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Abstract 

The moments of the Lucas polynomials and of the Chebyshev polynomials of the first kind 
are (multiples of) central binomial coefficients and the moments of the Fibonacci  
polynomials and of the Chebyshev polynomials of the second kind are Catalan numbers.  In 
this survey paper we present some generalizations of these results together with various q   
analogues.  

 

0. Introduction 

The moments of the Fibonacci polynomials and of the Chebyshev polynomials of the second 

kind are (multiples of) the Catalan numbers 
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  and the moments of the Lucas 

polynomials or equivalently of the Chebyshev polynomials of the first kind are (multiples of) 

the central binomial coefficients 
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 We show first how these facts generalize to 

various q   analogues. The most natural q   analogues of the monic Chebyshev polynomials 
(cf. [11] or [12]) are orthogonal polynomials and their moments are multiples of 
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 respectively. The same fact holds for a curious class 

(cf. [8]) of non-orthogonal q  Fibonacci and q  Lucas polynomials, whereas the moments 

( )nC q   of the Carlitz q   Fibonacci polynomials - which are orthogonal - do not have explicit 

expressions. But the generating function 
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q n
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  has a simple representation as 
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 for some q  analogue ( )E u   of the exponential series. Some of these 

results can be extended to q   analogues of generalized Fibonacci polynomials ( ) ( )m
nf x  

whose moments are multiples of generalized Catalan numbers ( ) 1

( 1) 1
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 and to 

q   analogues of generalized Lucas polynomials whose moments are related to generalized 

central binomial coefficients .
mn

n

 
 
 

  

For the convenience of the reader I first recall some well-known background material about 
Fibonacci and Lucas polynomials and their generalizations ( ) ( )m

nf x and ( ) ( )m
nl x  and state some 

basic facts about q  identities.   
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1. Background material 

 

1.1. Let the special Fibonacci polynomials ( )nf x  be defined by 
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   (1.1) 

They satisfy the recurrence relation  

 1 2( ) ( ) ( )n n nf x xf x f x     (1.2) 

with initial values 0 ( ) 1f x   and 1( )f x x  and  are orthogonal with respect to the linear 

functional f  defined by  ( ) [ 0].f nf x n     More precisely we have 

  ( ) ( ) [ ].f n mf x f x n m     (1.3) 

The moments  n
f x can easily be deduced from the formula 
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   (1.4) 

This gives  2 1 0n
f x     and  

  2 ,n
f nx C    (1.5) 

where 
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  is   a Catalan number. 

The moment generating function is  
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     (1.6) 

and satisfies  

 2( ) 1 ( ) .C u uC u    (1.7) 

Equivalently we have 
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  (1.8) 

If we set 
2 4

2

x x  
  and 

2 4
,

2

x x  
  then 1 2n n nx      and 

1 2.n n nx      Note that x     and 1.    

Since 
1 1n n 
 

 


 satisfies recursion (1.2) and the initial values we get the Binet formulae 
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  (1.9) 
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1.2. Let us also consider a variant ( )nl x  of the Lucas polynomials defined by   
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The polynomials ( )nl x   satisfy the recurrence relation  

 1 2 2( ) ( ) ( )n n n nl x xl x l x      (1.11) 

 with 0 2   and 1n   for 0.n     

We have 2( ) ( ) ( )n n nl x f x f x   for 2n    and ( ) ( )n nl x f x  for 0,1.n    

This implies for 0n    the Binet formulae 

 ( ) .n n
nl x      (1.12) 

The polynomials ( )nl x  are orthogonal with respect to the linear functional l  defined by 

 ( ) [ 0].l nl x n     More precisely  

  ( ) ( ) 2[ ]l n ml x l x n m     (1.13) 

for 0n    and  2
0 ( ) 1.l l x    

From the representation 
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   (1.14) 

we deduce that the moments  n
l x   are   2 1 0n

l x     and  
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where 
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  is a central binomial coefficient. 

 

The moment generating function is  
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Equivalently  
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1.3. Let us note some generalizations of the foregoing situation. 

Let 1m   and let  
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These polynomials satisfy  

 ( ) ( ) ( )
1( ) ( ) ( )m m m

n n n mf x xf x f x     (1.19) 

 

for 0n   with initial values ( )
0 ( ) 1mf x   and ( ) ( ) 0m

nf x    for 0 .n m   This implies 
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and therefore the linear functional ( )mf
  defined by  ( )

( ) ( ) [ 0]m

m
nf

f x n    gives as 

moments the m  Catalan numbers, which are also called Fuss-Catalan numbers,  
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For some special cases cf. [14], OEIS A000108, A001764, A002293, A009294. 

 

The generating function satisfies ( )
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The most natural generalization of the Lucas polynomials are the polynomials ( ) ( )m
nl x  which 

satisfy ( ) ( ) ( )
1( ) ( ) ( )m m m

n n n m n ml x xl x l x     with initial values ( ) ( )m n
nl x x  for 0 n m   and 

0 m    and 1n    for 0.n    

This gives for 0n    
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It is easily verified that  

 ( ) ( ) ( )( ) ( ) ( 1) ( )m m m
n n n ml x f x m f x     (1.23) 

for 0.n    
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Here we have 
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and thus for the linear functional ( )ml
   defined by  ( )
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The generating function 
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It seems that these polynomials do not have interesting q  analogues. Therefore we consider 

another generalization ( ) ( )m
nL x   of the Lucas polynomials which satisfy 

( ) ( ) ( )
1( ) ( ) ( )m m m

n n n m n mL x xL x L x     with initial values ( ) ( )m n
nL x x  for 0 n m   and 0 2    and 

1n    for 0.n    

Here we get for 0n    
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which implies that  

 ( ) ( ) ( )( ) ( ) ( )m m m
n n n mL x f x f x    (1.27) 

 for 0.n     

For this is trivially true for 1 1n m    since in this case ( ) ( ) 0.m n n
nL x x x    It is also true 

for ,n m   for in this case we have 

 ( ) ( ) ( ) ( ) ( )
1 0 0( ) ( ) 2 ( ) 2 1 1 ( ) ( ).m m m m m m m

m m mL x xL x L x x x f x f x           

For n m  both sides satisfy the same recurrence relation. 

