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Abstract

By means of series rearrangement, we prove an algebraic identity on the symmetric difference of
bivariate Ω -polynomials associated with an arbitrary complex sequence. When the sequence concerned is
ε-reciprocal, we find some unusual recurrence relations with binomial polynomials as coefficients. As
applications, several interesting summation formulae are established for Bernoulli, Fibonacci, Lucas and
Genocchi numbers.
c© 2005 Elsevier Ltd. All rights reserved.

In view of the classical binomial transform, a sequence {an}
∞

n=0 is said to be ε-reciprocal iff
the following relation holds:

n∑
k=0

(−1)k
(n

k

)
ak = εan for n ∈ N0.

When ε = ±1, we shall simply call the corresponding sequences reciprocal and minus-reciprocal
respectively. There are several classical combinatorial sequences satisfying ε-reciprocity, for
example, the sequence {

1
2n }

∞

n=0, the Bernoulli numbers, the Fibonacci numbers, the Lucas
numbers and the Genocchi numbers.

Motivated by the recent works due to Sun [7,8], we shall investigate symmetric differences
of bivariate Ω -polynomials. Several summation formulae will be established that are generally
valid for ε-reciprocal sequences. They lead us, subsequently, to numerous interesting old and
new combinatorial identities on the classical numbers just mentioned.

The paper is organized as follows. In the first section, we shall define, for an arbitrary
complex sequence, the associated polynomials and prove a symmetric difference theorem

E-mail addresses: chu.wenchang@unile.it (W. Chu), pierluigi.magli@unile.it (P. Magli).
1 Tel.: +39 0832 297409; fax: +39 0832 297594.

0195-6698/$ - see front matter c© 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2005.10.012

http://www.elsevier.com/locate/ejc
mailto:chu.wenchang@unile.it
mailto:pierluigi.magli@unile.it
http://dx.doi.org/10.1016/j.ejc.2005.10.012


922 W. Chu, P. Magli / European Journal of Combinatorics 28 (2007) 921–930

on bivariate Ω -polynomials. Then in the second section, the ε-reciprocal sequences will be
characterized by their associated polynomials and exponential generating functions. In particular,
several summation formulae for the ε-reciprocal sequences will be derived from the symmetric
difference theorem. As applications, numerous interesting old and new identities on the sequence
{

1
2n }

∞

n=0, the Bernoulli numbers, the Fibonacci numbers, the Lucas numbers and the Genocchi
numbers will be displayed in the third section.

1. Algebraic identity on the symmetric difference

With ` ∈ Z and c ∈ C, let (c)` stand for the shifted factorial defined explicitly by

(c)` =


c(c + 1) · · · (c + ` − 1), ` = 1, 2, . . . ;

1, ` = 0;

1
(c − 1)(c − 2) · · · (c + `)

, ` = −1, −2, . . . .

For any given complex sequence {an}n∈N0 with N0 being the set of non-negative integers, the
associated polynomials are defined by

An(x) =

n∑
k=0

(−1)k
(n

k

)
ak xn−k for n ∈ N0. (1.1)

Define further the Ω -functions with two variables x, y and three integer parameters m, n, ` with
m, n ∈ N0 and ` ∈ Z through

Ωm,n,`(x, y) :=

m∑
k=0

(m

k

) An+k+`(x)

(n + k + 1)`
(y − x)m−k . (1.2)

Then we establish the following fundamental theorem.

Theorem 1 (Symmetric Difference). Let the Ω -polynomials be defined by (1.2). Then the
symmetric difference Ωm,n,`(x, y) − Ωn,m,`(y, x) vanishes for ` ≤ 0 and is equal, for ` > 0, to
the following expression:

(−1)m m!n!

(m + n + `)!

∑̀
k=1

(
m + n + `

` − k

) (
m + k − 1

m

)
A`−k(y)(x − y)m+n+k .

When ` = 0, 1, this theorem recovers the main results due to Sun [8, Eqs. 1.4–1.5].

Proof. Recalling the definitions (1.1) and (1.2), we have

Ωm,n,`(x, y) =

m∑
k=0

(
m
k

)
(y − x)m−k

(n + k + 1)`
An+k+`(x)

=

m∑
k=0

(
m
k

)
(y − x)m−k

(n + k + 1)`

n+k+`∑
i=0

(−1)i ai

(
n + k + `

i

)
xn+k+`−i .

