
Discrete Applied Mathematics 157 (2009) 920–927

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A generalization of Lucas polynomial sequence
Gi-Sang Cheon a,∗, Hana Kim a, Louis W. Shapiro b

a Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
b Department of Mathematics, Howard University, Washington, DC 20059, USA

a r t i c l e i n f o

Article history:
Received 9 November 2007
Received in revised form 3 March 2008
Accepted 28 March 2008
Available online 7 May 2008

Keywords:
Delannoy numbers
Riordan array
Weighted paths
Lucas polynomial sequences

a b s t r a c t

In this paper, we obtain a generalized Lucas polynomial sequence from the lattice paths
for the Delannoy numbers by allowing weights on the steps (1, 0), (0, 1) and (1, 1). These
weighted lattice paths lead us to a combinatorial interpretation for such a Lucas polynomial
sequence. The concept of Riordan arrays is extensively used throughout this paper.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Horadam [4] introduced the polynomial sequence {Wn(x)} defined recursively by
Wn(x) = p(x)Wn−1(x)+ q(x)Wn−2(x), (n ≥ 2), (1)

where
W0(x) = c0, W1(x) = c1x

d, p(x) = c2x
d, q(x) = c3x

d

in which c0, c1, c2, c3 are constants and d = 0 or 1. If W0 = 0 and W1(x) = 1 then the Binet form of Wn(x) is expressed as

Wn(x) =
un(x)− vn(x)

u(x)− v(x)
,

and if instead W0 = 2 and W1(x) = p(x) then
wn(x) := Wn(x) = un(x)+ vn(x),

where u(x)+ v(x) = p(x) and u(x)v(x) = −q(x).
In some of the literature (e.g. see [9]), {Wn(x)} and {wn(x)} are called the Lucas polynomial sequences of the first kind and

of the second kind, respectively.
Special cases of Lucas polynomial sequences of both kinds are well known [4] and listed in Table 1 by their polynomial

symbols and name along with the corresponding p(x) and q(x).
In this paper, we obtain a generalized Lucas polynomial sequence from the Riordan array which is obtained from weighted

Delannoy numbers, say Dw(n, k) where w = (a, b, c) is a weight. This enables us to give a combinatorial interpretation for
those Lucas polynomial sequences by a suitable choice of the weights a, b, c respectively. In Section 2 we develop the Riordan
array Dw(a, b, c) associated with the weighted Delannoy numbers. In Section 3, we obtain a generalized Lucas polynomial
sequence from the row sum of the Riordan array Dw(a, b, c). Finally, combinatorial interpretations for a pair of generalized
Lucas polynomial sequences are given in Section 4.
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Table 1
Pairs of cognate polynomial sequences

p(x) q(x) Wn(x) wn(x)

x 1 Fibonacci, Fn(x) Lucas, Ln(x)
2x 1 Pell, Pn(x) Pell–Lucas, Qn(x)
1 2x Jacobsthal, Jn(x) Jacobsthal–Lucas, jn(x)
3x −2 Fermat, Fn(x) Fermat–Lucas, fn(x)
2x −1 Chebyshev of 2nd kind, Un(x) Chebyshev of 1st kind, 2Tn(x)

2. Riordan array Dw(a, b, c)

In this section, we develop the Riordan array introduced by Shapiro et. al. (see [6,8]) associated with weighted Delannoy
numbers for our purpose.

We begin with the concept of Riordan arrays. A Riordan array {dn,k}n,k∈N0 is defined by a pair of generating functions,
g (z) = 1+ g1z+ g2z2

+ · · · and f (z) = f1z+ f2z2
+ f3z3

+ · · ·with f1 6= 0 such that the generic element dn,k is

dn,k = [z
n
]g(z)(f (z))k,

where [zn] is the coefficient operator and N0 = {0, 1, 2, . . .}.
As usual, for a pair g(z), f (z) of analytic functions, we denote the array by R(dn,k) = (g(z), f (z)) where the rows and

columns are indexed by 0, 1, 2, . . . . From this definition, R(dn,k) is an infinite, lower triangular matrix. One example of a
Riordan array is the Pascal triangle P = R

((
n
k

))
for which we have g(z) = 1/(1− z) and f (z) = z/(1− z).

