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SUMMARY

It is shown that Rota 's theory of Sheffer polynom ials can be gene ra lized to the
1

quotient field of the ring of formal po wer series in - . As a specia l case we give some
x

applica t ions t o t he classical t heories of factorial series and of Laguerre polynomials.

I . INTROD UCTION

The purpose of this note is to show that Rota's theory of polynomials
of binomial type and more generally of Sheffer polynomials (cf. [2], [4],
[1]) can be generalized to include "polynomials of negative degree". This
generalizat ion makes it possible to include the theory of factorial series
into Rota's theory and thus solve a problem posed in [4], p . 753.

In order to avoid repeti tions of well-known facts we follow the notation
and terminology of [4] if not stated otherwise. The start ing point of this
invest igat ion was t he observation that there are a lot of functions which
may be called Sheffer polynomials of negati ve degree. Simple examples
are t he powers xn or (l +x )n and t he (lower) factorials

F(x + 1)
(x)n= F(x-n + 1)

which are defined for all n E Z . The problem of connection constants for
these examples leads to binomial an d factor ial series. Since convergence
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questions would obscure the simple formalism we want to develop, we
1

have chosen to work in the quotient field F of formal power series in - .x

2. OPERATORS ON F
1

Let F be the quotient field of the ring of formal power series in x
(over a field of characteristic zero) . An clement IE F has a unique repre
sentation in the form

where ak ~ 0 for all k > n. The largest integer n su ch that an =1= 0 is called
the degree deg I of I·

If I(x) = I akxk and g(x) = I blx l are elements of F, then multiplication
is defined by (/g)(x) = IOnxn with On = Ik+! ~n akb l. Since all coefficients
with sufficiently high index vanish, this sum is always finite .

A finite or infinite sequence (/n)'? of elements In E F is called summable
if deg In <:M < co for all n and only finitely many elements of the sequence
have the same degree.

For each summable sequence (/n), In = I ankxk, we define the sum
Iin by

(I In)(x) = I (I ank)xk.
k "

Let us denote by P the ring of all polynomials in x. Then P is a subring
of F .

By multiplying both sides with (x +a)n for n > 0, it is clear that formulas
such as

1
(x+a)n

hold in F.

00 (-n) 1
k~O k a

k
X"+k

DEFINITION : A linear mapping S : F ~ F is called operator if for each
summable sequence (/n) the sequence (Sin) is also summable and S(I In) =

= L (Sin). The set of all operators on F is denoted by L(F).

EXAMPLES;

1. Let gE F. Then I~ gl defines an operator on F, the multiplication
operator g.

(From the context it is always clear whether we mean the element
g E F or the operator g).

2. Define D by

D(I akxk) = Lakkxk- 1 .
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Then clearly DE L(F). We call it the differentiation operator. In order
to have a suggestive terminology we call an element P» E P of the form

00

Pn(x)= L ak Dk xn, nEZ, ao=l=O,
k=O

a polynomial of degree n. For n ;;;. ° this gives of course an ordinary
polynomial.

00 ak
3. Let now k~O k! D» be a formal power series in D. This defines an

00 ak
operator a(D) E L(F) by setting a(D)1 = k~O lei (Dkf) . The element a(D)1

is well defined since (Dkf) is a summable family. It is also clear that
deg a(D)/ <deg I. Therefore a(D) E L(F) .

REMARK : In P we have

(

00 ak
)(Eap)(x)=p(x +a) = k~O k! t» p(x).

Since for n >°we also have

Ea -!.. = 1 = L(~n) ak _1_ = (L a
k

Dk) -!.. ,
xn (x +a)n k ;;>O ( k xn+k k ;;>O k! xn

we may define

j(x +a) = (Eaj)( x) = (eaDj)(x)

for each j E F and get thus all extension of the translation operator Ea
from P to F.

4. We call a set (Pn)nEZ of polynomials pn E F admissible if each pn
has degree n and po = 1. It is clear that each j E F has a unique repre
sentation of the form

Given an admissible set P = (Pn), we define an operator

We call T the admissible operator corresponding to p. We may then
write Pn(x)=Tnl , n E Z.

