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INDIVISIBILITY OF CENTRAL VALUES OF L-FUNCTIONS

FOR MODULAR FORMS

MASATAKA CHIDA

(Communicated by Ken Ono)

Abstract. In this paper, we generalize works of Kohnen and Ono (in Invent.
Math., 1999) and James and Ono (in Math. Ann., 1999) on indivisibility of
(the algebraic part of) central critical values of L-functions to higher weight
modular forms.

1. Introduction

In this article, we show an indivisibility result on central critical values of L-
functions associated to quadratic twists of modular forms using the method of
Kohnen-Ono [7] and James-Ono [5].

Let f(z) =
∑∞

n=1 a(n)q
n be a normalized newform of weight 2k for Γ0(N) with

trivial character. For a fundamental discriminant D with (D,N)=1, we define the
D-th quadratic twist of f by

f ⊗ χD =
∞∑

n=1

a(n)χD(n)qn,

where χD is the quadratic character corresponding to the quadratic extension
Q(

√
D)/Q. Then f ⊗ χD is a newform of weight 2k for Γ0(D

2N). Similarly,
the D-th quadratic twist of the L-function L(f, s) is given by

L(f ⊗ χD, s) =

∞∑
n=1

a(n)χD(n)

ns
.

Let E be the number field generated by all Fourier coefficients of f and Q. Then

it is known that there exists a period Ωf ∈ C× satisfying that L(f⊗χD,k)D0
k−1/2

Ωf

are integers in E for all fundamental discriminants D with δ(f) · D > 0, where
δ(f) ∈ {±1} is the sign defined in Ono-Skinner [10, p. 655] and D0 is given by

D0 =

{
|D| if D is odd,

|D|/4 if D is even.

We fix such a period Ωf .
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2830 MASATAKA CHIDA

For convenience, we denote

S(X) =
{
D ∈ Z

∣∣ |D| < X,D : fundamental discriminant
}
,

and if functions f, g on R satisfy that there is a positive constant c such that
f(X) ≥ c · g(X) for sufficiently large X > 0, then we write f(X)�g(X).

Theorem 1.1. Let f(z) =
∑∞

n=1 a(n)q
n be a normalized newform of weight 2k for

Γ0(N) with trivial character. Then, for all but finitely many primes λ of E, we
have

#

{
D∈S(X)

∣∣∣∣ δ(f)·D>0, λ � D and
L(f ⊗ χD, k)D

k− 1
2

0

Ωf
�≡ 0 mod λ

}
�f,λ

√
X

logX
.

This result is a refinement of results of Bruinier [2] and Ono-Skinner [10]. The
proof is based on a generalization of a method of Kohnen-Ono [7] and James-Ono
[5]. In the above theorem, we do not assume that the Fourier coefficients of f belong
to Z, therefore the surjectivity of the residual Galois representation associated to f
for almost all places in general does not hold. This creates some technical difficulty
for the proof. To solve this problem, we may use a result of Ribet [12] on the image
of Galois representations associated to modular forms. This is an ingredient in our
proof. In the last section, we also consider an indivisibility result on non-central
critical values of L-functions for higher weight modular forms using congruences of
modular forms with different weights.

2. Modular forms of half-integral weight

We denote the space of modular forms of weight k+1/2, level N with character
χ by Mk+1/2(N,χ), and the space of cusp forms of weight k + 1/2, level N with
character χ by Sk+1/2(N,χ). Then Mk+1/2(N,χ) and Sk+1/2(N,χ) are complex
vector spaces.