 

If we define the linear functional ( )mL
  by  ( )

( ) ( ) [ 0]m
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L x n    we get in this case 
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1.4. Let us now state some well-known notations and results for q   identities which will be 
needed later (cf. e.g. [5]). 

We always assume that 0 1.q   Let       1; 1 1 1 n
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The q   binomial coefficients satisfy  
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Let   be the operator ( ) ( ).f x f qx    

Let qD  be the q  differentiation operator defined by 
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D f x

x qx





  

Then 1 ( 1) qq xD     since  (1 ( 1) ) 1 .n n n n n n n
qq xD x x q x q x x         

 

A simple q   analogue of the binomial theorem is the fact that the so called Rogers-Szegö 

polynomials 
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Note also that 1( , ) [ ] ( , )q n nD r x s n r x s  because  
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Therefore the Rogers-Szegö polynomials satisfy the recursion 

  

1 1( , ) ( ( 1) ) ( , ) ( ) ( , ) ( 1) ( , ).n
n q n n nr x s x s q sxD r x s x s r x s q xsr x s           (1.30) 
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We shall also need the following q  hypergeometric version of the binomial theorem (cf. e.g. 
[3]). 
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for 1.x    

As special cases we will need the following q   analogues of the exponential series 
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and the simplest binomial theorems 
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1.5. Notes 

The polynomials ( )nf x  are the special case 1( ) ( , 1)n nf x Fib x    of the bivariate Fibonacci 

polynomials 
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  which satisfy 

1 2( , ) ( , ) ( , )n n nFib x s xFib x s sFib x s     with initial values 0 ( , ) 0Fib x s    and 1( , ) 1.Fib x s   

 

For 0n   the polynomials ( )nl x  are the special case ( ) ( , 1)n nl x Luc x    of the bivariate 

Lucas polynomials which satisfy 
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  for 0n    and 
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There is also a close connection with the Chebyshev polynomials in the usual form. 

The Chebyshev polynomials of the first kind ( )nT x  satisfy 1 2( ) 2 ( ) ( )n n nT x xT x T x    with 

initial values 0 ( ) 1T x   and 1( )T x x  and 1 (2 , 1)1
( ) 2 , .

4 2
n n

n n

Luc x
T x Luc x     

 
 

The monic Chebyshev polynomials  of the first kind  
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for 0n   and 0 ( ) 1t x     satisfy 1 2 2( ) ( ) ( )n n n nt x xt x t x     with 0
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The Chebyshev polynomials of the second kind ( )nU x  satisfy 1 2( ) 2 ( ) ( )n n nU x xU x U x    

with initial values 0 ( ) 1U x   and 1( ) 2U x x  and 1 1

1
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The monic Chebyshev polynomials of the second kind 
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Identities (1.4), (1.14), (1.20), (1.24) and (1.28) are special cases of the following situation: 
Let ( )np x  be polynomials satisfying  

 1( ) ( ) ( )n n n n mp x xp x p x     (1.38) 

for some integer 1m    and initial values ( ) n
np x x  for 0 .n m    

 

Then there are uniquely determined coefficients ( , )c n k  such that 
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 ( , ) ( 1, 1) ( 1, 1)kc n k c n k c n k m         (1.40) 

with initial values (0, ) [ 0]c k k    and boundary values ( , 1) 0.c n     

If we apply the linear functional   we get 

   ( ,0).nx c n    (1.41) 
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Let us recall a well-known combinatorial interpretation of (1.40): 

The number ( , )c n k  is the weight of all lattice paths in 2  which initial point  0,0  and 

endpoint  , ,n k  where each step is either an up-step    , 1, 1j j     or a down-step 

   , 1 1, .j m j      The weight of an up-step is 1 and the weight of a down-step with 

endpoint  , k  is .k  The weight of a path is the product of the weights of its steps. The 

weight of a set of paths is the sum of their weights. The trivial path    0,0 0,0  has by 

definition weight 1.   

It is then clear that  , 0c mn k i k    for 0 .i m   Therefore (1.39) can also be written in 

the form  
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Let ( ) ( ,0) n

n

u c mn u   be the generating function of the moments. Each nontrivial path has 

a unique decomposition of the following form: For each i   with 1 1i m    there is an up-
step from height 1i   to height i  followed by a maximal path which ends at height i  and 
never falls below height ,i  and finally a down-step which ends on height 0  followed by a 
non-negative path which ends on height 0.   

