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A symmetrical Eulerian identity

Fan Chung, Ron Graham and Don Knuth

We give three proofs for the following symmetrical identity involv-
ing binomial coefficients

(
n
m

)
and Eulerian numbers

〈
n
m

〉
:

∑
k

(
a + b

k

) 〈
k

a − 1

〉
=

∑
k

(
a + b

k

)〈
k

b − 1

〉

for any positive integers a and b (where we take
〈

0
0

〉
= 0). We also

show how this fits into a family of similar (but more complicated)
identities for Eulerian numbers.

1. Introduction

Eulerian numbers, introduced by Euler in 1736 [5], while not as ubiquitous as
the more familiar Bernoulli numbers, Stirling numbers, harmonic numbers,
or binomial coefficients, nevertheless arise in a variety of contexts in enumer-
ative combinatorics, for example, in the enumeration of permutations with
a given number of descents [7]. Because the recurrence for Eulerian numbers
is a bit more complicated than for many other families of special numbers,
and because they increase in size rather rapidly, it was stated in [7] that,
“We don’t expect the Eulerian numbers to satisfy as many simple identi-
ties.” Nevertheless, the following identity is rather elegant and appears to
be new.

Theorem 1. For positive integers a and b,

(1)
∑
k

(
a + b

k

) 〈
k

a − 1

〉
=

∑
k

(
a + b

k

) 〈
k

b − 1

〉
.

We point out here that we will use the convention that the Eulerian
number

〈0
0

〉
is 0 (instead of the more common convention in which this is

taken to be 1).
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Even for the special case of b = 1, the resulting identity is interesting.
It states that for any positive integer a,

∑
k

(
a + 1

k

) 〈
k

a − 1

〉
= 2a+1 − 1.

Equation (1) looks superficially like the well known Worpitzky identity [7, 9]

(2) xn =
n∑

k=0

(
x + k

n

) 〈
n
k

〉

(which converts between two bases for polynomials over C), but is actually
quite different. One difference being that the running index of the Eulerian
number in (2) is on the bottom, whereas in (1) it is on the top.

In this note, we will give three different proofs of Theorem 1 and also
derive some extensions of it. These identities arose in a recent study of
descents in permutations which have a restriction on their largest drop [4].

2. A direct proof

We start with the following basic Eulerian identities [7]:〈
n
m

〉
=

〈
n

n − m − 1

〉
, for n ≥ 0;

〈
n
m

〉
=

m∑
k=0

(−1)k

(
n + 1

k

)
(m + 1 − k)n, for n > 0.(3)

Lemma 1. For two positive integers a and b,

∑
k

(
a + b

k

) 〈
k

a − 1

〉
=

b−1∑
p=−1

(
a + b + 1

p + 1

)
(b − p)a+b−p−1(1 − b + p)p+1

−
b−1∑
p=0

(
a + b

p

)
(b − p)a+b−p−1(1 − b + p)p.

Proof.

∑
k

(
a + b

k

) 〈
k

a − 1

〉
=

∑
k

(
a + b

a + b − k

) 〈
a + b − k

a − 1

〉
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=
b∑

k=0

((
a + b + 1

a + b − k + 1

)
−

(
a + b

a + b − k + 1

)) 〈
a + b − k

b − k

〉

=
b∑

k=0

(
a + b + 1

a + b − k + 1

) 〈
a + b − k

b − k

〉
︸ ︷︷ ︸

=X

−
b∑

k=0

(
a + b

a + b − k + 1

) 〈
a + b − k

b − k

〉
︸ ︷︷ ︸

=Y

.