For a modular form of half-integral weight

g(z) =
∞∑

n=0

b(n)qn ∈ Mk+1/2(N,χ),

we define the action of Hecke operator Tp2 by

Tp2(g)(z) =
∞∑

n=0

b′(n)qn,

where b′(n) are given by

b′(n) = b(p2n) + χ(p)

(
−1

p

)k (
n

p

)
pk−1b(n) + χ(p2)p2k−1b(n/p2)

and b(n/p2) are zero if p2 � n.
Now we give a short review of the theory of the Shimura correspondence. Let N

be a positive integer which is divisible by four and χ a Dirichlet character modN .
Then we define a vector space S0

3/2(N,χ) to be the subspace of S3/2(N,χ) generated

by {
f(z) =

∞∑
n=1

ψ(n)nqtm
2

∣∣∣∣ 4cond(ψ)2t/N, χ = ψχ−t and ψ(−1) = −1

}
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and denote the orthogonal complement by S′
3/2(N,χ). Then we assume

g(z) =

∞∑
n=1

b(n)qn ∈ Sk+1/2(N,χ)

if k ≥ 2, and

g(z) =

∞∑
n=1

b(n)qn ∈ S′
3/2(N,χ)

if k = 1. Let t be a square-free positive integer. Define a number At(n) to be

∞∑
n=1

At(n)

ns
=

( ∞∑
n=1

χ(n)(−1
n )k

(
t
n

)
ns−k+1

)( ∞∑
n=1

b(tn2)

ns

)
.

Then Shimura [14] proved that there is a positive integer M such that SHt(g(z)) =
ft(z) =

∑∞
n=1 At(n)q

n ∈ S2k(M,χ2). (In fact, one can prove that M = N/2.)
Furthermore for any t, t′, the difference between SHt(g) and SHt′ is only con-
stant multiple, so essentially this correspondence is independent of the choice of
t. This correspondence between modular forms is called the Shimura correspon-
dence. Moreover if g is an eigenform for all Hecke operators Tp2 with (p, 2N) = 1,
then the image of g under the Shimura correspondence is also an eigenform for all
Hecke operators Tp with (p, 2N) = 1 and the Hecke eigenvalue of Tp2 for g coincides
with the Hecke eigenvalue for Tp for SHt(g).

We recall the following result which is a useful version of Waldspurger’s formula
([17, Thèorém 1]) by Ono-Skinner. This formula gives a relation between the Fourier
coefficients of modular forms of half-integral weight and the central values of twisted
L-functions for modular forms.

Theorem 2.1 (Ono-Skinner [9], (2a),(2b)). Let f(z) =
∑∞

n=1 a(n)q
n be a normal-

ized newform of weight 2k, level M with trivial character. Then there is δ(f) ∈
{±1}, a positive integer N with 4M | N , a Dirichlet character χ modulo N , a
period Ωf ∈ C× and a non-zero eigenform

g(z) =

∞∑
n=1

b(n)qn ∈ Sk+1/2(N,χ)

with the property that g(z) maps to a twist of f under the Shimura correspondence
and for all fundamental discriminants D with δ(f)D/ > 0 we have

b(D0)
2 =

⎧⎪⎨
⎪⎩
αD

L(f ⊗ χD, k)D0
k−1/2

Ωf
if (D,N) = 1,

0 otherwise,

where αD and b(n) are algebraic integers in some finite extension of Q. Moreover,
there exists a finite set of primes S such that if D is a fundamental discriminant

(1) δ(f)D > 0,
(2) (D,N) = 1,

then we have |L(f ⊗ χD, k)D0
k−1/2/Ωf |λ = |b(|D0|)2|λ for λ �∈ S.
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3. Some properties of Fourier coefficients of modular forms and

Galois representations

In this section we generalize some results of Serre [13] and Swinnerton-Dyer [16]
using a result of Ribet [12]. These results should be well-known for specialists.
However we give a short review of them, since it does not seem to be available in
the literature. Let f =

∑∞
n=1 a(n)q

n be a normalized newform of weight 2k for
Γ0(N) with trivial character. Let E be the subfield of C generated by the Fourier
coefficients a(n) of f . Then E is a finite extension of Q. Let OE be the ring of
integers of E. For each prime �, we let OE,� = OE ⊗Z Z� and E� = E ⊗Q Q�.

Theorem 3.1 (Deligne [3]). For each prime �, there exists a continuous represen-
tation

ρf,� : Gal(Q/Q) → GL2(OE,�) ⊂ GL2(E�)

unramified at all primes p � N� such that traceρf,�(Frobp) = a(p) and detρf,�(Frobp)
= p2k−1 for all primes p � N�, where Frobp is the arithmetic Frobenius at p.