5. For allY admissibl e set P with corresponding operator T denote by
F(p) the quotient field of formal power series in T-l. Defining cp : F --,)0- F(p)
by
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we can interpret F as a vector space over the field F(p) by setting

Ae;l (,u) =e;l (A,u) for A,,uE F(p) .

It is then obvious that each element j(T) E It'(p) defines an operator
j(T) E L(P) by

j(T) e;l (g(T)) = e; l (f(T)g('l'))

for each g(T) E F(p) .

6. Given any admissible set p with corresponding operator T there
exists a uniquely determined operator R such that Rl = 0 and RT - T R = I
where I denotes the identity operator.

PROOF: Suppose that R exists satisfying RT -TR=I. Then we have
for all n E Z

RTn =TnR +nTn-l .

'I'his follows by induction for n > O.
By multiplying both sides of RT - 'l'R with T-l we get T-IR - RT-l = T-2

or RT-l = T-IR - T-2 . Again by induction we get the desired equ ation for
all n E Z.

Now we use Rl = O. This gives us

Rpn=RTn} = (TnR +nTn-l) 1=nTn-l} = npn- l.

Therefore R must satisfy R L akpk= L akkpk-l . But it is clear that this
R satisfies indeed Rl =O and RT-TR=I.

In the special case p = (x n ) we have T = x and R = D. Therefore we call
R=R(p) the p-differentiation operator.

7. Let p be an admissible set and R p-differentiation. Then for each
00 ak

formal power series L kIRk we get an operator a(R) on F by
1:-0 .

00 ak
a(R)j= k~O k! (Rkf).

3. THI<~ PINCHERLI<~ DltiRIVATIVE

b
The Pineherle derivative is the mapping bD : L(F) -+ L(F) defined by

bS
()D = Sx - xS .

It is in a certain sense dual to differentiation with respect to x, defined by

oS
bx =DS-SD.
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i)D i)x
The equation Dx - xD = 1 means i)D = 1 and bx = 1. Furthermore we have

i) b i) i)
z i)D = i)D x and D i)x = i)x D.

Now we want to generalize this situation:
Let p be an admissible set of polynomials and T t he corresponding

operator . Let R be p-differentiation.
We can now define two linear operators on L(F), the Pineherle deri-

b 0
vatives oR and bT .

DEFINITION: Let T be an admissible operator and R the uniquely
defined operator satisfying R I = 0 and RT - T R = 1. Then we define
~S bS
oR = ST - TS and i)T = RS - SR for each S E F(S) . (Note the asymmetry

in this definition).
bR vr 0 0

It is obvious that oR = I and oT = 1 and that T oR = bR T and

o 0
R oT = oT R holds.

Furthermore we have shown in 2. Example 6. that

bTn
bT = nT n-l for n E Z.

i)Rn
In the same way we can show that i)R =nRn-l for n = 1,2,3, . .. . (Note

that R is not invertible).

LEMMA : For the Pincherl c derivative the Leibniz formula

(
b )n n (n) (O)k ( 0 )n-kbT (f(T)g(T)) = k~O k oT j(T) i)T g(T)

holds for n= 1,2,3, . . ..

PROOF : It suffices to show this formula for n = I . Then it follows easily
by induction. But for n= I it is trivial:

o
bT (f(T)g(T)) = Rj(T)g(T) - j(T)g(T)R =

= (Rj(T) -- j (T )R )g(T )+ j(T)(Rg(T) - g(T)R) =

i) b
= oT j(T) . g(T) + j(T) oT g(T).

We can now prove a very useful formula.
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THEOREM l: Let p be an admissible set of polynomials, T the corre
sponding admissible operator and R p-differentiation. 'I'hen for each
formal power series a(R) and each IE F(p) we have

00 1 ( i) )k ( i) )ka(R)/(T) = k~O k! ?JT I(T) ?JR a(R) .

PROOF: First observe that

e;l (?J~(~)) = i)~~) 1 = (RI(T) -/(T)R)l = RI(T)l = R e;l(f(T)).

ak
Now let a(R) = Lk! Rk and g(T) E F(p). Then we have

00 a
a(R)/(T)g(T)l = L -1 Rn I(T)g(T)l =

o n .