Rewriting the last monomial according to the binomial theorem

{(x − y) + y}
n+k+`−i

=

n+k+`∑
j=i

(
n + k + ` − i

j − i

)
(x − y)n+k+`− j y j−i
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we get the following triple sum expression:

Ωm,n,`(x, y) =

m∑
k=0

(
m
k

)
(y − x)m−k

(n + k + 1)`

n+k+`∑
i=0

(−1)i
(

n + k + `

i

)
ai

×

n+k+`∑
j=i

(
n + k + ` − i

j − i

)
(x − y)n+k+`− j y j−i .

Interchanging the summation order and then applying the binomial coefficient relation(
n + k + `

i

) (
n + k + ` − i

j − i

)
=

(
n + k + `

j

) (
j
i

)
we can further reformulate the triple sum as

Ωm,n,`(x, y) =

m∑
k=0

(
m
k

)
(y − x)m−k

(n + k + 1)`

×

n+k+`∑
j=0

(
n + k + `

j

)
(x − y)n+k+`− j

j∑
i=0

(−1)i ai

(
j
i

)
y j−i

which reduces, in view of (1.1), to the following double sum:

Ωm,n,`(x, y) =

m+n+`∑
j=0

A j (y)(x − y)m+n+`− j (1.3a)

×

m∑
k=0

(−1)m−k
(m

k

) (
n+k+`

j

)
(n + k + 1)`

. (1.3b)

By means of the well-known Chu–Vandermonde convolution formula on binomial
coefficients, it is not difficult to evaluate (1.3b) as follows.
• When ` ≤ 0, the result reads as

Eq. (1.3b) =

0, 0 ≤ j < m + `;
( j − `)!

j !

(
n

j − m − `

)
, m + ` ≤ j ≤ m + n + `.

• When ` ≥ 0, the result reads as

Eq. (1.3b) =


(−1)m(` − j)m

j !(1 + n)m+`− j
, 0 ≤ j < `;

0, ` ≤ j < m + `;
( j − `)!

j !

(
n

j − m − `

)
, m + ` ≤ j ≤ m + n + `.

Therefore for ` ≤ 0, the Ω -function displayed in (1.3a) and (1.3b) can be simplified as

Ωm,n,`(x, y) =

m+n+`∑
j=m+`

( j − `)!

j !

(
n

j − m − `

)
A j (y)(x − y)m+n+`− j

=

n∑
k=0

(
n
k

)
Am+k+`(y)

(m + k + 1)`
(x − y)n−k

= Ωn,m,`(y, x)

which corresponds to the case ` ≤ 0 of Theorem 1.
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When ` > 0, the Ω -function displayed in (1.3a) and (1.3b) can be written as two sums:

Ωm,n,`(x, y) =

m+n+`∑
j=m+`

( j − `)!

j !

(
n

j − m − `

)
A j (y)(x − y)m+n+`− j

+

`−1∑
j=0

(−1)m(` − j)m

j !(1 + n)m+`− j
A j (y)(x − y)m+n+`− j .

Shifting the summation index for the first by j → m + ` + k and inverting for the second by
j → ` − k, we reduce the last expression to

Ωm,n,`(x, y) =

n∑
k=0

(
n
k

)
Am+k+`(y)

(m + k + 1)`
(x − y)n−k

[H⇒ Ωn,m,`(y, x)]

+
(−1)mm! n!

(m + n + `)!

∑̀
k=1

(
m + n + `

` − k

) (
m + k − 1

m

)
A`−k(y) (x − y)m+n+k

which is exactly the case ` > 0 of Theorem 1. �

For the applications in the next section, it is convenient for us to state the identity in Theorem 1
separately in accordance with ` ≤ 0 and ` > 0.

For ` ≤ 0, the identity stated in Theorem 1 reads as Ωm,n,`(x, y) = Ωn,m,`(y, x). Replacing
` by −` and applying the binomial relation

1
(m + 1)−`

= `!

(
m
`

)
where ` ∈ N0

we can explicitly reformulate the identity in Theorem 1 as the following corollary.

Corollary 2 (Symmetric Formula). For m, n, ` ∈ N0, the following identity holds:

m∑
i=0

(
m
i

) (
n + i

`

)
An+i−`(x)(y − x)m−i (1.4a)

=

n∑
j=0

(
n
j

) (
m + j

`

)
Am+ j−`(y)(x − y)n− j . (1.4b)

As pointed out by an anonymous referee, the symmetric formula stated in Corollary 2 can also
be proved directly by means of umbral calculus and the generating function method, which will
not be reproduced.