The concept of a Riordan array may be used in a constructive way to find the generating function of many combinatorial
sums. For any sequence {hk} having h(z) as its generating function, we have the summation property (SP) [8] or the
fundamental theorem of Riordan arrays:

n∑
k=0

dn,khk = [z
n
]g(z)h(f (z)).

The SP of the Riordan array will be very useful in this paper.
For n, k ∈ N0, it is well known that the Delannoy numbers [2] denoted D(n, k) count the number of unweighted lattice

paths from the point (0, 0) to the point (k, n) using the steps H = (1, 0), V = (0, 1) and D = (1, 1). Now let us consider
weighted lattice paths such that a horizontal step H, a vertical step V and a diagonal step D are endowed with weights a, b,
and c, respectively. We call such a path a (a, b, c)-weighted path. The weight of a weighted path is the product of the weights
of all its steps in the weighted path and the length of a weighted path is the number of steps making up the path.

It is known (also see [5]) that the total sum of the weights of all (a, b, c)-weighted paths in the lattice plane from (0, 0)
to (k, n) is

Dw(n, k) :=
∑
d≥0

(
k

d

)(
n+ k− d

k

)
ak−dbn−dcd. (2)

When a = b = c = 1 they reduce to the ordinary Delannoy numbers.
In [5], Razpet studied the following Lucas property of a number array Dw(n, k) obtained from the (a, b, c)-weighted paths

in the lattice plane from (0, 0) to (n, k) with positive integer weights a, b, c:

Dw(αp+ β, γp+ δ) ≡ Dw(α, γ)Dw(β, δ)(mod p),

where α,β, γ, δ are nonnegative integers such that 0 ≤ β < p, 0 ≤ δ < p for a prime number p.
In this section, we are mainly interested in a Riordan array expression for the numbers Dw(n, k) and then we obtain a

generalized Lucas polynomial sequence from the row sum. Hence it leads us to a combinatorial interpretation for such a
Lucas polynomial sequence.

For our purpose, let us define an infinite lower triangular array Dw(a, b, c) = [dn,k]n,k∈N0 by

dn,k =

{
Dw(n− k, k) if n ≥ k,
0 if n < k,

(3)

where Dw(n, k) are the weighted Delannoy numbers given by (2). Then we obtain an infinite lower triangular array:

Dw(a, b, c) =



1 0 0 0 0
b a 0 0 0
b2 c+ 2ab a2 0 0
b3 b(2c+ 3ab) a(2c+ 3ab) a3 0
b4 b2(3c+ 4ab) c2

+ 6abc+ 6b2a2 a2(3c+ 4ab) a4

· · ·


.
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Recently, Barry [1] introduced a generalized Pascal triangle T = [T(n, k)]n,k∈N0 associated with the sequence {an} with
a0 = 1 which is a centrally symmetric number triangle, i.e. T(n, k) = T(n, n− k), T(n, 0) = T(n, n) = 1, where

T(n, k) =
n−k∑
j=0

(
k

j

)(
n− k

j

)
aj.

In particular, he explored the triangle T when an = rn(r ∈ Z). In this case T = Dw(1, 1, r − 1). More generally, we have the
following theorem.

Theorem 2.1. Dw(a, b, c) has a Riordan array expression given by

Dw(a, b, c) =
( 1

1− bz
, z

a+ cz

1− bz

)
. (4)

Proof. Let Dw(a, b, c) = (g(z), f (z)) = R(dn,k). Clearly, g(z) = 1
1−bz . Now, we show that f (z) = z a+cz

1−bz . Computing dn+k,k using
1

1−bz

(
z a+cz

1−bz

)k
, we obtain

dn+k,k = [z
n+k
]

1
1− bz

(
z
a+ cz

1− bz

)k

= [zn]
1

1− bz

(
a+ cz

1− bz

)k

=

n∑
p=0
[zp]

( 1
1− bz

)k+1

[zn−p](a+ cz)k

=

n∑
p=0

ak−(n−p)bpcn−p
(
k+ p

p

)(
k

n− p

)
. (5)