For each prime �, denote

A� =
{
g ∈ GL2(OE,�)

∣∣∣det(g) ∈ Z
×(2k−1)
�

}
,

where Z
×(2k−1)
� is the group of (2k − 1)-th powers of elements in Z×

� . Replacing
ρf,� by an isomorphic representation, we may assume that for almost all ρf,� sends

Gal(Q/Q) to A�. Then Ribet proved the following theorem.

Theorem 3.2 (Ribet [12]). Assume that f has no complex multiplication. Then
for almost all �, we have ρf,�(Gal(Q/Q)) = A�.

We call the set of primes � with the property ρf,�(Gal(Q/Q)) �= A� the excep-

tional primes for f . Let S be the set of exceptional places for f . Let ε� : Gal(Q/
Q) → Z×

� be the �-adic cyclotomic character. Then by a similar argument to
Swinnerton–Dyer [16], one can see that the image of

(ρf,�, ε�) : Gal(Q/Q) → GL2(OE,�)× Z×
�

is
{
(g, α) ∈ GL2(OE,�)× Z×

�

∣∣ det(g) = α2k−1
}

if � is not exceptional. Since A�

contains an element with the form(
traceρf,�(σ) −1
detρf,�(σ) 0

)
,

the map (traceρf,�, ε�) : Gal(Q/Q) → OE,� × Z×
� is surjective. Moreover by a

ramification argument, one can see that the map∏
� �∈S

(traceρf,�, ε�) : Gal(Q/Q) →
∏
� �∈S

(OE,� × Z×
� )

is also surjective. Therefore we have the following result which is a generalization
of a result of Serre [13, Thèorém 11] using the Chebotarev density theorem.

Theorem 3.3. Assume that f has no complex multiplication. Let t be a positive
integer and α a non-zero integer in E. Fix β ∈ OE/αOE and r ∈ (Z/tZ)×. Suppose
that α does not contain a prime divisor which divides an exceptional prime for f .
Then the set of primes p with the properties a(p) ≡ β mod α and p ≡ r mod t
has positive density.
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4. Indivisibility of Fourier coefficients of modular forms

of half-integral weight

In this section, we give a result on modulo � indivisibility of Fourier coefficients of
half-integral weight modular forms using a method of Kohnen-Ono [7] and James-
Ono [5]. Our result is a refinement of a result of Bruinier [2] and Ono-Skinner
[10].

To consider the indivisibility of Fourier coefficients of half-integral weight mod-
ular forms, we will use the following results.

Theorem 4.1 (Sturm [15]). Let

g(z) =

∞∑
n=1

b(n)qn ∈ Mk(N,χ)

be a half-integral or integral weight modular form for which the coefficients b(m)
are algebraic integers contained in a number field E. Let v be a finite place of E
and let

ordv(g) =

{
+∞ if b(n) ≡ 0 mod v for all n,

min{n | b(n) �≡ 0 mod v} otherwise.

Moreover put

μ =
k

12
[Γ0(1) : Γ0(N)] =

kN

12

∏
p|N

p+ 1

p
.

Assume that

ordv(g) > μ;

then ordv(g) = +∞.

Remark 4.2 (cf. [5, Proposition 5]). In [15], Sturm proved this theorem for integral
weight modular forms with trivial character, but the general case follows by taking
an appropriate power of g.

Lemma 4.3 (Shimura, [14, Section 1]). Suppose

g(z) =

∞∑
n=1

b(n)qn ∈ Sk+1/2(N,χ)

is a half-integral weight cusp form and p is a prime. We define (Upg)(z), (Vpg)(z)
by

(Upg)(z) =

∞∑
n=1

up(n)q
n =

∞∑
n=1

b(pn)qn,

(Vpg)(z) =
∞∑

n=1

vp(n)q
n =

∞∑
n=1

b(n)qpn.