When ` ≥ 1, exchanging parameters m 
 n and x 
 y in Theorem 1, we derive another
interesting relation.

Corollary 3 (Symmetric Formula). For m, n, ` ∈ N0, the following identities hold:

(m + n + `)!

m!n!
{Ωm,n,`(x, y) − Ωn,m,`(y, x)} (1.5a)

=

∑̀
k=1

(−1)m
(

m + n + `

` − k

) (
m + k − 1

m

)
A`−k(y)(x − y)m+n+k (1.5b)
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=

∑̀
k=1

(−1)1+n
(

m + n + `

` − k

) (
n + k − 1

n

)
A`−k(x)(y − x)m+n+k . (1.5c)

2. ε-Reciprocal sequences and summation formulae

For ε-reciprocal sequences, this section will prove two functional equations satisfied by
their associated polynomials and exponential generating functions. Then we shall specialize
Theorem 1 to derive four combinatorial identities on ε-reciprocal sequences.

Lemma 4. The sequence {an}
∞

n=0 is ε-reciprocal iff the associated polynomials satisfy the
following functional equation:

An(1 + x) = (−1)nεAn(−x) for n ∈ N0. (2.1)

Proof. This can easily be verified by means of the binomial theorem as follows:

An(1 + x) =

n∑
k=0

(−1)k
(n

k

)
ak(1 + x)n−k

=

n∑
k=0

(−1)k
(n

k

)
ak

n∑
j=k

(
n − k

n − j

)
xn− j

=

n∑
j=0

(
n

j

)
xn− j

j∑
k=0

(−1)k
(

j

k

)
ak

= ε

n∑
j=0

(
n

j

)
a j xn− j

= (−1)nεAn(−x).

Conversely, the case x = 0 of the associated polynomial relation stated in Lemma 4 coincides
with the ε-reciprocity of {an}

∞

n=0. �

Now we introduce the exponential generating function for the sequence {an}
∞

n=0 via

Â(z) =

∑
n≥0

an
zn

n!
. (2.2)

Then the following theorem characterizes the ε-reciprocity through the exponential generating
function.

Theorem 5. The sequence {an}
∞

n=0 is ε-reciprocal iff the following exponential generating
function equation holds:

Â(z) = εez Â(−z). (2.3)

Proof. According to the definition of the ε-reciprocal sequence, we have

ε Â(z) =

∞∑
n=0

εan
zn

n!
=

∞∑
n=0

zn

n!

n∑
k=0

(−1)k
(n

k

)
ak

=

∞∑
k=0

ak
(−z)k

k!

∞∑
n=k

zn−k

(n − k)!
= ez Â(−z)

which gives the relation displayed in Theorem 5 under replacement z → −z. �
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There are numerous ε-reciprocal functions. Here we display four classes of such functions for
subsequent application.

Proposition 6 (ε-Reciprocal Sequences). For two complex numbers α and γ subject to α +γ =

1, define four functions by

Â(z) = u(z){eαz
+ eγ z

}, (2.4a)

B̂(z) = v(z){eαz
− eγ z

}; (2.4b)

Ĉ(z) =
u(z)ez

eαz + eγ z , (2.4c)

D̂(z) =
v(z)ez

eαz − eγ z . (2.4d)

Then Â(z) and Ĉ(z) are reciprocal (or minus-reciprocal) when u(z) is an even (or odd) function.
Similarly, B̂(z) and D̂(z) are reciprocal (or minus-reciprocal) when v(z) is an odd (or
even) function.

Under the condition of ε-reciprocity, Theorem 1 can be specified by the following finite
summation formulae.

Putting y = 1 + x in Corollary 2, we find the following identity.

Proposition 7. Let {an}
∞

n=0 be ε-reciprocal. Then for ` ∈ N0, the following holds:

(−1)n+`
m∑

i=0

(m

i

) (
n + i

`

)
An+i−`(x)

= (−1)mε

n∑
j=0

(
n

j

) (
m + j

`

)
Am+ j−`(−x).

Instead, putting y = 1 + x in Corollary 3, we will find another identity.

Proposition 8. Let {an}
∞

n=0 be ε-reciprocal. Then for ` ∈ N, the following holds:

(−1)n+`
m∑

i=0

(m

i

) An+i+`(x)

(n + i + 1)`
− (−1)mε

n∑
j=0

(
n

j

)
Am+ j+`(−x)

(m + j + 1)`

=
m! n!ε

(m + n + `)!

∑̀
k=1

(
m + n + `

` − k

) (
m + k − 1

m

)
A`−k(−x).