Therefore we get 

 

 0 1 2 1( ) 1 ( ) ( ) ( ) ( )mu u u u u u          (1.43) 

 

where ( )i u  denotes the generating function of the moments if in (1.38) n   is replaced by 
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where ( , )b n m  is the corresponding weight when k  is replaced by 1.k    
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n
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n

u b n u    

Then (1.44) is equivalent with 

 0( ) 1 ( ) ( ).u u u u       (1.45) 

 

For the polynomials ( )nf x  we have 1n   and therefore (1.45) reduces to (1.7). 
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Identity (1.4) is equivalent with  
2 2

(2 , )
1

n k n k
c n k k
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  and (2 1, ) 0.c n k k     

The corresponding  matrix  ( , )c n k   is known as Catalan triangle (cf. [14], OEIS, A053121). 

For the polynomials ( )nl x  we have 0 2   and 1.n   Therefore ( ) ( )u C u   and 
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From (1.23) we get (1.20) and from (1.27) we deduce (1.28). 

 

 

 2. The simplest q-analogues 
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with initial values ( )
0 ( , ) 1mf x q    and ( ) ( , ) 0m

nf x q   for 0 .n m    

 

For 2m   these are orthogonal polynomials which are closely related to  Carlitz’s q  
Fibonacci polynomials.  

What can be said about the moments of these polynomials? 

 

Denote the moments by ( ) ( ).m
nC q  The generating function ( ) ( )
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   satisfies 

 ( ) ( ) ( ) ( ) 1( ) 1 ( ) ( ) ( ).m m m m m
q q q qC u uC u C qu C q u     (2.3) 
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These q  Catalan numbers have no simple closed formula, but their generating function can 
be represented (cf. [9]) as  
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  This can be used to compute 
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In  [6] a shorter algorithm to compute these numbers has been given. We have 
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Identity (2.8) is equivalent with   ( )
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( 1) 1,
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As q  analogue of (1.8) we get  (cf. [13]) 
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x q C q q x q q C q

k k



   
    
   


  



     
      

      
 

  

 
    

    
       

   

  

   
  

 

 

In the same way we see that 

  1

2 2( ) ( )

1
0 0 0

1

2 2 2( ) ( )

0

( ) ( ) ( )
;

2
( ) ( 1) ( 1) ( ) 1.

n jnm m
m m j k

n n
n j k qmn

n k n k
nm m m

n mjk m k n k m
n k n k

n j k n n kq

mj kx
q C q q C q x x

kx q

mj k n k
x q C q q x q q C q

k k



   
    

   


  


     
      

      
 

  

 
    

    
       

   

  

   
 

and therefore 

 
 

2 ( )

1
0

1

( ) 1.
;

n nm
m

n
n

mn

x
q C q

x q

 
  

 








   (2.10) 
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It seems that there are no q   analogues of ( ) ( )m
nl x  with simple recurrence relations. But there 

is a rather curious class of polynomials which satisfies an operator recurrence relation.   

 

3. Some curious q-analogues 

 

3.1. Let us consider the polynomials (cf. [8]) 

 
12

2 2

0

( , ) ( 1) .

n
k

k n k
n

k

n k
F x q q x

k

 
     

 



 
  

 
   (3.1) 

They are not only q  analogues of ( )nf x   in the sense that 
1

lim ( , ) ( )n n
q

F x q f x


  but can be 

obtained from ( )nf x  by first computing the operator ( (1 ) )n qf x q D   and then applying it to 

the constant polynomial 1.   

Thus  

 ( , ) ( (1 ) )1.n n qF x q f x q D     (3.2) 

They satisfy the recurrence relation   

   1 2( , ) (1 ) ( , ) ( , )n q n nF x q x q D F x q F x q       (3.3) 

with initial values 0 ( , ) 1F x q   and 1( , ) .F x q x   

 

They also satisfy  

 1 1
1 3 4( , ) ( , ) ( , ) ( , ).n n

n n n nF x q xF x q q xF x q q F x q 
       (3.4) 

 

Let  , ( , ) [ 0].F q nF x q n     

The polynomials ( , )nF x q  are not orthogonal. For example    3
, 3 ( , ) ( 1) 0.F q xF x q q q      

 

Nevertheless there a very nice q  analogue of (1.4): 

 
2

2
0 2

( , ).
1

n

n
n k

k n k

n n
x F x q

k k

 
  


 

    
         
   (3.5) 

 This implies that the moments  2
,

n
F q x  are  

  2
,

2 2
( ),

1
n n

F q q

n n
x q c n

n n

    
           

  (3.6) 

where 
21

( )
[ 1]q

n
c n

nn

 
    

 is a explicit q   analogue of the Catalan numbers. 
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I do not know a simple q  analogue of the generating function (1.7), but we have instead 

 
 

2

0
2 1

( ) 1
;

n n

n n
n

n

u
c q q

q u q

 
 
 









   (3.7) 

which is a q   analogue of (1.8). 

 

3.2. Let now  

 2( , ) ( , ) ( , )n n nl x q F x q F x q    (3.8) 

 for 2n   and 0 ( , ) 1l x q    and 1( , ) .l x q x   

Then 

 2 2

0

[ ]
( , ) ( 1)

[ ]

k
n

k n k
n

k

n kn
l x q q x

kn k

 
 

 



 
     
   (3.9) 

 for 0n   and 0 ( , ) 1.l x q     

The polynomials ( , )nl x q  satisfy   

   1 2 2( , ) (1 ) ( , ) ( , )n q n n nl x q x q D l x q l x q        (3.10) 

 with initial values 0 ( , ) 1l x q   and 1( , ) .l x q x  Here 0 2   and 1n   for 0.n    

This can also be written as  

 ( , ) ( (1 ) )1.n n ql x q l x q D     (3.11) 

The polynomials ( , )nl x q  are not orthogonal. 