We further expand X using (3):

X =
∑
k

(
a + b + 1

a + b − k + 1

) 〈
a + b − k

b − k

〉

=
b∑

k=0

(
a + b + 1

a + b − k + 1

)
b−k∑
j=0

(−1)j

(
a + b − k + 1

j

)
(b − k + 1 − j)a+b−k

=
b∑

k=0

b−k∑
j=0

(−1)j

(
a + b + 1

k + j

)(
k + j

j

)
(b − k + 1 − j)a+b−k

=
b−1∑

p=−1

p+1∑
j=0

(−1)j

(
a + b + 1

p + 1

)(
p + 1

j

)
(b − p)a+b−p+j−1

=
b−1∑

p=−1

(
a + b + 1

p + 1

)
(b − p)a+b−p−1

p+1∑
j=0

(−1)j

(
p + 1

j

)
(b − p)j

=
b−1∑

p=−1

(
a + b + 1

p + 1

)
(b − p)a+b−p−1(1 − b + p)p+1.

In a similar way, we have

Y =
∑
k

(
a + b

a + b − k + 1

) 〈
a + b − k

b − k

〉

=
b∑

k=0

(
a + b

a + b − k + 1

)
b−k∑
j=0

(−1)j

(
a + b − k + 1

j

)
(b − k + 1 − j)a+b−k

=
b∑

k=0

b−k∑
j=0

(−1)j

(
a + b

k + j − 1

)(
k + j − 1

j

)
(b − k + 1 − j)a+b−k
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=
b∑

p=0

(
a + b

p

)
(b − p)a+b−p−1

p∑
j=0

(−1)j

(
p

j

)
(b − p)j

=
b−1∑
p=0

(
a + b

p

)
(b − p)a+b−p−1(1 − b + p)p.

Now we will use the following binomial identity of Abel [1]: For n > 0,
α �= 0 and β real,

(4)
(x + α)n

α
=

n∑
k=0

(
n

k

)
(x + kβ)n−k(α − kβ)k−1.

We use the notation in Lemma 1 with

∑
k≥1

(
a + b

k

) 〈
k

a − 1

〉
= X − Y.

By using (4), substituting α = −a, β = −1, n = a + b + 1, k = a + b − p,
x = 1 + a, we have

X =
b−1∑

p=−1

(
a + b + 1

p + 1

)
(b − p)a+b−p−1(1 − b + p)p+1

= −1
a
−

a∑
k=0

(
a + b + 1

a + b − k + 1

)
(k − a)k−1(1 + a − k)a+b−k+1.

Also, making the same substitutions as above but with n = a + b in (4), we
have

Y =
b−1∑
p=0

(
a + b

p

)
(b − p)a+b−p−1(1 − b + p)p

= −1
a
−

a∑
k=0

(
a + b

a + b − k

)
(k − a)k−1(1 + a − k)a+b−k.

Together, we have

X − Y =
a∑

k=0

(−1)k

(
a + b + 1

k

)
(a − k)k−1(a − k + 1)a+b−k+1
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−
a∑

k=0

(−1)k

(
a + b

k

)
(a − k)k−1(a − k + 1)a+b−k

=
a∑

k=0

(−1)k

(
a + b + 1

k

)(
(a − k)k + (a − k)k−1)(a − k + 1)a+b−k

−
a∑

k=0

(−1)k

(
a + b

k

)
(a − k)k−1(a − k + 1)a+b−k

=
a∑

k=0

(−1)k

(
a + b + 1

k

)
(a − k)k(a − k + 1)a+b−k

+
a∑

k=1

(−1)k

(
a + b

k − 1

)
(a − k)k−1(a − k + 1)a+b−k

=
a−1∑

k=−1

(−1)k+1

(
a + b + 1

k + 1

)
(a − k − 1)k+1(a − k)a+b−k−1

−
a−1∑
k=0

(−1)k

(
a + b

k

)
(a − k − 1)k(a − k)a+b−k−1.

The above expression is exactly equal to

∑
k≥0

(
a + b

k

) 〈
k

b − 1

〉

by using Lemma 1 again but interchanging a and b. This completes the first
proof of Theorem 1.

3. A bijective proof

We first transform the right-hand side of (1) using the reflection property
of Eulerian numbers, and setting n = a + b, to

(5)
∑
k

(
n

k

) 〈
k

a − 1

〉
=

∑
k

(
n

k

) 〈
n − k
a − k

〉
.