In particular for ε = ±1, we can further establish two identities on reciprocal and minus-
reciprocal sequences.

Corollary 9. Let n ∈ N0 and λ be an indeterminate. For a reciprocal sequence {an}
∞

n=0, the
following summation formula holds:

2n−1∑
k=0

(
2λ

k

) (
n − λ − 1
2n − k − 1

)
ak = 0,

Proof. Note that An(0) = (−1)nan . When {an}
∞

n=0 is reciprocal, specifying Proposition 8 with
x → 0, n → m and ` → 2n and then inverting the summation order, we get the following



W. Chu, P. Magli / European Journal of Combinatorics 28 (2007) 921–930 927

identity:

2n−1∑
k=0

(
2m + 2n

k

) (
−m − 1

2n − k − 1

)
ak = 0.

Observing that this is a polynomial identity in m, we obtain the identity stated in Corollary 9
from it by making the replacement m → λ − n. �

Similarly, when {an}
∞

n=0 is minus-reciprocal, specifying Proposition 8 with x → 0, n → m
and ` → 2n + 1 and then inverting the summation order, we find the following identity:

2n∑
k=0

(
1 + 2m + 2n

k

) (
−m − 1
2n − k

)
ak = 0.

This is again a polynomial identity in m and leads us, under the replacement m → λ − n, to the
following identity.

Corollary 10. Let n ∈ N0 and λ be an indeterminate. For a minus-reciprocal sequence {an}
∞

n=0,
the following summation formula holds:

2n∑
k=0

(
1 + 2λ

k

) (
n − λ − 1

2n − k

)
ak = 0.

We remark that both identities displayed in the last two corollaries can also be verified by
means of a binomial transformation due to Gessel [3, Eq. 7.16]. The interested reader can work
out the details as an exercise.

3. Identities on classical combinatorial numbers

As applications of the identities displayed for reciprocal and minus-reciprocal sequences, we
are now going to derive several interesting summation formulae for the sequence {

1
2n }

∞

n=0, the
Bernoulli numbers, the Fibonacci numbers, the Lucas numbers and the Genocchi numbers.

3.1. Binomial identities

By means of the exponential function expansion

ez/2
=

∑
n≥0

zn

2n · n!

the sequence {1/2n
}
∞

n=0 is reciprocal in view of (2.4a). Then Corollary 9 produces the following
binomial identity:

2n−1∑
k=0

1
2k

(
2λ

k

) (
n − λ − 1
2n − k − 1

)
= 0. (3.1)

This is a special cases of the hypergeometric series identity due to Kummer [6] (cf. also Bailey [1,
Section 2.4]):

∞∑
n=0

(a)n(c)n

2n · n!

(
1+a+c

2

)
n

=

Γ
(

1
2

)
Γ

(
1+a+c

2

)
Γ

(
1+a

2

)
Γ

(
1+c

2

) .
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The case x = 0 of Proposition 7 gives additionally the following symmetric formula:

(−1)`
m∑

i=0

(−1)i

2n+i

(m

i

) (
n + i

`

)
=

n∑
j=0

(−1) j

2m+ j

(
n

j

) (
m + j

`

)
.

3.2. Bernoulli numbers and polynomials

Recall that the Bernoulli numbers and polynomials are defined (cf. [4, Section 7.6])
respectively by

z

ez − 1
=

∑
n≥0

Bn
zn

n!
and

zezx

ez − 1
=

∑
n≥0

Bn(x)
zn

n!
.

In view of (2.4d), the sequence {(−1)n Bn}
∞

n=0 is reciprocal with the exponential generating
function being given by zez/(ez

− 1). According to Corollary 9, we have the following identity:

2n−1∑
k=0

(−1)k
(

2λ

k

) (
n − λ − 1
2n − k − 1

)
Bk = 0.