Then

(Upg)(z), (Vpg)(z) ∈ Sk+1/2

(
Np, χ

(
4p

·

))
.
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Let

f(z) =
∞∑

n=1

a(n)qn ∈ Mk(N,χ)

be an integral weight modular form for which the coefficients a(m) are algebraic
integers in E. For a prime λ of E and positive integers r, t with (r, t) = 1, define
T (r, t) and T (λ, r, t) by

T (r, t) = {p : prime | a(p) = 0, p ≡ rmod t}
and

T (λ, r, t) = {p : prime | a(p) ≡ 0modλ, p ≡ rmod t}.
For a positive real number X, we also denote T (r, t,X) = {p ∈ T (r, t) | p ≤ X} and
T (λ, r, t,X) = {p ∈ T (λ, r, t) | p ≤ X}.

For g =
∑∞

n=1 b(n)q
n ∈ Sk+1/2(N,χ)∩OE,λ[[q]], denote sλ(g) = min{ordλ(b(n))|

n ∈ Z>0}. The following two lemmas give an estimate for indivisibility of Fourier
coefficients of modular forms of half-integral weight.

Lemma 4.4. Let � be a prime greater than 3. Let f(z) =
∑∞

n=1 a(n)q
n be a

normalized Hecke eigen newform of weight 2k, level M with trivial character and
let

g(z) =
∞∑

n=1

b(n)qn ∈ Sk+1/2(N,χ)

be the eigenform given in Theorem 2.1. Assume that f has complex multiplication
in the sense of Ribet [11] and let λ be a prime in E above �. If there exists an integer

D′ such that δ(f)D′ > 0, (D′, N) = 1, ε =

(
D′

�

)
�= 0 and ordλ(b(|D′|)) = sλ(g),

then

#

{
D ∈ S(X)

∣∣∣∣
(
D

�

)
= ε, ordλ(b(D)) = sλ(g)

}
�f,�

√
X

logX
.

Proof. By dividing g by λsλ(g), we may assume sλ(g) = 0. If we put

b0(n) =

{
b(n) if (n,N�) = 1 and

(n
�

)
= ε,

0 otherwise,

then

g0(z) =

∞∑
n=1

b0(n)q
n ∈ Sk+1/2(N�2, χ′)

for a suitable character χ′. Since f has complex multiplication, then there exists an
imaginary quadratic field K such that for every prime p satisfying p ≡ 3 mod 4,

(p,N) = 1 and

(
ΔK

p

)
= −1 we have a(p) = 0, where ΔK is the discriminant of

K. Therefore, for such p, using the formulae for the action of Hecke operator Tp2 ,
we find that

b(p2n) + χ′(p)pk−1

(
(−1)kn

p

)
b(n) + χ′(p2)p2k−1b(n/p2) = 0.

Hence if (r, t) = 1, 4 | t, r ≡ 3 mod 4, then

#T (r, t,X) = #{p ∈ T (r, t) | p ≤ X}�f
X

logX

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



INDIVISIBILITY OF CENTRAL VALUES OF L-FUNCTIONS 2835

and for any p ∈ T (r, t) we have

(4.1) b(p2n) = −χ′(p)pk−1

(
(−1)kn

p

)
b(n)− χ′2(p)p2k−1b(n/p2).

Put κ = (k + 1
2 )

[Γ0(1):Γ0(N�2)]
12 + 1. Now, we choose (r0, t0) satisfying the following

properties:

(1) N�2|t0, (r0, t0) = 1, χ′(r0) = 1 and p ≡ 3 mod 4.

(2) If p is a prime with p ≡ r0 mod t0, then

(
(−1)kn

p

)
= −1 for any 1 ≤ n ≤ κ

with (n,N�2) = 1.

(3) For each prime p ≡ r0 mod t0 we have

(
ΔK

p

)
= −1.

(4) Each prime p ≡ r0 mod t0 satisfies

∣∣∣∣χ′(p2)p− χ′(p)

(
(−1)k|D′|

p

)∣∣∣∣
λ

= 1.

If p ∈ T (r0, t0) is a sufficiently large prime, for all 1 ≤ n ≤ κ

up(pn) = b0(p
2n) = −χ′(p)pk−1

(
(−1)kn

p

)
b0(n)− p2k−1χ′2(p)b0(n/p

2).