= ~ :~ [(?J~) n (f(T)g(T))] 1

an[" (n) (?J )k ( ?J )n-k ]
= ~ n! k~O k ?JT I(T) ?JT g(T) 1

00 1 ( ?J )k ( 00 an (?J )n-k )
= k~O k! ?JT I(T) ll~k (n-k)! ?JT g(T) 1

00 1 ( ?J )k ( ?J )k
= k~O k! ?JT I(T) ?JR a(R) g(T) 1

Since this holds for each g(T) E F(p) and thus for each g E F, the theorem
is proved.

COROLLARY: Under the same assumptions we have

4. SEQU]<JNCES OF BINOMIAL TYPE AND SHEFFER SETS

1
Consider now the operator T: F -+ F defined by (TI)(x) = x Q' I(x)

where Q= I ~~ i» with al oF 0 is a delta operator and Q'= ~~ its Pincherle
k=l .

derivative with respect to D .
It is obvious that qn(x) = T» 1, nEZ, is a polynomial of degree n . So

q= (qn) is an admissible set and T the corresponding operator.
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Since Ql=O and Q(X~,)-(X~,)Q=(Qx-xQ)~,= 1 we see that Q is

the corresponding q-differentiation operator.
Therefore Qqn = n qn-: for each n E Z.

Since for n > 0 we have qn(x) = (X ~)qn-l(X) and thus qn(O)= 0 we see

that for n;;;,O the set (qn(x)) is precisely the set of basic polynomials for
the delta operator Q ([4], p. 688).

So we have got an extension of this set of polynomials to negative
indices.

EXAMPLE: Let Q=L1=eD- I . Then Q'=eD=E and we get qn(x)=
= (xE-l)nl = (x)n for all nEZ. Suppose n >O. Then we have

1
(x)n =x(x-l) . . . (x-n + 1) and (x)-n= ( 1)( 2) ( )

x+ x+ ... x+n

It should be noted that the polynomial q-l(X) contains the whole infor
mation about the delta operator Q.

al a2 r
For let Q= TI D + 2! D2 + .... I'hen

Thus given q-l(X) we can find the coefficients ak and therefore the delta
operator Q.

PROPOSITION : The sequence (qn)n£z has the binomial property

for all n E Z.

PROOF: As is shown in [4] we have

eaD= ~ a
k

Dk= ! qk(a) Qk.
o k! 0 k!

This identity holds on P. But it is easy to see that it holds on F too since

~ ak Dk = ~ qk(a) Qk
-'-k! -'- k!

is an identity in D (or Q) where each power Ds of D occurs on the right
side only finitely often.

Therefore we have

Ea qn= (I q~~) Qk)qn= t (~)qk(a) qn-k

for all n E Z.
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Another way to show this is by using Theorem 1. Apply this to eaDTn.
We get

(
1 )n 00 (n) ( 1 )n-k ( ~ )k

eaD x Q' = k~O k x Q' ~Q e
aD.

qk(a) ( ~ )kNow from eaD= L"""k'i"""" Qk we see that C'lQ eaDl = qk(a) and therefore

BXAMPLl<J : For Q= L1 and n = - 1 we get

1
Ea(X)_l = --

x+a+l

For a = - 1 this reduces to

00

L (-I)k(a)k (X)-k-l.
1:=0

1 00 kf
- = L .
X k-O (x+ l)(x + 2) .. . (x+ k+ 1)'

In order to get more insight into polynomials of binomial type of negative
degree let us first define a composition for admissible sets of polynomials
whi ch generalizes umbral composition to arbitrary indices.

Let P = (Pn) and q= (qn) be two admissible sets. Then we define r =P 0 q
by (p 0 q)n (x) = pn (q(x) in the umbral notation of [2]. This means the
following : Let Pn(x) = Lankxk. Then

(p 0 q)n(x) = Lank qk(X).
I:

It is clear that the admissible sets form a group under this operation,
the unit element being the set e = (Xn)nEZ,

Let T(p) be the operator corresponding to the admissible set p. Then
T(e)j(x)=xj(x) , the multiplication operator by x .