The identity 

 
2

2
0

( , )

n

n
n k

k

n
x l x q

k

 
  




 
  

 
   (3.12) 

implies that 

  2
,

2
,n

l q

n
x

n

 
   

 
  (3.13) 

if we define the linear functional ,l q  by    , ( , ) 0 .l q nl x q n     

I do not know a simple q  analogue of (1.16) for 
0

2
( ) .n

q
n

n
b u u

n

 
  

 
    

Instead of this  

 
 

1 1

2 2

0 0
2 1

2

;

n nn
n

n
n n

n

n u
q q u

n q u q

    
    
   


 



 
   

    (3.14) 

is a q  analogue of   2 1
0

2 1
.

(1 ) 1

n

n
n

n u

n u u
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3.3. Proofs and remarks 

The polynomials ( , )nF x q   and ( , )nl x q  have been systematically studied in [8]. To prove 

(3.1) it suffices to compare coefficients in (3.3). 

Since these polynomials are not orthogonal and thus do not satisfy a 3  term recurrence of 
the form (1.38) the above combinatorial interpretation fails.  

But formula (3.3) implies Binet-type formulae for these polynomials:  

 

Let A  be the operator (1 ) .qA x q D    For each polynomial ( )p x   in x  we define 

   ( ) 1.p x p A    

Thus  
1 1

( , ) ( )
n n

n nF x q f x
 
 

  
     

 and analogously  

   ( , ) ( ) n n
n nl x q l x        

for 0.n      

This is an exact version of a symbolic method which I used in [10].  

 

This implies  

 
0

.
n

k n k n

k

n
x

k
  



  
   

  
   (3.15) 

 

From (1.30) we get  1

0

1 2
1 .

n
k n k k n k n k n k

k k k

n n n
x q

k k k
        



      
       

     
     

 

Since these are by induction polynomials in x  we get again by induction 

 1 1 2

0

1 .
n

k n k n n n n

k

n
Ax q x x

k
     



  
      

  
   

 

To prove (3.12) observe that for odd n  

   
2 2 2

2 2
2

0 0 0

0

( , )

.

n n n

n k n k n k k n k k
n k

k k k

n
k n k n

k

n n n
l x q

k k k

n
x

k

     

 

     
          

   


  





   
                     
        

   
  

    
  

  



 

If 2n m  then 

 
1 2

2 2 2 2 2 2
2 2

0 0 0

2 2 2 2
( , ) .

m m m
m k m k k m k m

m k
k k k

m m m m
l x q x

k m k k
   


  


  

          
               

          
     

Since 2( , ) ( , ) ( , )n n nl x q F x q F x q   we also get (3.5). 
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Comparing coefficients we see that (3.7) is equivalent with 

2 2

0

2
( 1) ( ) [ 0].

n j
n

j
n j

j

n j
q c q q n

j

   
   
   




 
   

 
   

But this is clear since 

 
1

2 2 2 2
, , 2

0 0

2 2
( 1) ( ) ( 1) ( , ) [ 0].

j j
n n

n j j n j
n j F q F q n

j j

n j n j
q c q q q x F x q n

j j

   
   

   


 

                     
    

 

In the same way we prove identity (3.14): 

 

 
1 1

2 2

0 0 0
2 1

1 1 1
( )

2 2 2

0 0 0

2 2 2
( 1)

;

2 2 2 2
( 1) ( 1)

n jn
j k jk k

n
n j k

n

n k n k
n n k k

n k n k

n k n

n j j ku
q q u q u

n j kq u q

n k n k n k
u q u q q

n k k k

    
    

   


  


        
        
     

  

     
           

       
            

  

  

 

0

1

2
, 2

0

2 2

( , )

n

k

n

n
l q n

n

n k

n k

u q F x q



 
 
 



 
   

 





  

Since 2( , ) ( , ) ( , )n n nF x q l x q F x q   we get 
2

2
0

( , ) ( , ).

n

n n k
k

F x q l x q

 
  




   This implies 

 , 2 ( , ) 1.l q nF x q    

 

 

3.4. The polynomials ( , )nF x q  can be generalized to 

 
1

2( )

0

( 1)
( , ) ( 1)

n
km

m k n mk
n

k

n m k
F x q q x

k

 
     

 



  
   

 
   (3.16) 

   

which satisfy 

 

 ( ) ( ) ( ) ( )
1 1( , ) ( , ) (1 ) ( , ) ( , ).m m m m

n n q n m n mF x q xF x q q D F x q F x q          

 

Note that the operator (1 ) qq D   is applied to ( )
1( , ).m

n mF x q    

 

This follows since the coefficient of 
1

2( 1)
k

k n mkq x
 

 
   of the right-hand side is 
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11 ( 1) ( 1) ( 1) 1
1

1 1

1 ( 1) 1 ( 1) ( 1)
1

( 1) ( 1) ( 1)
1

k n mk k

k k k k

k k k

n m k n m k n m k
q q q

k k k

n m k n m k n m k
q q q q

k k k

n m k n m k n m k
q q q

k k k

   

 

 

            
             

              
         

      
          

        
     

 

 

For 1m   this reduces to  

 
1

2(1) 2

0

( , ) ( 1) ( )( ) .
k

n
k n k n

n
k

n
F x q q x x q x q x q

k

 
 

 



 
      

 
   

Let  

   ( )
( )