Now we interpret the left-hand side (LHS) as the number of strings of
length n on the alphabet {1, 2, . . . , a, ∗} such that each of the pairs (2, 1),
(3, 2), . . . , (a, a − 1) occurs as a not-necessarily-consecutive substring. For
example, one such string when n = 10 and a = 4 is 3141∗421∗3. A string with
k non-∗ symbols corresponds to one of the permutations of k elements that
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are enumerated on the LHS; in this case we may regard it as a permutation
of {0, 1, 2, 3, 5, 6, 7, 9}, namely of the indices j in the string x0 . . . xn−1 where
xj �= ∗. This permutation is supposed to be one of the

〈k
3

〉
that have exactly

3 descents; indeed, it is 13760925. (First write down the indices j that have
xj = 1, then write those with xj = 2, etc.) The general case follows in the
same way.

The sum on the right-hand side (RHS) will be nonzero only when 0 ≤
k ≤ a. Interpreting it as above, the case k = 0 corresponds to strings of
length n on {1, 2, . . . , a, a + 1} that contain (2, 1), (3, 2), . . . , and (a + 1, a).
The case k = 1 is similar, but on the alphabet {1, 2, . . . , a, ∗}. It contains
(2, 1), (3, 2), . . . , and (a, a − 1) and it must have exactly one ∗. The case of
general k has alphabet {1, . . . , a + 1 − k, ∗}, contains (j + 1, j) for 1 ≤ j <

a + 1 − k, and has exactly k occurrences of ∗.
We now construct a bijection between these two sets of strings.
LHS → RHS: For a string σ in the LHS, let k denote the least index

(possibly 0) such that either (k + 1, ∗) or (k, k) appears in σ. We map σ to
a string τ in the RHS by the following rule:

∗ → 1
i → ∗ if i < k,

leftmost k → ∗
other k’s → 1

j → j − k + 1 if j > k.

Note that since (i, i) doesn’t appear in σ for i < k, but i does, then τ has
exactly k ∗ ’s.

RHS → LHS: Let τ be a string in the RHS which has k ∗ ’s. We first
map these ∗’s to the elements k, k − 1, . . . , 2, 1 in order, with the leftmost
∗ being mapped to k. Then, all 1’s to the left of the leftmost ∗ get mapped
to ∗, and all 1’s to the right of the leftmost ∗ get mapped to k. Finally,
for 2 ≤ i ≤ a + 1 − k, we map i to i + k − 1. (We recommend that the
reader carry out these mappings on a few specific examples to get a feeling
for what is happening! For example, in the example mentioned previously
with n = 10, a = 4, we have 3141∗421∗3 ↔ 4252153214 and ∗334324313 ↔
1∗121∗21∗1.)

To complete the proof, it is now just a matter of checking that these
two mappings are indeed a bijection between the LHS and the RHS of (5)
(which we leave to the reader) and the proof is complete.
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4. A generating function proof

The generating function for our “modified” Eulerian numbers (i.e., with〈0
0

〉
= 0) is

(6) E(w, z) =
ez − ewz

ewz − wez
=

∑
n,i

〈
n
i

〉
wi z

n

n!
.

(This is obtained by subtracting 1 from the usual generating function for
the Eulerian numbers, which is Eq. (7.56) in [7].)

First, we compute

ewzE(w, z) =
∑
k

(wz)k

k!

∑
n,i

〈
n
i

〉
wi z

n

n!

=
∑
k

wkzk

k!

∑
n′,i′

〈
n′ − k
i′ − k

〉
wi′−k zn′−k

(n′ − k)!

=
∑

k,n′,i′

1
k!

〈
n′ − k
i′ − k

〉
wi′ zn′

(n′ − k)!

=
∑
k,n,i

(
n

k

) 〈
n − k
i − k

〉
wi z

n

n!
.

Next, we compute

wezE(w, z) = w
∑
k

zk

k!

∑
n,i

〈
n
i

〉
wi z

n

n!

= w
∑
k

zk

k!