Since b0(n/p
2) = 0, we have up(pn) = χ′(p)pk−1b0(n) = pk−1b0(p) = pk−1vp(pn).

By the relation (4.1),

vp(p
3|D′|) = b0(p

2|D′|) = −χ′(p)pk−1

(
(−1)k|D′|

p

)
b0(|D′|)

and
up(p

3|D′|) = b0(p
4|D′|) = −p2k−1χ′(p2)b0(|D′|).

Therefore by the assumption and the choice of (r0, t0),∣∣up(p
3|D′|)− pk−1vp(p

3|D′|)
∣∣
λ

=

∣∣∣∣
(
χ′(p2)p2k−1 − χ′(p)p2k−2

(
(−1)k|D′|

p

))
b0(|D′|)

∣∣∣∣
λ

= 1.

Hence
ordλ(Upg0 − pk−1Vpg0) < +∞.

By Theorem 4.1 and Lemma 4.3, there exists an integer np such that

1 ≤ np ≤
(
k +

1

2

)
[Γ0(1) : Γ0(N�2p)]

12
= κ(p+ 1), (np, p) = 1

and
b0(npp) = up(np) �≡ pk−1vp(np) = 0 mod λ.

Consequently, let Dsf be the square-free part of D = npp; then

|b0(Dsf)|λ = 1.

For convenience, let pi be the primes in T (r0, t0) in increasing order, and let Di be
the square-free part of pinpi

. If r < s < t and Dr = Ds = Dt, then prpspt|Dr.
However this can only occur for finitely many r, s and t since |Di| < κpi(pi + 1).
Therefore, the number of distinct |Di| < X is at least half the number of p ∈
T (r0, t0) with p ≤

√
X/κ. Therefore the lemma follows from #T (r0, t0, X)�f,λ

X/ logX. �
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Lemma 4.5. Let f(z) =
∑∞

n=1 a(n)q
n be a normalized Hecke eigen newform of

weight 2k, level M with trivial character. Denote E = Q({a(n)|n ≥ 1}) and let

g(z) =

∞∑
n=1

b(n)qn ∈ Sk+1/2(N,χ)

be the eigenform given in Theorem 2.1. We fix a prime number � greater than 3 and
let λ be a prime in E above �. Assume that f does not have complex multiplication
and the image of the Galois representation associated to f

ρf,� : Gal(Q/Q) → GL2(OE,�)

coincides with A�. If there exists an integer D′ such that δ(f)D′ > 0, (D′, N) = 1,

ε =

(
D′

�

)
�= 0 and ordλ(b(|D′|)) = sλ(g), then

#

{
D ∈ S(X)

∣∣∣∣
(
D

�

)
= ε, ordλ(b(D)) = sλ(g)

}
�f,λ

√
X

logX
.

Proof. First, we may assume ordλ(g) = 0. If we put

b0(n) =

{
b(n) if (n,N�) = 1 and

(n
�

)
= ε,

0 otherwise,

then

g0(z) =
∞∑
n=1

b0(n)q
n ∈ Sk+1/2(N�2, χ′)

for a suitable character χ′. If a(p) ≡ 0 mod λ, by the formula for the action of
Hecke operator Tp2 we find that

b(p2n) + χ′(p)pk−1

(
(−1)kn

p

)
b(n) + χ′2(p)p2k−1b(n/p2) ≡ 0 mod λ.

By the assumption, � is not exceptional. Hence Theorem 3.3 implies

#T (λ, r, t,X) = #{p ∈ T (λ, r, t) | p ≤ X}�f,λ
X

logX

and for each p ∈ T (λ, r, t)

(4.2) b(p2n) ≡ −χ′(p)pk−1

(
(−1)kn

p

)
b(n)− χ′2(p)p2k−1b(n/p2) mod λ.

Let κ be the number as in the proof of Lemma 3.4. Now, we choose (r0, t0) satisfying
the following properties:

(1) N�2|t0, (r0, t0) = 1, χ′(r0) = 1.

(2) If p is a prime with p ≡ r0 mod t0, then

(
(−1)kn

p

)
= −1 for any 1 ≤ n ≤ κ

with (n,N�2) = 1.