,
( ) .m

m mn
n F q

c q x    (3.17) 

 

Note that (2) ( ) ( ).n
n nc q q c q   

If we apply ( ) ,mF q
  to ( ) ( , )m

mnF x q   we get a recurrence for ( ) ( ).m
nc q   

 
1

2 ( )

0

( 1)
( 1) ( ) 0.

k
n

k m
n k

k

mn m k
q c q

k

 
 
 




  
  

 
   (3.18) 

 

The numbers ( ) ( )m
nc q  satisfy  

 
 

1

2( )

0
1

( ) 1.
;

n n
m

n n
n

mn

x
c q q

q x q

 
 
 









   (3.19) 

 

For the left-hand side is 

 
1 1

( )
2 2( ) ( )

0 0 0 0

1 1 1

2 2 2( )

0 0 0

( 1)
( ) ( ) ( 1) ( )

( 1)
( 1) ( )

j n k
n k n k

m j k kj n k m
j n k

j k n k

n k n
n

n k m n
n k

n k n

mj k mn m k
c q q x x q x c q q

k k

mn m k
x q q c q x q

k

     
      

   


   

       
      
     


  

     
     

   

  
    

 

   

    ( )

( )

,
( , ) 1.m

m
mnF q

F x q 

  

 

In the same way the polynomials (2)( , ) ( , )n nl x q L x q  can be generalized to  

2( )

0

( 1) [ ( 2) ]
( , ) ( 1)

[ ( 1) ]

n
km

m k n mk
n

k

n m k n m k
L x q q x

k n m k
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which satisfy 

 ( ) ( ) ( ) ( )
1 1( , ) ( , ) (1 ) ( , ) ( , )m m m m

n n q n m n m n mL x q xL x q q D L x q L x q          (3.20) 

with 0 2    and 1.n     

As above we have  

 ( ) ( ) ( )( , ) ( , ) ( , ).m m m
n n n mL x q F x q F x q    (3.21) 

Let  

  ( )
( )

,
( ) .m

m mn
n L q

b q x    (3.22) 

Then we get the recurrence 

 2 ( )

0

( 1) [ ( 2) ]
( 1) ( ) 0.

[ ( 1) ]

k
n

k m
n k

k

mn m k mn m k
q b q

k mn m k

 
 
 




    
     

   (3.23) 

  

Generalizing (3.14) we get  

 
 

1 1

2 2( )

0 0
1

( ) .
;

n nn
m n

n n
n n

mn

u
b q q u q

q u q

    
    
   


 






    (3.24) 

 

Since by (3.21) we have ( ) ( )

0

( , ) ( , )

n

m
m m

n n mk
k

F x q L x q

 
  




   we have  ( )
( )

,
( , ) 1.m

m
nL q

F x q   

Thus we get  

 
1 1

2 2( ) ( )

0 0 0
1

1
( )

2( )

0 0

1 1

2 2

0

( ) ( ) ( 1)
;

( 1)
( 1) ( )

( 1)
( 1)

n jn
m m j k jk k

n jn
n j k

mn

n k
n n k k

n k m
n k

n k

n k

n k

n

mj ku
b q q b q q u q u

kq u q

mn m k
u b q q

k

mn m k
u q q

k

    
    

   


  


  
   
 


 

    
   
   



 
    

  
   

 

 
 

  

 

  ( )

1 1

2 2( ) ( )

,
0 0 0

( ) ( , ) .m

n n
n

m n m n
n k n kL q

k n n

b q u q F x q u q
    

    
   

 
  


   

 
  

  

 

 

For 1m    we get  
1

(1)

1

( , ) ( 1 )
n

n j
n

j

L x q x q x q




       

 for 1.n     
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4.  q-Chebyshev polynomials 

 

Now we come to a class of orthogonal polynomials where almost all facts from the classical 
case have simple counterparts. 

 

4.1. The  polynomials  

 
   

2
22

1
0

( , ) ( 1)
; ;

n
n k

k k
n n k

k k k

n k x
u x q q

k q q q q

 
   

 


 
     
   (4.1) 

will be called special q  Chebyshev polynomials of the second kind. 

They satisfy the recurrence relation 

     

 
  

1

1 21
( , ) ( , ) ( , )

1 1

n

n n nn n

q
u x q xu x q u x q

q q



 
 

 
  (4.2) 

with initial values 0 ( , ) 1u x q    and 1( , ) .u x q x   

The polynomials ( , )nu x q   are orthogonal with respect to the linear functional defined by 

 , ( ( , )) [ 0].u q nu x q n     (4.3) 

  

More precisely we have 

 
   

1

2

, 2
( ( , ) ( , )) [ ].

; ;

n

u q n m

n n

q
u x q u x q n m

q q q q

 
 
 

  
 

  (4.4) 

 

The identity 

 
   

2

22 2
0

1
( , )

; ;

n

n
n kn k

k k k

n n

k k
u x q x

q q q q

 
  

 


   
       

 
   (4.5) 

gives the moments  

      
22

, 2

2

1
21

( 1) (1 ) ( )2
[ 1] ; ; 1

n
n n n

u q n

n n q

n q
x q q q

nn q q q q n

                 

C   (4.6) 

where  ( )n qC   is a q   Catalan number in the sense of Andrews [2]. 

 

 

 



20 
 

As q  analogue of 
2

1
4 4 4

u u u
C C
       
   

  we get for the generating function 

0

( , ) ( ) n
n

n

u q q u


C C   

 
2

( , ) ( , )
1 ( , ) ( , ).