We now define T(p) 0 T(q): = T(p 0 q). This defines an operation 0 on
all admissible operators. Theorem 7 in [4] proves that for the sets of
binomial type p corresponding to the delta operator P and q corresponding

1 1
to the delta operator Q with T(p) = x p' and T(q) =x Q, we have

1 1 1
T(p) 0 T(q)=T(p 0 q)=x Q' P'(Q) =X (P 0 Q)"
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As a special case we get for the inverse set P = q-l with

po q=q 0 p=e

1
that T(p) =T(q-l) =X (G(D))' if Q=g(D) and G is the inverse defined by

G(g(D)) =g(G(D)) =D.

EXAMPLE : The inverse set to ((x)n) corresponds to the delta operator
G(D)= log (l +D). Therefore it is given by

Pn(x) = (x(1 +D))nl for n E Z.

For n :»0 we get the exponent ial polynomials.
A direct computation gives us

1 1 1 1 11 21
P-l(X)= -1D - =(I-D+D2- + ...)- = - + -2' + -3' + ... and

+ x x x x x

1 1 00 ( 1 ) 1
P-2(X) = -1D -P-l(X)= I (k+l)! 1+!+"'+k-l k;2"+ x It-O + X

Now we can prove a remarkable fact.

THEOREM 2 : Let q = (qn) be the set of binomial type corresponding
to the delta operator Q= g(D) and let P = (pn) denote the inverse set
corresponding to the delta operator P=G(D). Then we have

00 1 00

I (- l)k qk(a) k = ~ (-I)k ak P-k(X) .
k-O x k-O

l'ROOF: We start with the formula

which implies

eaG(D) = '" qk(a) Dk= ~ a
k

G(D)k
£.. k! £.. k ! "

Now we have

beaG(D)
--- = eaG(D)x - xeaG(D) = aG'(D)eaG(D).

bD
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1
Applying this to xE F we get

eaG(D) 1 - xeaG(D) ~ = a eaG(D) ( Gf (D) ~)

1
1- xeaG(D) - = a eaG(D) P-l (x)

x

1 00 ale
xeaG(D) - = 1 - a ! -, (G(D))k P-l (x)

x k~O k .
00
! (-l)le ale P-1c (x) .

k =O

On the other hand we have

1 q1c(a) 1 00 1
x eaG(D)_ =x ~ _-D1c - = ! (_1)1c q1c(a) x1c'x ,k k! x 0

which proves our theorem.

COROLLARY: Let P and q be as in the theorem and set

n

qn(x) = ! Cn1cX1c for n :>o.
k-O

Then
00 1

P--'TI(x)= ! (-l)1cCn +1c n - .
k=O ' xn+1c

an
PROOF : The coefficient of xn+1c in the first sum of the theorem is

( -1 )n+1ccn+1c,n and in the second sum = (_l)n times the coefficient of
1

xn+1c in p -n(x).

REMARK: This may be considered as a generalization of [4], Theorem fi,

Cor. 2.

EXAMPLE: Let qn(x) = (x)n and let P be the inverse set. Then

n
(x)n = ! s(n, k)xk for n ;» o.

k-O

Therefore we get

00 1001
P-n(x)=! (-l)ks(n+k,n)~=! !s(n + k, n )l ---:j:k

k =O xn
k =O xn

where s(n , k) are the Stirling numbers of the first kind.
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1
Now let the delta operator Q be given. Then T = XQ' is one operator

satisfying QT-TQ =I. If a(Q) is any formal power series in Q,

then clearly also T - a(Q) satisfies Q(T - a(Q)) - (T - a(Q))Q = I. (On P
this would be the most general operator with this property. But un
fortunately this is not so on F).

Define now

(
aoQ al Q2 a2Q3 )

s(Q) = exp IT + 2! +3! +... .

bs(Q)
Then W = a(Q)s(Q) and therefore we have

1 1 s'(Q) . , bs(Q)
T-a(Q) =x Q' -a(Q)=x Q' - s(Q) , with e (Q)= bQ .