By setting n− p = d, we have

dn+k,k =

n∑
d=0

ak−dbn−dcd
(
k

d

)(
n+ k− d

k

)
= Dw(n, k), (6)

which proves f (z) = z a+cz
1−bz . Hence the proof is completed. �

From (5) and (6), since Dw(n, k) = [zn] (a+cz)k

(1−bz)k+1 , we have the following generating function for the weighted Delannoy
numbers Dw(n, k) (also see [5]):

∑
n,k≥0

Dw(n, k)znyk =
∑
k≥0

(a+ cz)k

(1− bz)k+1 y
k
=

1
1− ay− bz− cyz

. (7)

It is natural to take the row sums of any Riordan array. The row sums of Dw(a, b, c) turn out to be closely related to the
Lucas polynomial sequences.

Lemma 2.2. Let φ(z) be the generating function for the row sums of the Riordan array Dw(a, b, c). Then

φ(z) =
1

1− (a+ b)z− cz2 . (8)

Proof. By applying the SP of the Riordan array Dw(a, b, c) given by (4) together with the generating function h(z) = 1
1−z , we

obtain immediately

φ(z) =
( 1

1− bz

) 1

1−
(
z a+cz

1−bz

) = 1
1− (a+ b)z− cz2 ,

which completes the proof. �

3. Generalized Lucas polynomial sequence

Note that the numbers a, b, c appearing in the Riordan array Dw(a, b, c) are weights on the steps (1, 0), (0, 1) and (1, 1),
respectively. Now let us consider a, b, c as weight functions a = a(x), b = b(x) and c = c(x) independently.

Defining p̄(x) and q̄(x) by a+ b = p̄(x) and c = q̄(x), we obtain a Riordan array

Dw(a, b, c) := Dw(p̄(x), q̄(x)).
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We now define W̄n(x) to be the n-th row sum of Dw(p̄(x), q̄(x)). Thus it follows from (8) that the generating function for
W̄n(x) may be written as

φw(z) :=
1

1− p̄(x)z− q̄(x)z2 . (9)

In this section, we first derive the explicit formula for W̄n(x) in terms of p̄(x) and q̄(x) using the Riordan array method.

Theorem 3.1. For any two functions p̄(x) and q̄(x), the polynomials W̄n(x) may be expressed as powers of p̄(x) and q̄(x):

W̄n(x) =
d(n−1)/2e∑

k=0

(
n− k

k

)
(p̄(x))n−2k(q̄(x))k. (10)

Proof. First, note that

1
1− p̄(x)z− q̄(x)z2 =

( 1
1− q̄(x)z2

)( 1
1− w

)
, with w =

p̄(x)z

1− q̄(x)z2 .

Hence by the SP, W̄n(x) may be expressed by the n-th row sum of the following Riordan array:

( 1
1− q̄(x)z2 ,

p̄(x)z

1− q̄(x)z2

)
=



1 0 0 0 0 0
0 p̄ 0 0 0 0
q̄ 0 p̄2 0 0 0
0 2q̄p̄ 0 p̄3 0 0
q̄2 0 3q̄p̄2 0 p̄4 0
0 3q̄2p̄ 0 4q̄p̄3 0 p̄5

· · ·


,

where p̄ = p̄(x) and q̄ = q̄(x). By inspection (10) follows. �

Theorem 3.2. Let W̄n(x) be the polynomials as defined by (10). Then for any two functions p̄(x) and q̄(x), the polynomials W̄n(x)
satisfy the following recurrence relation for n ≥ 2:

W̄n(x) = p̄(x)W̄n−1(x)+ q̄(x)W̄n−2(x), (11)

where W̄0(x) = 1 and W̄1(x) = p̄(x).