1 (1 )

u q q qu q qu
u q qu q

q q


 

 
C C

C C   (4.7) 

Let 
 
 

2

2

;
( ) : .

;

u q
h u

qu q




  This is a q   analogue of 1 u   since 
 
 

2

2 2

;
( ) ( ) 1 .

;

u q
h u h qu u

q u q




    

The formula  

 
1 ( )

( , ) (1 )
h u

u q q
u


 C   (4.8) 

   is a q  analogue of  
0

1 1
2 .

4
nn

n
n

C u
u

u

 
   

 

4.2. The special q  Chebyshev polynomials of the first kind are the polynomials 

 
   

2
2

2

0

[ ] 1
( , ) ( 1) .

[ ] ; ;

n

k k n k
n n k

k k k

n kn
t x q q x

kn k q q q q

 
  






 
      
   (4.9) 

The polynomials ( , )nt x q  satisfy the recurrence relation 

 1 2 2( , ) ( , ) ( ) ( , )n n n nt x q xt x q q t x q      (4.10) 

with 0 ( )
1

q
q

q
 


  and 

  
1

1
( )

1 1

n

n n n

q
q

q q







 
 for 0.n    

 

It is easy to verify that 0 0( , ) ( , ) 1,t x q u x q   1 1( , ) ( , )t x q u x q x    and for 2n    

 
  

2 1

21
( , ) ( , ) ( , ).

1 1

n

n n nn n

q
t x q u x q u x q

q q




 

 
  (4.11) 

 

The polynomials ( , )nt x q  are orthogonal with respect to the linear functional ,t q  defined by  

  , ( , ) [ 0].t q nt x q n     (4.12) 

More precisely we have for 0n     

      

1

2

,

1

( , ) ( , ) [ ].
; ;

n

t q n m

n n

q
t x q t x q n m

q q q q

 
 
 



  
 

  (4.13) 
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The identity ([11], Theorem 4.3) 

 
   

2

22 1
0

( , )
; ;

n
k

n
n kn k

k k k

n q
x t x q

k q q q q

 
  

 


 
     
   (4.14) 

implies the moments  

  
 

2
, 2

2
.

;

n
n

t q

n

n q
x

n q q

 
   

 
  (4.15) 

 

Let  

    
2

2

2 2
0

( , ) : ( 1) ; .
;

k k
k k

k
k

q
G u q u u q

q q






     (4.16) 

 By the q  binomial theorem 

 
 2

0

2( , ) 1
( ) .

( , ) ;
n

n
n

nG qu q
g u u

nG u q q q

 
   

 
   (4.17) 

Note that  ( )g u   is a q  analogue of 
1

1 u
 since  2( , ) ;G u q u q


  implies 

1
( ) ( ) .

1
g u g qu

u



 The generating function of the moments is  

  
2

2
,

0

( , )
( ) .

( , )
n n

t q
n

G q u q
x u g qu

G qu q

     (4.18) 

 

Notes 

In [11] we introduced bivariate qChebyshev polynomials ( , , )nT x s q   of the first kind  

by  1 1
1 2( , , ) 1 ( , , ) ( , , )n n

n n nT x s q q xT x s q q sT x s q 
      

with initial values 0 ( , , ) 1T x s q   and 1( , , )T x s q x  

and  bivariate q Chebyshev polynomials ( , , )nU x s q   of the second kind  

by   1
1 2( , , ) 1 ( , , ) ( , , )n n

n n nU x s q q xU x s q q sU x s q
      

with initial values 0 ( , , ) 1U x s q   and 1( , , ) (1 ) .U x s q q x   

 

We then have  

 
  1

( , 1, )
( , )

;
n

n

n

T x q
t x q

q q






  (4.19) 

for 0n   and 

 
 
( , 1, )

( , ) .
;

n
n

n

U x q
u x q

q q





  (4.20) 
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Similar polynomials have also appeared in other publications, cf. [11] or [12] and the 
literature cited there. They are related to the Al-Salam and Ismail polynomials introduced in 
[1]. 

 

The recurrence relations can be easily verified by comparing coefficients. Proofs for (4.5) and 
(4.14) can be found in [11]. 

 

Formula (4.8) follows from the q   binomial theorem (1.31) since 

 
 

 
 

 
 

   

1 2 1 22

1 11
2 2 2 2 2

0 0
1

2
0 0

; ;;
( ) ( ) 1

; ; ;

21
1 1 ( ) .

1 [ 1] 1; ;

n n nn n

n n
n n

n
n n

n
n nn n

q q q qu q
h u qu q u

qu q q q q q

nu q u
u q u

nq n qq q q q

 

 

 
 

 

   

 
        

 

 C

 

 

(4.8) implies     
2

2

( , ) ( , )
1 ( ) 1 ( ) ( , ) ( , )

(1 ) 1

u q u q qu q u
h u h qu u q q qu q u

q q
     

 
C C

C C   

and thus (4.7). 

 

The q   binomial theorem gives 

 
 

 
   

22 2

22 2 2
0 0

;; 2
( ) ( ) .

; ; ;

k
k kk

k k
kk

q qq u q k q
g qu qu u

kqu q q q q q


 


 
      

    

 

Note that the binomial theorem gives 
   2 2 2

0

1 1
.