This may also be written in the form

x ~' -a(Q) =s-l(Q) (x ~,) s(Q)

since

(x ~,) s(Q) = s(Q) x ~' -s'(Q).

From this representation it is obvious that each such operator is ad
missible.

For n ;;.0 we get

since s(Q)I =1. This means that sn(x)=(T-a(Q))nl is the Sheffer set
relative to Q and the invertible operator s(Q) with

00 s
S-l(Q)= ! k~ Qk and so=1.

o .

We have thus obtained an extension of each Sheffer set. It is clear that
QSn= nSn-l holds for all n E Z and also that

sn(x+a)= Jo (;) sk(a) qn-k(X)

holds for all n E Z .
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EXAMPLE : For the Hermite polynomial with variance v we get the
operator

x - vD = e-V (Ift / 2) x ev (Ift/ 2) .

This means that

H';.(x) = (x-vD)nI for all n E Z .

5. SOME GENERALIZATIONS AND EXAMPLES

Given any admissible sequence of polynomials (qn) we can construct
the pair of operators T and R . Let us call (qn) a basic set if qn(O) = 0 for
n= 1,2,3, .. .. Consider now an operator of the form T-a(R) for some
formal power series in R . AR before there exists an invertible formal
power series 8(R) such that

T - a(R) = 8-1(R)T8(R) .

We then call the corresponding set of polynomials

8n(X)= 8- 1(R )qn(x) = (T - a(R))n 1

the Sheffer set relative to T and the invertible operator 8(R).

We can then carryover some of the results on basic sets of binomial
type to this more general situation. Let e.g. q= (qn) be basic and T, R
the corresponding operators. Then for each formal power series g the
operator

1 ,bg(R)
T g'(R) , where g (R) = ~R'

is admissible and corresponds to the derivation g(R). But in this case
the inverse set to q need not be Sheffer for any function G(R) of R .

It depends of course on the special problem, what operators have to
be studied. Suppose e.g. that we want to study Laguerre polynomials.
We may start from the formula

L~") (x) = ! (-I)k (n
k

) (n+ IX)n-k xk= -(1) ! (_I)k (n
k

) Xk(IX)_k
k -O IX -n k=O

if IX f/= Z .

It is natural to consider in this case the admissible set (Xk( lX)-k)kEZ , In
order to include also the case IX= l E Z we are led to redefine (IX)k by
replacing each factor IX-l = 0 by the factor 1. This gives no change in
the Laguerre polynomials themselves since they depend only on the

t · t (IX)-k hi h . h d F . t . tquo ien (IX)-n W C remains unc ange. or convemence we res rIC

ourselves to IX> - 1. Let T" and R" be the operators corresponding to
the sequence (Xk(IX)_k).
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It is easy to verify that for ex = 0 the operator To is given by
I I

To xk= k+ I xk+lif k* -1 and To;; = I, and RoXk=k2xk - 1 = (DxD)xk. Let

<t

us denote by T the operator on P defined by (Tp)(x) = J p(t)dt. Then
o

on P we have To=T and Ro=DxD.
Similary we can convince ourselves that for .x> - 1 we have on P the

equations

T",=x-'" TX'" and R", =D(x+exT)D.

Our formula for L<:) (x) gives us at once the representation

(ex)-II L<;) (x) = (1- T",)II1.

From this formula some immediate consequences can be drawn:

1. (-I)IIL;."')(x)(ex)_n= e-R"' T:1.
This follows from the equation e - R", T '" eR", = T '"- 1 and shows that
(_1)11L<:I(X)(ex)_n is a Sheffer set relative to To< and the invertible ope
rator eR",.

2. The duplication formula :

L',:) (ax)(ex)-n=(I-aT",)n= [l-a +a(I-T",)]nI =

! (n) (I-a)n-k ak(I-T",)k 1= .i (n) (I-a)n-kak L~"') (X)(.x)-k
~=o k k -O k

3. L~"') is self-inverse :
(1- (1- T",))n = T: gives

xn(.x)-n=T:I = Jo (-I)k (~) (l-T",)kl = Jo (-I)k (~) Ll."') (X)(ex)-k,

i.e. L<;) (Ll"'l(x)) = XII.

