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Abstract

We prove that ifD = (g(x), f (x)) is an element of order 2 in the Riordan group then g(x) = ±exp[�(x,
xf (x)] for some antisymmetric function �(x, z). Also we prove that every element of order 2 in the Riordan
group can be written as BMB−1 for some element B and M = (1,−1) in the Riordan group. These proofs
provide solutions to two open problems presented by Shapiro [L.W. Shapiro, Some open questions about
random walks, involutions, limiting distributions and generating functions, Adv. Appl. Math. 27 (2001)
585–596].
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We begin with a brief description of the Riordan group developed by Shapiro et al. [7] in 1991.
A Riordan matrix [7,9] is an infinite lower triangular array D = {dn,k}n�k�0 generated by a pair
of analytic functions or generating functions g(x) = ∑

n�0 gnx
n and f (x) = ∑

n�0 fnx
n with

g(0) /= 0 and f (0) /= 0 such that
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dn,k = [xn]g(x)(xf (x))k,
where the notation [xn] stands for the ‘coefficient of’ operator. We often denote a Riordan matrix
by D = (g(x), f (x)).

A well known example of a Riordan matrix is the Pascal matrix:

P =
(

1

1 − x
,

1

1 − x

)
=
[(
n

k

)]
n,k�0

.

The set of all Riordan matrices forms a group denoted (R, ∗) with the operation being matrix
multiplication ∗. In terms of the generating functions this works out as

(g(x), f (x)) ∗ (h(x), �(x)) = (g(x)h(xf (x)), f (x)�(xf (x))). (1)

We call R the Riordan group. It is easy to see that I = (1, 1) is the identity element of R and
the inverse of (g(x), f (x)) ∈ R is (ḡ(x), f̄ (x)) where ḡ(y) = {1/g(x)|y = xf (x)} and f̄ (y) =
{1/f (x)|y = xf (x)}.

As noted in [6], for the case of the Riordan group any element with integer entries having finite
order must have order 1 or 2. In this paper, we are interested in the structure of elements of order
2 in the Riordan group R. We call an element of order 2 in R a Riordan involution.

In combinatorial situations, a Riordan matrix will often have all nonnegative entries on and
below the main diagonal and hence it cannot itself have order 2. We define an element D in the
Riordan group to have pseudo-order 2 if DM has order 2 where

M = (1,−1) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

· · ·

⎤
⎥⎥⎥⎥⎦ . (2)

An element of pseudo-order 2 in the Riordan group will be called a pseudo-Riordan involution or
briefly a pseudo-involution [1,6]. It is obvious that the main diagonal entries of pseudo-involutions
are equal to 1. The Pascal matrix is an example of pseudo-involution.

Clearly, BMB−1 is a Riordan involution for any element B in the Riordan group. How about
the converse? In 2001, Shapiro [6] presented some open questions (Q8, Q8.1, Q9.1) concerning
involutions in the Riordan group:

Q8: Can every Riordan involution be written as BMB−1 for some element B in the Riordan
group?

Q8.1: If the Riordan involution D has a combinatorial significance, can we find a B such that
D = BMB−1 and B has a related combinatorial significance?

If D = (g(x), f (x)) is a Riordan involution then it might be natural to ask whether there
is a relationship between g(x) and f (x). In fact, it was briefly conjectured (Q9, [6]) that if
D = (g(x), f (x)) is Riordan involution then g(x) = (f (x))m for some constant m. However,
it is known [6] that there are several counterexamples. The question now for involutions in the
Riordan group is:

Q9.1: IfD = (g(x), f (x)) is Riordan involution, is there a simple condition for g(x) in terms
of f (x)?

In [1], Cameron and Nkwanta studied classes of combinatorial matrices having pseudo-order
2 in the Riordan group and obtained some partial results on the problem Q8.

In this paper, we will focus our attention on the open questions, Q8, Q8.1, Q9.1 for Riordan
involutions. More specifically, in Section 2, we give simple proofs for two questions Q8 and Q9.1.
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In Section 3, we explore the question Q8.1 and we obtain a class of Riordan matrices for which
Q8.1 is affirmative.

2. Simple proofs for two open questions

In this section, we address answers for the questions Q8 and Q9.1. Given a Riordan involution
D = (g(x), f (x)), if we know the relationship between g(x) and f (x) it might make question
Q8 more tractable. So, first we consider the question Q9.1.

We begin with the following lemma.

Lemma 2.1. IfD = (g(x), f (x)) is a Riordan involution theng(x) is the solution of the functional
equation:

g(x)g(xf (x)) = 1. (3)

Conversely, if g(x) satisfies (3) for any analytic function f (x) such that f (x)f (xf (x)) = 1, then
D = (g(x), f (x)) is a Riordan involution.

Proof. A Riordan matrix D = (g(x), f (x)) is involution if and only if

(g(x), f (x))2 = (g(x)g(xf (x)), f (x)f (xf (x))) = (1, 1).

Equivalently, we have

g(x)g(xf (x)) = 1 and f (x)f (xf (x)) = 1, (4)

which completes the proof. �

In order to give an answer for the question Q9.1, it suffices to solve the functional equation
with quadratic nonlinearity given in (3). The following lemma is easy to apply and very useful.

Lemma 2.2 [3]. Let y(x)y(ω(x)) = b2 be a nonlinear functional equation in one variable where
ω(ω(x)) = x. Then the solutions are

y(x) = ±b exp[�(x, ω(x))], (5)

where �(x, z) = −�(z, x) is a suitable antisymmetric function of two arguments.

Now we are ready to solve the question Q9.1.