Proof. Let n be an odd number. Then d n−2
2 e = d

n−1
2 e. Applying the Vandermonde convolution yields the following:

p̄(x)W̄n−1(x)+ q̄(x)W̄n−2(x) =
d
n−2

2 e∑
k=0

(
n− k− 1

k

)
(p̄(x))n−2k(q̄(x))k +

d
n−3

2 e∑
k=0

(
n− k− 2

k

)
(p̄(x))n−2k−2(q̄(x))k+1

= (p̄(x))n +
d
n−1

2 e∑
k=1

{(
n− k− 1

k

)
+

(
n− k− 1

k− 1

)}
(p̄(x))n−2k(q̄(x))k

=

d
n−1

2 e∑
k=0

(
n− k

k

)
(p̄(x))n−2k(q̄(x))k = W̄n(x).

By a similar argument, we can establish (11) for an even number n, which completes the proof. �

Corollary 3.3. In determinant form we have

W̄n(x) = det



p̄(x) −1 0 · · · 0

q̄(x) p̄(x) −1
. . .

...

0 q̄(x) p̄(x)
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 q̄(x) p̄(x)


n×n

. (12)

Proof. The Laplace expansion of the first row and the three-term recurrence relation for W̄n(x) given by (11) along with
induction yields (12). �
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We note that W̄n(x) has the same recurrence relation (1) as Wn(x), differing only in the initial conditions. By a similar
argument as that used in [4], from (11) we can derive

W̄n(x) =
ūn+1(x)− v̄n+1(x)

ū(x)− v̄(x)
,

where

ū(x) =
p̄(x)+

√
p̄2(x)+ 4q̄(x)

2
, and v̄(x) =

p̄(x)−
√
p̄2(x)+ 4q̄(x)

2
giving ū(x)+ v̄(x) = p̄(x) and ū(x)v̄(x) = −q̄(x).

Let us define the polynomial sequences {w̄n(x)} by

w̄n(x) = ūn+1(x)+ v̄n+1(x).

We note that the two functions p(x) and q(x) used in (1) are monomial of degree ≤ 1 whereas p̄(x) and q̄(x) used in (11)
are any functions. It is easy to show that when p̄(x) = p(x) and q̄(x) = q(x) we have W̄n(x) = Wn+1(x) and w̄n(x) = wn+1(x)
for n ∈ N0. In this sense, we shall call {W̄n(x)} and {w̄n(x)} generalized Lucas polynomial sequences of the first kind and of the
second kind, respectively.

The following theorem for an expression for the polynomial sequence {w̄n(x)} follows from (10) and

w̄n(x) = q̄(x)W̄n−1(x)+ W̄n+1(x), (n ≥ 1), (13)

where w̄0(x) = p̄(x) and W̄0(x) = 1.

Theorem 3.4. Let {w̄n(x)} be the generalized Lucas polynomial sequence of the second kind. Then w̄n(x) may be expressed in terms
of powers of p̄(x) and q̄(x):

w̄n(x) =
dn/2e∑
k=0

{(
n− k

k− 1

)
+

(
n− k+ 1

k

)}
(p̄(x))n−2k+1(q̄(x))k. (14)

With the Riordan array notation, (13) can be written as the following matrix form:

(1+ q̄(x)z2, z)[W̄0(x), W̄1(x), . . .]
T
= [1, w̄0(x), w̄1(x), . . .]

T.

By applying the SP to the Riordan array (1+ q̄(x)z2, z) together with the generating function φw(z) for W̄n(x), we obtain the
generating function for {w̄n(x)}:

1+ q̄(x)z2

1− p̄(x)z− q̄(x)z2 =
∑
n≥0

w̄n−1(x)z
n, (w̄−1 := 1). (15)

Now, we are interested in pairs of generalized Lucas polynomial sequences similar to the pairs of cognate polynomial
sequences given by Table 1.

Theorem 3.5. Let p̄(x) = ax+ b and q̄(x) = cx. Then

(i) W̄n(x) =
∑n

k=0

(∑k
d=0

(
k
d

) (
n−d
k

)
ak−dbn−k−dcd

)
xk, n ≥ 0;

(ii) w̄n−1(x) =
∑n

k=0

(∑k
d=0

n
n−d

(
n−k
d

) (
n−d
k−d

)
ak−dbn−k−dcd

)
xk, n ≥ 1.