( , ) ; ;

k

k
k

u

G u q u q q q


    

 

Thus by comparison of coefficients (4.17) is equivalent with the well-known formula 

 

 
2

2

0

2
.

n
j

j

n n
q

j n

   
   

   
   (4.21) 

 

 

 

5. A slight extension. 

5.1. Consider the orthogonal polynomials (1.38) with   
1

1
( , ) .

(1 )(1 )

k

k k k k

q
z q

q z q z
 



 
 

  

Calling them ( , , )nf x z q  we get 
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2
2

2

0

( 1)
( , , ) .

; ;

n
k

k n k
n n k

k k k

n k
f x z q q x

k z q q z q

 
  






  
  

 
   (5.1) 

Note that ( , , ) ( , ).n nf x q q u x q    

These polynomials are also related to the Al-Salam and Ismail polynomials (cf. [1,[11] or [12] 
and the literature cited there). 

 

By (1.45) we get for the generating functions  ( , , ) (2 ,0, , ) n
f

n

u z q c n z q u    and 

( , , ) (2 ,0, , ) n
f

n

u z q b n z q u    

( , , ) 1 ( , , ) ( , , ).
(1 )(1 )f f f

qu
u z q u z q u z q

z qz
    

 
 

 

Since 
2

1 1 2
( , ) ( , )

(1 )(1 )

k

k kk k

q
z q q qz q

q z q z
 



   
 

 we have ( , , ) ( , , ).f fu z q qu qz q    

 

Therefore  ( , , )f u z q  satisfies 

 ( , , ) 1 ( , , ) ( , , ).
(1 )(1 )f f f

qu
u z q u z q qu qz q

z qz
    

 
  (5.2) 

For 1q   this gives 2
2

( , ,1) 1 ( , ,1)
(1 )f f

qu
u z u z

z
   


  and thus 

 2
( , ,1) .

(1 )f

u
u z C

z

 
    

  (5.3) 

    

In the general case there are no simple formulae for (2 ,0, , ),c n z q  but there is a simple 
representation for their generating functions. 

 

Let 

 
   

2

0

( , , )
; ;

n
n n

n n n

u
G u z q q

z q q q




   (5.4) 

 

which is a q  analogue of  the exponential series 
0

1
.

! 1

n

n

u

n z

 
  

    

 

Then   

 
( , , )

( , , )
( , , )

G qu qz q
u z q

G u z q
    (5.5) 

satisfies 



24 
 

 ( , , ) 1 ( , , ) ( , , ).
(1 )(1 )

u
u z q u z q qu qz q

z qz
   

 
  (5.6) 

 

Therefore we get 

 
2( , , )

( , , ) ( , , ) .
( , , )f

G q u qz q
u z q qu z q

G qu z q
 

   


  (5.7) 

This follows from 

       
 
         

   

2

2 2
2

2
1

2 2

( , , ) ( , , )
; ; ; ;

(1 ) (1

; ; (1 ) 1 ; ;

, ,
(1 ) 1

n n n
n n

n n n n n

n n n n n
n n n n

n nn n nn

q u u
G qu qz q G u z q q

qz q q q z q q q

u q z q z u q u
q q

z q q q z qz q z q q q

u
G q u q z q

z qz



 



 
    

 

  
  

 

 
 



    

which implies 

 
 

 
 

 
 

 
 

2 2

2 2

, ,, ,
( , , ) 1 1

, , (1 )(1 ) , ,

, , , ,
( , , ) ( , , ).

(1 )(1 ) , , , , (1 )(1 )

G q u q z qG qu qz q u
u z q

G u z q z qz G u z q

G q u q z q G qu qz qu u
u z q qu qz q

z qz G qu qz q G u z q z qz



 

    
 

   
   

 

 

It is clear that ( , , ) ( , , )u z q uz z q   which satisfies 

 ( , , ) 1 ( , , ) ( , , )
(1 )(1 )

uz
u z q u z q u qz q

z qz
   

 
     (5.8) 

is equivalent with 

 
( , , )

( , , ) .
( , , )

G quz qz q
u z q

G uz z q
 




   (5.9) 

 

 

5.2. If we choose 

 

  

0

1

1
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1

( , )
1 1

n
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q
z q

z

q
z q

q z q z












 

  (5.10) 

we get the polynomials 
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2
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k k k
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l x z q q x
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            (5.11) 
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Note that ( , ) ( , , ).n nt x q l x q q    

 

For the generating function we get 

 ( , , ) 1 ( , , ) ( , , )
1l l l

qu
u z q u z q u z q

z
    


  (5.12) 

and  
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This implies 
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Since 
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we get for 
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( , , )
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2 3 3 2

2
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1 ( , , ) ( , , ).
1 l

G q u z q G q u qz q G q u qz q G q u z qqu qu
u z q

G qu z q z G qu z q z G qu z qG q u z q

qu
u z q u z q

z





   
    

    

  


  

(5.12) implies ( , , ) ( , , ).l u z q u z q    

 

Thus 

 
 
 

2 , ,
( , , ) .

, ,l

G q u z q
u z q

G qu z q


 


  (5.15) 

For the special case ( , ) ( , , )n nt x q l x q q   we get 
 
 

2 , ,
( , , )

, ,l

G q u q q
u q q

G qu q q

 
  

 
 which is the 

same as (4.18). 
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5.3. 