Note that B1+2k = 0 except for B1 = −1/2. Replacing n by n + 1 and then singling out the term
corresponding to k = 1, we can reformulate the last identity as the following very interesting
summation formula on Bernoulli numbers:

n∑
k=0

(
2λ

2k

) (
n − λ

2n − 2k + 1

)
B2k = λ

(
n − λ

2n

)
(3.2)

which does not seem to be among the known identities of Bernoulli numbers.
Noting that the associated polynomials of the reciprocal sequence {(−1)n Bn}

∞

n=0 coincide
with the Bernoulli polynomials

Bn(x) =

n∑
k=0

Bk

(
n
k

)
xn−k

we find through Proposition 7 the following symmetrical identity:

(−1)m+`
m∑

i=0

(
m
i

) (
n + i

`

)
Bn+i−`(−x) (3.3a)

= (−1)n
n∑

j=0

(
n
j

) (
m + j

`

)
Bm+ j−`(x). (3.3b)

When ` = 0, this identity reduces to the symmetric formula (cf. Gessel [3, Lemma 7.2])

m∑
i=0

(
m
i

)
Bn+i = (−1)m+n

n∑
j=0

(
n
j

)
Bm+ j

which leads easily to an identity due to Kaneko [5] (cf. also Zagier [11, Eq. 14]):

n+1∑
k=0

(
n + 1

k

)
(n + k)Bn+k = 0. (3.4)
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When ` = 1, the identity (3.3) contains a recent result that appeared in [8, Eq. 1.3] and [10, Eq.
8] as a very special case. In fact, performing the replacements m → 1+m, n → 1+n and ` → 1
and then separating the last term from each sum, we get immediately the identity just mentioned:

(−1)n(m + n + 1)(m + n + 2)xm+n
= (−1)m

m∑
i=0

(
m + 1

i

)
(n + i + 1)Bn+i (−x)

+ (−1)n
n∑

j=0

(
n + 1

j

)
(m + j + 1)Bm+ j (x).

3.3. Fibonacci numbers

The Fibonacci numbers (cf. [9, Section 2.3]) are defined by means of the recurrence relation{
F0 = 0 and F1 = 1
Fn+2 = Fn+1 + Fn for n ∈ N0

with the following explicit formula:

Fn =
αn

− γ n

√
5

for α, γ =
1 ±

√
5

2
and n ∈ N0.

It is trivial to compute the exponential generating function

∞∑
n=0

Fn
zn

n!
=

eαz
− eγ z

√
5

.

According to (2.4b), the sequence {Fn}
∞

n=0 is minus-reciprocal. Therefore Corollary 10 yields
the following identity:

2n∑
k=0

(
1 + 2λ

k

) (
n − λ − 1

2n − k

)
Fk = 0. (3.5)

Letting x = 0 in Proposition 7, we also get the symmetric formula

(−1)`
m∑

i=0

(−1)i
(m

i

) (
n + i

`

)
Fn+i−` +

n∑
j=0

(−1) j
(

n

j

) (
m + j

`

)
Fm+ j−` = 0.

3.4. Lucas numbers

The Lucas numbers (cf. [4, p. 312]) are defined by means of the recurrence relation{
L0 = 2 and L1 = 1
Ln+2 = Ln+1 + Ln for n ∈ N0

with the following explicit formula:

Ln = αn
+ γ n for α, γ =

1 ±
√

5
2

and n ∈ N0.

It is easy to compute the exponential generating function

∞∑
n=0

Ln
zn

n!
= eαz

+ eγ z .
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According to (2.4a), the sequence {Ln}
∞

n=0 is reciprocal. Therefore Corollary 9 yields the
following identity:

2n−1∑
k=0

(
2λ

k

) (
n − λ − 1
2n − k − 1

)
Lk = 0. (3.6)

In addition, letting x = 0 in Proposition 7, we find also the symmetric formula

(−1)`
m∑

i=0

(−1)i
(m

i

) (
n + i

`

)
Ln+i−` =

n∑
j=0

(−1) j
(

n

j

) (
m + j

`

)
Lm+ j−`.

3.5. Genocchi numbers

The Genocchi numbers (cf. [2, Section I-14]) are defined by the following exponential
generating function:

2z

1 + ez =

∑
n≥0

Gn
zn

n!

and are related to the Bernoulli numbers by G2n = 2(1 − 22n)B2n . Then the sequence
{(−1)nGn}

∞

n=0 generated by 2zez/(1 + ez) is minus-reciprocal in view of (2.4c). By means of
Corollary 10, we get the following identity:

n∑
k=1

(
1 + 2λ

2k

) (
n − λ − 1
2n − 2k

)
G2k = (1 + 2λ)

(
n − λ − 1

2n − 1

)
(3.7)

where we have appealed to the property G1+2k = 0 except for G1 = 1.
Moreover, letting x = 0, we can derive from Proposition 7 the symmetric formula

m∑
i=0

(−1)i
(m

i

) (
n + i

`

)
Gn+i−` + (−1)`

n∑
j=0

(−1) j
(

n

j

) (
m + j

`

)
Gm+ j−` = 0.
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