=\sigma(1) \sigma(2) \cdots \sigma(n) \in S_{n}$ we set $\sigma^{d}=\sigma(2) \cdots \sigma(n) \sigma(1)$. We call the standard form of the factorization into cycles of σ the unique writing $\bar{\sigma}$ such that in each cycle $\left(a, \sigma(a), \ldots, \sigma^{l}(a)\right)$ the maximum $\sigma^{l}(a)$ is in the last position and the cycles of σ are decreasingly ordered according to their maxima. (Note that this is not the usual definition of standard form.) We define $\varphi(\sigma)$ as the permutation obtained by erasing the parentheses in the standard form of $\bar{\sigma}^{d}$.

The following lemma is easy to verify.
Lemma 12. The mapping φ is a bijection on S_{n} such that for all $\sigma \in S_{n}, F I X(\sigma)=$ $\operatorname{SUC}(\varphi(\sigma))$ and fix $\sigma=\operatorname{suc} \varphi(\sigma)$. Hence the statistics fix and suc are equidistributed on S_{n}.

For example, if $\sigma=142836759 \in \mathcal{S}_{9}$, then

$$
\sigma^{d}=428367591 \quad \text { and } \quad \bar{\sigma}^{d}=(14389)(567)(2) .
$$

Erasing the parentheses we obtain the permutation $\varphi(\sigma)=143895672$. We have

$$
\operatorname{FIX}(\sigma)=\operatorname{SUC}(\varphi(\sigma))=\{1,6,7,9\}
$$

Define the statistic

$$
\operatorname{suc}^{\prime} \sigma= \begin{cases}\operatorname{suc} \sigma, & \text { if } \sigma(1) \neq 1 \\ \operatorname{suc} \sigma-1, & \text { if } \sigma(1)=1\end{cases}
$$

and let

$$
F_{n}(x)=\sum_{\sigma \in \mathcal{S}_{n}} x^{\mathrm{fix} \sigma}, \quad S_{n}(x)=\sum_{\sigma \in \mathcal{S}_{n}} x^{\mathrm{suc} c^{\prime} \sigma}
$$

Then, using lemma 12, we obtain a bijective proof of the following known results (See [3, 15]).

Proposition 13. We have

$$
\begin{equation*}
S_{n+1}(x)=F_{n+1}(x)+(1-x) F_{n}(x), \tag{5.28}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
S_{n+1}(0)=d_{n+1}+d_{n} \tag{5.29}
\end{equation*}
$$

Setting $q=1$ in (4.20) we see that

$$
\begin{equation*}
\sum_{n \geq 0} F_{n}(x) \frac{t^{n}}{n!}=\frac{e^{(x-1) t}}{1-t} \tag{5.30}
\end{equation*}
$$

Hence, from equation (5.28), we have

$$
\begin{equation*}
\sum_{n \geq 0} S_{n}(x) \frac{t^{n}}{n!}=\frac{e^{(x-1) t}}{1-t}+(1-x) \sum_{n \geq 1} F_{n-1}(x) \frac{t^{n}}{n!} \tag{5.31}
\end{equation*}
$$

in which by convention $S_{0}(x)=F_{0}(x)=1$. Thus

$$
\begin{equation*}
\sum_{n \geq 0} S_{n}(x) \frac{t^{n}}{n!}=\frac{e^{(x-1) t}}{1-t}+(1-x) \int_{0}^{t} \frac{e^{(x-1) z}}{1-z} d z \tag{5.32}
\end{equation*}
$$

Let \mathcal{L} be the formal Laplace transformation on the ring of formal power series, that is, $\mathcal{L}\left(\sum a_{n} x^{n} / n!\right)=\sum a_{n} x^{n}$. Then

$$
\begin{equation*}
\sum_{n \geq 0} F_{n}(x) t^{n}=\mathcal{L}\left(\frac{e^{(x-1) t}}{1-t}\right)=\sum_{n \geq 0} \frac{n!t^{n}}{[1-(x-1) t]^{n+1}} \tag{5.33}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\sum_{n \geq 0} S_{n}(x) t^{n} & =\sum_{n \geq 0} F_{n}(x) t^{n}+(1-x) \sum_{n \geq 0} F_{n}(x) t^{n+1} \\
& =[1-(x-1) t] \sum_{n \geq 0} F_{n}(x) t^{n} \\
& =\sum_{n \geq 0} \frac{n!t^{n}}{[1-(x-1) t]^{n}} \tag{5.34}
\end{align*}
$$

In the case of $q=1$, using lemma 11 , we can restate theorem 9 in terms of successions. Unfortunately, since the mapping φ does not keep track of the maj statistic, we do not have a full interpretation in the last model.

The distribution of our statistics on \mathcal{S}_{3} is as follows:

$\sigma \backslash$ stat	maf	maj	suc	fix
123	0	0	3	3
132	1	2	1	1
213	3	1	0	1
231	2	2	1	0
312	1	1	1	0
321	2	3	0	1

Statistic distributions on \mathcal{S}_{3}

Finally we record two open problems related to our work.

1) Find a mahonian statistic "mag" such that (suc, mag) is equidistributed with (fix, maj) on the symmetric group S_{n}.
2) Generalize the statistic "maf" on permutations to words as in $[5,13]$ for other mahonian statistics.

References

1. Andrews (G.). The Theory of Partitions, Addison-Wesley Publishing Company, 1976.
2. AIGNER (M.). Combinatorial Theory, Springer-Verlag, Berlin, 1979.
3. CHEN (W.). The skew, relative, and classical derangements, Disc. Math., 160 (1996), 235-239.
4. Chen (W. Y. C.) and Rota (G.-C.). q-Analogs of the inclusion-exclusion principle and permutations with restricted position, Disc. Math., 104 (1992), 7-22
5. Clarke (R.) and Foata (D.). Eulerian Calculus, II: An Extension of Han's Fundamental Transformation, Europ. J. Combinatorics, 16 (1995), 221-252.
6. DÉSARMÉNIEN (J.) and WACHS (M. L.). Descent classes of permutations with a Given Number of Fixed Points, J. Combin. Theory, Ser. A. 64 (1993), 311-328.
7. Dumont (D.). Matrices d'Euler-Seidel, Séminaire Lotharingien de Combinatoire, B05c (1981), http://cartan.u-strasbg.fr/~slc.
8. Dumont (D.) et Randrianarivony (A.). Dérangements et nombres de Genocchi, Disc. Math., 132 (1994), 37-49.
9. Dumont (D.) and Viennot (G.). A combinatorial interpretation of the Seidel generation of Genocchi numbers, Ann. Disc. Math., 6 (1980), 77-87.
10. Foata (D.). Rearrangemets of words, in: Combinatorics on words, Encyclopedia of Mathematics, Vol. 17, ed., M. Lothaire, Addison-Wesley, Reading, MA, 1981, pp. 184-212.
11. Gasper (G.) and Rahman (M.). Basic Hypergeometric Series, Cambridge University Press, 1990.
12. Gessel (I.) and Reutenauer (C.). Counting Permutations with Given Cycle Structure and Descent Set, J. Combin. Theory Ser. A, 64 (1993), 189-215.
13. Han (G-N.). Une transformation fondamentale sur les rérrangements de mots, Advances in Math., 105 (1994), 26-41.
14. MacMahon (P. A.). The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math., 35 (1913), 314-321.
15. Roselle (D. P.). Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16.
16. Stanley (R.). Enumerative Combinatorics I, Cambridge University Press, 1997.
17. Wachs (M.). On q-derangement numbers, Proc. Amer. Math. Soc., 106 (1989), 273-278.