Proof. (i) By applying the SP of the Riordan array Dw(a, b, c) together with h(z) = 1
1−xz , we obtain

n∑
k=0

Dw(n− k, k)xk = [zn]
( 1

1− bz

) 1

1− x
(

z(a+cz)
1−bz

)
= [zn]

1
1− (ax+ b)z− cxz2 = [z

n
]

1
1− p̄(x)z− q̄(x)z2

= W̄n(x).

The last equality follows from (9) and this finishes the proof of (i).
(ii) By substituting p̄(x) = ax + b and q̄(x) = cx into (14) and then applying the binomial theorem, we can establish (ii)

by elementary algebraic calculations. �

Example 3.6. Let p̄(x) = x + 1 and q̄(x) = x. Then we obtain the generalized Lucas polynomial sequence of the first kind
with the same coefficients as the Delannoy numbers. Denote it as the Delannoy polynomial sequence {Dn(x)}:

Dn(x) =
n∑

k=0
D(n− k, k)xk =

n∑
k=0

k∑
d=0

(
k

d

)(
n− d

k

)
xk.
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From (9) we have the generating function for the Delannoy polynomials:

1
1− (x+ 1)z− xz2 =

∞∑
n=0

Dn(x)z
n.

The first few polynomials are:

D0(x) = 1,

D1(x) = x+ 1,

D2(x) = x2
+ 3x+ 1,

D4(x) = x3
+ 5x2

+ 5x+ 1.

Now we consider a cognate polynomial sequence to the Delannoy polynomials. From (15) we obtain the generalized
Lucas polynomial sequence of the second kind {Cn(x)}with the generating function:

1+ xz2

1− (x+ 1)z− xz2 =
∑
n≥0

Cn(x)z
n.

The first few polynomials are:

C0(x) = 1,

C1(x) = x+ 1,

C2(x) = x2
+ 4x+ 1,

C3(x) = x3
+ 6x2

+ 6x+ 1.

It follows from (13) that

Cn+1(x) = xDn−1(x)+ Dn+1(x), n ≥ 1. (16)

By consulting [7] we find [(see A102413)] that the coefficients of xk in the polynomial Cn(x) are the same as the corona
numbers, C(n, k), which count the number of k-matchings of the corona Cn ◦ K1 of the cycle Cn and the complete graph K1.
That is, Cn ◦ K1 is the graph with 2n vertices obtained from Cn adding one edge to each vertex of Cn. For more information on
corona graphs, see [3]. We shall call {Cn(x)} the corona polynomial sequence. Note that the corona numbers have an explicit
form from (ii) of Theorem 3.5:

C(n, k) =
k∑

i=0

n

n− i

(
n− i

k− i

)(
n− k

i

)
.

Furthermore, corona polynomials Cn(x) can be interpreted as the total sum of weights of all k-matchings in a weighted
corona Cn ◦ K1 where each matching edge has a weight x.

Corollary 3.7. The corona numbers C(n, k) may be expressed in terms of the Delannoy numbers D(n, k):

C(n, k) = D(n− k− 1, k− 1)+ D(n− k, k), n ≥ 2, k ≥ 1. (17)

Proof. From (16), we have

n∑
k=0

C(n, k)xk = Cn(x) = xDn−2(x)+ Dn(x)

= x
n−2∑
k=0

D(n− k− 2, k)xk +
n∑

k=0
D(n− k, k)xk

=

n−1∑
k=1

D(n− k− 1, k− 1)xk +
n∑

k=0
D(n− k, k)xk

= D(n, 0)+
n−1∑
k=1
{D(n− k− 1, k− 1)+ D(n− k, k)}xk + D(0, n)xn.

Comparing the coefficients of xk for k ≥ 1 yields (17). �
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Fig. 1. (x, 0, 1)-weighted paths and their weights.

4. Combinatorial interpretations and examples

In this section, we obtain combinatorial interpretations for a pair of generalized Lucas polynomial sequences.