∑
n′,i′

〈
n′ − k
i′ − 1

〉
wi′−1 zn′−k

(n′ − k)!

=
∑

k,n′,i′

1
k!

〈
n′ − k
i′ − 1

〉
wi′ zn′

(n′ − k)!

=
∑
k,n,i

(
n

k

) 〈
n − k
i − 1

〉
wi z

n

n!
.

But by (6) we have

(ewz − wez)E(w, z) = ez − ewz =
∑
k

(1 − wk)zk

k!
.
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Hence, by identifying coefficients of wizn in these expressions, we obtain for
n > 0,

(7)
∑
k

(
n

k

) 〈
n − k
i − k

〉
−

∑
k

(
n

k

) 〈
n − k
i − 1

〉
=

⎧⎪⎨
⎪⎩

1, if i = 0 �= n,
−1, if i = n �= 0,
0, otherwise.

By juggling the variables in (7), (setting n = a+b and i = a while juggling),
we can recover (1).

The reason this approach worked was because the multiplier (ewz −wez)
was divisible by the denominator ewz − wez of E(w, z). We could carry out
the same argument with any multiple of ewz−wez, for example, e2wz−w2e2z.
In this case, the terms corresponding to the right-hand side of (7) are

(ewz + wez)(ez − ewz) = e(w+1)z − e2wz + we2z − we(w+1)z

=
∑
k

(w + 1)kzk

k!
−

∑
k

2kwkzk

k!
+ w

∑
k

2kzk

k!

−
∑
k

w
(w + 1)kzk

k!
.

Expanding the corresponding sums and extracting the coefficient of wizn

yields for n, i ≥ 0,

∑
k

2k

(
n

k

) 〈
n − k
i − k

〉
−

∑
k

2k

(
n

k

) 〈
n − k
i − 2

〉

=

(
n

i

)
−

(
n

i − 1

)
+

⎧⎪⎨
⎪⎩

2n, if i = 1 �= n,
−2n, if i = n �= 1,
0, otherwise.

More generally, if we use the multiplier erwz−wrerz for a positive integer
r, we obtain for n, i ≥ 0,

∑
k

rk

(
n

k

) 〈
n − k
i − k

〉
−

∑
k

rk

(
n

k

) 〈
n − k
i − r

〉

= Cr(n, i) +

⎧⎪⎨
⎪⎩

rn, if i = r − 1 �= n,
−rn, if i = n �= r − 1,
0, otherwise,
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where

Cr(n, i) =
r−1∑
j=1

jn−i+j−1(r−j)i−j+1

(
n

i − j + 1

)
−

r−1∑
j=1

jn−i+j(r−j)i−j

(
n

i − j

)
.

5. Concluding remarks

A number of questions remain unresolved, some of which we mention here.

1. Can bijective proofs be found for some of the more general identities
we have described?

2. Are there interesting identities which would result from taking other
multiples of ewz − wez?

3. Are there q-analogs to some of these identities? For related work, see [3,
6] and [8], for example.

4. It is well known that
〈n

k

〉
also counts the number of permutations π

on [n] which have k drops, i.e., k elements i ∈ [n] for which π(i) < i.
With this interpretation, we can replace

〈n
k

〉
by δP (k), defined for an

arbitrary poset (P,≺) to be the number of permutations π : P → P
which have k drops, which means k elements x ∈ P such that π(x) ≺ x.
With this interpretation, it is sometimes possible to extend results
involving Eulerian numbers to this more general setting. For example,
such an extension is known for the Worpitsky identity.

Theorem 2 ([2]). For a poset (P,≺) on n points, and any positive
integer a, we have

(8)
∑
k

δP (k)

(
a + k

n

)
= χG(P )(a)

where G(P ) is the incomparability graph generated by (P,≺) and χG(P )

is the chromatic polynomial of G(P ).

When P = [n], linearly ordered by size, then G(P ) is the empty graph
on n vertices and χG(P )(a) = an, so that (8) reduces to the Worpitsky
identity (2). Is it possible to extend our results in this direction?
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