Consider the series  

 
   0

( , , )
; ;

n

n n n

u
F u z q

z q q q

    (5.16) 

and let      

 
( , , )

( , , ) .
( , , )

F u qz q
u z q

F u z q
    (5.17) 

Then  
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(1 )(1 )
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u z q u z q u qz q

z qz
   

 
  (5.18) 

This follows from  
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F u z q F u z q z q q q
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z qz F u z q z qz



 

 


     

 
 

   


 

 

Comparing (5.18) and (5.8) we that 

 

 
( , , ) ( , , )

.
( , , ) ( , , )

F u qz q G quz qz q

F u z q G uz z q
   (5.19) 

In fact we have more precisely 

 
 

     

2;
( , , ) ( , , ) ( , , ) ( , , ) .

; ; ;

n

nn

n n n n

q z q
F u qz q G uz z q F u z q G quz qz q u

z q qz q q q

    (5.20) 

Comparing coefficients this is equivalent with 

 

   
   

   
     2 2 2

0 0

; ; ; ;
; .

; ; ; ;

n n
k k k k k nn n n n

n
k kn k k n k k

z q qz q z q qz qn n
q z q z q z q

k kz q qz q qz q z q


  

   
    

   
    

 

This follows e.g. from the q  Zeilberger algorithm. We use the Mathematica implementation 
of PeterPaule and Axel Riese [15]: 

 

 

 
 

and  

 

qZeilq ^k^2 z^kqPochhammerz, q, n  k qBinomialn, k, q qPochhammerz, q, n
qPochhammerq z, q, nqPochhammerq z, q, k, k, 0, n, n, 1

SUMn  1  q22 n z2 1  q12 n z2 SUM1  n
1  q1n z2
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By (5.19) we can express the generating function ( , , )f u z q  also using ( , , ).F u z q  

 

 
2, ,

( , , )
( , , ) .

( , , ), ,
f

qu
F qz q

G q u qz qz
u z q

qu G qu z qF z q
z

      
  

 

  (5.21) 

 

For the special case z q   we get another representation of the generating function of the 
Andrews q  Catalan numbers: 

    2 2 2, , ( , , )
( , ) , , .

( , , ) ( , , )f

F u q q G q u q q
u q u q q

F u q q G qu q q

  
    

  
C   (5.22) 

Since by (1.32) and (1.33) ( , ) ( , , ) 1F u q q G u q q      this can be written as 
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u q u q u q u
u q

q q q q q q q q q q q q

  
 

  
   C   

 

This is equivalent with the following two (different) expressions for ( ).n qC   
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q q

k qq q

nq q
q q

k qq q

 
 

  







 
    

 
    





C

C

  (5.23) 

 

Remark 

In their paper [4]  M. J. Cantero and A. Iserles prove that the rational functions ( , )na z q  

defined by 0 ( , ) 1a z q    and  
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( , )

; ; ; ;

nn
n j

j j j n n

a z q q

q q z q q q z q




   (5.24) 

for 0n   satisfy  

 
1

1 2 11
lim ( , ) ( 1) .

(1 )

n
n

n n nq

z
a z q C

z



 
 


  (5.25) 

This result also follows from our considerations. 

qZeilq ^k^2  k z^kqPochhammerq z, q, n  k qBinomialn, k, q qPochhammerz, q, n
qPochhammerq z, q, nqPochhammer z, q, k, k, 0, n, n, 1

SUMn  1  q22 n z2 1  q12 n z2 SUM1  n
1  q1n z2
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For the equations (5.24) are equivalent with  

  
0 0 0

1 1
( , ) ( )
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k n

k
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a z q u u qu
z q q q z q q q  
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and thus with  
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follows   
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By (5.18)  2
2 2

( , ,1) 1 ( , ,1)
(1 ) (1 )

uz uz
u z u z C

z z
 

 
      

 which implies (5.25).  

 

Final remarks 

Some results hold also in a slightly more general version by introducing a third parameter .s   

The polynomials ( ) ( , , )m
nf x q s  which satisfy ( ) ( ) ( )

1( , , ) ( , , ) ( , , )m m n m m
n n n mf x q s xf x q s q sf x q s

    are 

given by the formulae 2( )

0

( 1)
( , , ) ( ) .

n
km m

m k n mk
n

k

n m k
f x q s q s x

k

 
     

 



  
  

 
  Both the recurrences 

and the coefficients are given by closed formulae.  For 1m    we also have a nice product 

representation  (1) 1( , ) ( )( ) .n
nf x q x s x qs x q s     

As already mentioned there is no interesting q  analogue of ( ) ( )m
nl x  with simple recurrences 

whose coefficients are given by a closed formula. But if we define 
( ) ( ) ( ) 1( , , ) ( , , ) ( , , )m m m m
n n n ml x q s f x q s f x q q s

   then we get at least a nice formula for the 

polynomials 
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n
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l x q s q s x
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For 2m   these polynomials reduce to the Carlitz q   Lucas polynomials 
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The polynomials 
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have closed formulae for the coefficients and curious q  analogues of the recurrence 
relations. 

For 2m   they have moreover simple closed formulae for the moments. 

The most important special cases are the monic q  Chebyshev polynomials which are 
orthogonal, have simple recurrence relations and closed formulae for both their coefficients 
and for the moments. It would be interesting if there exist  m extensions of these formulae.  

Finally we have considered the polynomials ( , , )nf x z q  and ( , , )nl x z q  which also have closed 

formulae for their coefficients and which for z q   reduce to special Chebyshev 

polynomials and for 0z   to the Carlitz  q  Fibonacci polynomials (2) ( , , ).nf x q q  Their 

generating functions can be expressed as 
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( , , )f

G q u qz q
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