These easy proofs show that this is perhaps a more natural view on
the Laguerre polynomials than that proposed by Rota ([4]). This feeling
is supported by the fact that the classical inner product for Laguerre
polynomials

1 00

(f(x), g(x)) = F(.x+ I) I xC< e-X f(x)g(x)dx

has a simple expression in terms of R", and T "'.

REMARK : It is of course possible to translate our formulation into
Rota's and vice versa by working directly with the corresponding ope
rators.
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1. For example we know that (-I)nL~O)(x)=n! (T-I)nl. From Rota's
theory we get ( -1)nL~O)(x)=(I-D)[x(I-D)2]nl.That these formulas are
equivalent can be seen as follows :

(I-D)[x(I-D)2]n1 = [(1-D)x(1-D)]n1 = [(TD -D)x(DT - D)]n1

since DT = 1, and T D = 1 on all polynomials with vanishing constant term.
The last term equals

since R(T _1)n1= n(T - 1)n-11.

2. Let us show that L;:)(x)=x-"'(D-l)nx<>+n for n =O, 1,2, .... Since we
suppose IX > -1 we have x-"'Dx<> =D", =T;;1 on P. This implies

6. THE UMBRAL CALCULUS

J...et p and q be admissible sets of polynomials. Then there exists a
uniquely determined linear operator U~:}l ~ F which maps qn(x) into
(p 0 q)n(x) for all n E Z. To this operator U~ there corresponds a uniquely
determined ring isomorphism !p~ : F(p) ~ P(p 0 q) such that the diagram

UP
F

q
--F

e«j je.o,
F(q)

~
--F(p 0 q)

commutes. This ring isomorphism is given by

It satisfies %!p~ = !P~Oq because of

-1 I'oq (n) ( ) () UP Uq( n) -1",JJ -1 q -1 ( n)Epoq!pe Ee X = P 0 q n X = q e X = CpOq 'f'q Eq Eq !po Ee X •

This formulation of the umbral calculus seems to be slightly more sug
gestive than the original formulation of Rota to which it is logically
equivalent.

The only new fact is the observation that the umbral calculus also
holds for negative indices.
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1
EXAI\IPL:g 1: Consider the problem of expanding x n into a factorial

1
series, x n = L ak(x)-k.

Let q= ((X)n) and p it s inverse set. Then this equation is equivalent
with

But we know already that

00 1
P-n(x) = L Is(n + k , n)I-1I: '

k=O xn+

Therefore we have

1 00

- = L Is(n+k, n) /(X)-n -k.
xn k=O

EXAMPLE 2: Let IE F have the factorial expansion

00 k'
I(x)= L ak· .

k =1 (x+ 1) ... (x+k + 1)

Determine the expansion of f' = DI.
Now

00 (-1 )11:-1 k
D = log (1+ .d)= f k .d.

Therefore we have

00 ( 1)11:-1 A k 00 l '
f'(x)= L - LJ L al ' .

k~1 k 1=1 (x+ 1) ... (x +l+ 1)

00 ( )
I an an- l a1L n . T + 2 + .. .+ - (x) -n-l-

n =2 n

All other purely formal results on factorial series (cf. [3] and the papers
cited there) can also be easily obtained in the same way.

PROBLEM: Formal manipulation with polynomials of negative degree
would be much simplified if we could give a precise meaning to some
infinite sums and integrals in F. E.g. starting from the formula

1
x

o
f eXS ds

-00
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we would get

1
f(D) - = S f(x)eXB ds

x

and finally

q-l(X) =g'(D) ~ = S g'(s) eXsds= S exG(s)ds
x

and more generally

( _1)n-l
q--1l(x) = (17, _ I)! S sn-l eXG(s)ds.

We could extend then the evaluation at 0 fun ctional L on P to all clements

f = (I(D)) ~ of P by L(f) = J f(t)dt,
x -00

whenever this integral exists. By doing this we could generalize some
formulas containing L . E.g. formula 2.4 of [1] would give us

(UGf)(y )= L(eYG(D)f).

Is it possible to make these things precise?
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