Theorem 4.1. Let {W̄n(x)} and {w̄n(x)} be a pair of Lucas polynomial sequences. Then
(i) W̄n(x) =

∑n
k=0 ωk,n−k(x) (n ≥ 0);

(ii) w̄n(x) =
∑n

k=0 ωk,n−k(x)+ q̄(x)
∑n−2

k=0 ωk,n−k−2(x), (n ≥ 2),
whereωk,n−k(x) := Dw(n− k, k) is the sum of weights of (a(x), b(x), c(x))-weighted paths from (0, 0) to (k, n− k) using the steps
(1, 0), (0, 1) and (1, 1) for which a(x)+ b(x) = p̄(x) and c(x) = q̄(x).

Proof. Since W̄n(x) is the n-th row sum of the Riordan array Dw(p̄(x), q̄(x)), (i) and (ii) immediately follow from (2) and (13),
respectively. �

Combinatorial interpretations for pairs of Lucas polynomial sequences listed by Table 1 may be obtained from
Theorem 4.1 by setting p̄(x) = p(x) and q̄(x) = q(x) so that a(x) + b(x) = p(x) and c(x) = q(x). Also explicit forms for those
polynomial sequences may be simply determined by (10) or (14). For instance, the Chebyshev polynomial of the second kind
Un(x) is obtained in the form:

Un+1(x) =
d(n−1)/2e∑

k=0
(−1)k

(
n− k

k

)
(2x)n−2k.

Example 4.2. Let us consider the Fibonacci polynomial sequence {Fn(x)}. First note that Fn(x) has the following generating
function:

z

1− xz− z2 =
∑
n≥0

Fn(x)z
n.

By using (12), the Fibonacci polynomial has also a beautiful determinantal expression:

Fn+1(x) = det



x −1 0 · · · 0

1 x −1
. . .

...

0 1 x
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 1 x


n×n

, (n ≥ 1).

Of course, by substituting a = x, b = 0, c = 1 we may immediately obtain the Fibonacci polynomials from the row sums of
the Riordan array Dw(x, 0, 1):

1 0 0 0 0
0 x 0 0 0
0 1 x2 0 0
0 0 2x x3 0
0 0 1 3x2 x4

· · ·





1
1
1
1
1
...


=



1
x

1+ x2

2x+ x3

1+ 3x2
+ x4

...


=



F1(x)
F2(x)
F3(x)
F4(x)
F5(x)

...


. (18)

Now let us consider a combinatorial interpretation for F4(x) = 2x + x3. Since F4(x) = W4(x) = W̄3(x) when p(x) =
a(x) + b(x) = x and q(x) = c(x) = 1, we may take a(x) = x, b(x) = 0 and c(x) = 1. By (i) of Theorem 4.1, we have
F4(x) = ω0,3(x) + ω1,2(x) + ω2,1(x) + ω3,0(x). Note that ω0,3(x) = 0, ω1,2(x) = 0, while ω2,1(x) = 2x and ω3,0(x) = x3, see
Fig. 1.

Example 4.3. Let us consider the Pell–Lucas polynomial sequence {Qn(x)}. First note that Qn(x) has the following generating
function for n ≥ 1:

1+ z2

1− 2xz− z2 =
∑
n≥0

Qn(x)z
n.
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Fig. 2. (x, x, 1)-weighted paths and their weights.

Moreover, by (14) Qn+1(x) has the following explicit formula:

Qn+1(x) =
dn/2e∑
k=0

{(
n− k

k− 1

)
+

(
n− k+ 1

k

)}
(2x)n−2k+1.

Now let us consider a combinatorial interpretation for Q2(x) = 2+4x2. Since p(x) = a(x)+b(x) = 2x and q(x) = c(x) = 1,
we may take a(x) = x, b(x) = x and c(x) = 1. By (ii) of Theorem 4.1, we have Q2(x) = ω0,2(x)+ω1,1(x)+ω2,0(x)+ 1 ·ω0,0(x).
Note that ω0,2(x) = x2, ω1,1(x) = 2x2

+ 1, ω2,0(x) = x2 and ω0,0(x) = 1, see Fig. 2.

5. Concluding remarks

We have used the Delannoy polynomials in a Riordan group context and shown how many results follow in a natural
manner. The key point is that the Riordan group works over any integral domain and not just the integers. Often the rows
provide polynomial sequences that mesh with the column generating functions of the Riordan group.
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