(3) For each prime p ≡ r0 mod t0 we have

(
(−1)k|D′|

p

)
= −1.

(4) Each prime p ≡ r0 mod t0 has the property that 1 + p �≡ 0 mod λ.
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If p ∈ T (λ, r0, t0) is a sufficiently large prime, for all 1 ≤ n ≤ κ with (n,N�2) = 1,
then

up(pn) = b0(p
2n) ≡ −pk−1

(
(−1)kn

p

)
b0(n)− p2k−1b0(n/p

2)

= pk−1b0(n) = pk−1vp(pn) mod λ.

By the relation (4.2), we have

vp(p
3|D′|) = b0(p

2|D′|) ≡ pk−1b0(|D′|) mod λ,

also

up(p
3|D′|) = b0(p

4|D′|) ≡ −p2k−1b0(|D′|) mod λ.

Therefore by assumption and the choice of (r0, t0),

pk−1vp(p
3|D′|)− up(p

3|D′|) ≡ p2k−2(1 + p)b0(|D′|) �≡ 0 mod λ.

Hence

ordλ(Upg0 − pk−1Vpg0) < +∞.

By Theorem 4.1 and Lemma 4.3, there exists an integer np such that

1 ≤ np ≤ (k + 1/2)[Γ0(1) : Γ0(N�2p)]/12 = κ(p+ 1), (np, p) = 1

and

b0(npp) = up(np) �≡ vp(np) = 0 mod λ.

In particular, let Dsf be the square-free part of D = npp; then

|b0(Dsq)|λ = 1.

Now the lemma follows from the same argument as in the proof of the previous
lemma. �

Proof of Theorem 1.1. Let

g(z) =

∞∑
n=1

b(n)qn ∈ Sk+1/2(N,χ)

be the eigenform given in Theorem 2.1 for f .
By replacing f by a suitable quadratic twist of f if necessary, we may assume

that ε = δ(f), where ε is the sign of the functional equation of L(f, s). By the result
of Friedberg and Hoffstein [4], we can take an integer D′ such that δ(f)D′ > 0,
(D′, 2N) = 1 and b(D′) �= 0. In particular, for almost all finite places λ of E we
have

|b(D′)|λ = 1.

Thus by Lemmas 4.4, 4.5, Theorem 2.1 and Theorem 3.3, for all but finitely many
primes λ we have

#

{
D ∈ S(X)

∣∣∣∣∣ δ(f) ·D > 0, (�,D) = 1 and

∣∣∣∣∣L(f ⊗ χD, k)D
k−1/2
0

Ωf

∣∣∣∣∣
λ

= 1

}

�f,λ

√
X

logX
.

This completes the proof. �
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5. Indivisibility for the non-central critical values

In this section, we consider a special case for non-central values of L-functions
for modular forms. We fix a prime � greater than 7 and let f =

∑∞
n=1 a(n)q

n

be a normalized Hecke eigenform of weight � + 1 for SL2(Z). Let λ be a prime
in a number field E. We assume that the integer ring of E contains all Fourier
coefficients of f and choose a period Ω±

f as in Ash-Stevens [1, Theorem 4.5]. Then

for any Dirichlet character χ, the quotient τ (χ−1)
L(f ⊗ χ, 1)

(2πi)Ω±
f

is an integer in Eλ(χ)

where τ is the Gauss sum and ± = χ(−1).

Theorem 5.1. Let λ be a prime in E above �. We assume the following conditions.

(1) There exists a unique eigenform F of weight 2 for Γ0(�) such that

F ≡ f mod λ.

(2) � is not exceptional.
(3) There exists a square-free negative integer d0 such that (d0, 2�) = 1,(

d0
p

)
χd0

(�) = −ε(F ), where ε(F ) is the sign of functional equation of

L(F, s) and

L(f ⊗ χd0
, 1)

√
d0

(2πi)Ω±
f

�≡ 0 mod λ.

Then we have

#

{
D ∈ S(X)

∣∣∣∣ L(f ⊗ χD, 1)
√
D

(2πi)Ω±
f

�≡ 0 mod λ

}
�f,λ

√
X

logX
.

For the proof, we recall a result of Ash and Stevens.

Theorem 5.2 (Ash-Stevens, [1]). Let k be a positive integer less than � + 2 and
f =

∑∞
n=1 a(n)q

n ∈ Sk(Γ0(1)) an eigenform satisfying the assumptions of Theorem
5.1. We fix a prime λ above � in a number field E which contains all Fourier
coefficients of f . Assume that

(1) There exists a prime q satisfying a(q) �≡ qk−1 + 1 mod λ.
(2) There exists a unique eigenform F ∈ S2(Γ1(�)) such that f ≡ F mod λ.

Then there exists a complex number Ω±
F such that for any Dirichlet character χ

satisfying (cond χ, p) = 1, we have

τ (χ−1)L(f ⊗ χ, 1)

(2πi)Ω±
f

≡ τ (χ−1)L(F ⊗ χ, 1)

(2πi)Ω±
F

mod λ.

Now we prove Theorem 5.1. By the Kohnen-Zagier formula [6], there exists an
eigenform

g(z) =
∞∑

n=1

b(n)qn ∈ S3/2(Γ0(4�))

such that for any negative square-free integer D satisfying

(
D

�

)
= −ε(F ),

|b(|D|)|2 = 2 ·
√
D

π
· 〈g, g〉
〈F, F 〉L(F ⊗ χD, 1),
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where 〈·, ·〉 is the Petersson inner product. We can normalize g by the relation
〈F,F 〉
〈g,g〉 = Ω±

f . Taking a linear combination of twists of g, one may assume b(|D|) = 0

if
(
D
�

)
�= −ε(F ) and D < 0. From the assumptions of the theorem, � is not excep-

tional. This implies the existence of a prime q satisfying a(q) �≡ qk−1 + 1 mod λ,
therefore the assumptions of Theorem 5.1 imply the assumptions of Theorem 5.2.
Since τ (χD)−1 = ±1/

√
D, one can see that

L(f ⊗ χ, 1)
√
D

(2πi)Ω±
f

≡ L(F ⊗ χ, 1)
√
D

(2πi)Ω±
F

= |b(|D|)|2 · c mod λ

with a λ-adic unit c. By the assumption (3), we have

ordλ

(
L(f ⊗ χd0

, 1)
√
d0

(2πi)Ω±
f

)
= 0

therefore ordλ(b(d0)) = min{ordλ(b(n)) |n : square-free, χd0
(�) = −ε(f)}. Hence

Lemma 4.5 implies

#
{
D ∈ S(X)

∣∣χD(�) = −ε(f), ordλ(b(D)) = s
}
�f,λ

√
X

logX
,

thus we have

#

{
D ∈ S(X)

∣∣∣∣ L(f ⊗ χD, 1)
√
D

(2πi)Ω±
f

�≡ 0 mod λ

}
�f,λ

√
X

logX
.

This completes the proof.

Remark 5.3. Lemma 4.5 is stated only for g given in Theorem 2.1, but one can show
a similar result for any eigenform g ∈ Sk+1/2(N,χ) if k ≥ 2 (S′

3
2

(N,χ) if k = 1) cor-

responding to some eigenform f ∈ S2k(Γ0(M)) under the Shimura correspondence.

Example 5.4. Let

f = Δ = q

∞∏
n=1

(1− qn)24 ∈ S12(Γ0(1))

and

F = q
∞∏
n=1

(1− qn)2(1− q11n)2 ∈ S2(Γ0(11)).

Then it is well known that f ≡ F mod 11, dimS2(Γ0(11)) = 1 and the mod 11
Galois representation associated to f is surjective. Moreover one can check that

L(Δ⊗ χ−3, 1)

Ω+
Δ⊗χ−3

= 36741600 �≡ 0 mod 11

by using MAGMA. So the assumptions of Theorem 5.1 are satisfied for f = Δ.
Hence we have

#

{
D ∈ S(X)

∣∣∣∣ L(Δ⊗ χD, 1)
√
D

(2πi)Ω±
Δ

�≡ 0 mod 11

}
�

√
X

logX
.
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