Theorem 2.3 (Q9.1). If D = (g(x), f (x)) is a Riordan involution, then

g(x) = ±exp[�(x, xf (x)] (6)

for some antisymmetric function �(x, z). Conversely, if f (x) is an analytic function such that
f (x)f (xf (x)) = 1 and g(x) satisfies (6) for any antisymmetric function �(x, z), then D =
(g(x), f (x)) is a Riordan involution.

Proof. Let D = (g(x), f (x)) be a Riordan involution. By setting ω(x) :=xf (x), we see that
f (x)f (xf (x)) = 1 if and only if ω(ω(x)) = x. Hence by Lemma 2.2, there exists an antisym-
metric function �(x, z) such that the solution of g(x)g(xf (x)) = 1 is g(x) = ±exp[�(x, xf (x)].

The converse is an immediate consequence of Lemmas 2.1 and 2.2. Hence the proof is com-
plete. �
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The second statement of Theorem 2.3 tells us that given an analytic function f (x) such that
f (x)f (xf (x)) = 1, we can obtain infinitely many Riordan involutions (g(x), f (x)) where g(x)
is obtained from any antisymmetric function �(x, z) via (6).

A few of particular solutions of the functional equation ω(ω(x)) = x (called the Babbage
equation in [4]) are

ω1(x) = x, ω2(x) = C − x, ω3(x) = C

x
, ω4(x) = C1 − x

1 + C2x
,

where C,C1 and C2 are arbitrary constants. Since we want f (x) = ω(x)/x to be analytic, we
pick constants carefully and end up with

f (x) = ±1 or f (x) = −1

1 + Cx
,

where C is arbitrary constant. Examples of antisymmetric function �(x, z) are

ln
∣∣∣ z
x

∣∣∣ , ln

∣∣∣∣xz
∣∣∣∣ , and ρ(x − z), etc.,

where ρ(x) is an odd function.

For example, let f (x) = −1
1−x . Taking �(x, z) = ln

∣∣ z
x

∣∣, �(x, z) = ln
∣∣∣ xz
∣∣∣, and �(x, z) = x − z,

respectively, we obtain Riordan involutions, respectively:(
1

1 − x
,

−1

1 − x

)
,

(
1 − x,

−1

1 − x

)
, and

(
e
x(2−x)

1−x ,
−1

1 − x

)
.

Here is a list of some important subgroups [5] of the Riordan group considered in this paper.

1. the Appell subgroup A = {(g(x), 1)},
2. the Bell subgroup B = {(g(x), g(x))},
3. the checkerboard subgroup C = {(g(x), f (x))|g, f both even functions}.

Corollary 2.4. If D = (g(x), 1) is a pseudo-involution in the Appell subgroup then g(x) =
±eρ(x) for some odd function ρ(x). Conversely, for any odd function ρ(x), D = (eρ(x), 1) is
a pseudo-involution.

Proof. LetD = (g(x), 1) be a pseudo-involution. Then (g(x),−1) is the corresponding Riordan
involution. By Theorem 2.3, we have g(x) = ±exp[�(x,−x)] for some antisymmetric function
�(x, z). Let ρ(x) = �(x,−x). Since ρ(−x) = �(−x, x) = −�(x,−x) = −ρ(x), we see that
ρ(x) is odd function. Thus g(x) has the form ±eρ(x) for some odd function ρ(x). The converse
is obvious. Hence the proof is complete. �

Now, we solve the question Q8 with the same antisymmetric function satisfying (6).

Theorem 2.5 (Q8). Let D = (g(x), f (x)) be a Riordan involution. Then there exists a Riordan
matrix B such that D = BMB−1, where

B =
(

exp

[
�(x, xf (x))

2

]
,
�(x, xf (x))

x

)
(7)

for the same antisymmetric function �(x, z) given by (6).
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Proof. LetD = (g(x), f (x))be a Riordan involution. By Theorem 2.3, there exists some antisym-
metric function �(x, z) such that g(x) = ±exp[�(x, xf (x))]. Since (−g(x), f (x)) = −(g(x),
f (x)) for some Riordan matrix B we have

(g(x), f (x)) = BMB−1 if and only if (−g(x), f (x)) = B(−M)B−1. (8)

Hence we may assume that

g(x) = exp[�(x, xf (x))]. (9)

With the same antisymmetric function �(x, z) in (9), let

h(x) = exp

[
�(x, xf (x))

2

]
and �(x) = �(x, xf (x))

x
. (10)

We claim that B = (h(x), �(x)) satisfies (8). By using f (x)f (xf (x)) = 1, we obtain

h(xf (x))= exp

[
�(xf (x), xf (x)f (xf (x)))

2

]
= exp

[
�(xf (x), x)

2

]

= exp

[−�(x, xf (x))

2

]
(11)

and

�(xf (x))= �(xf (x), xf (x)f (xf (x)))

xf (x)
= �(xf (x), x)

xf (x)

= −�(x, xf (x))

xf (x)
. (12)

Applying (9), (11) and (12) shows

g(x)h(xf (x)) = h(x) and f (x)�(xf (x)) = −�(x). (13)

Hence it follows from (1) that

(g(x), f (x)) ∗ (h(x), �(x)) = (h(x), �(x)) ∗ (1,−1).

Equivalently, we have D = BMB−1 as we wanted, which completes the proof. �

Corollary 2.6. LetD = (g(x), f (x)) be a pseudo-involution with nonnegative entries. If f (x) =
1 or f (x) = g(x) then there exists the Riordan matrix B such that DM = BMB−1, where

B =
(√

g(x),
1

x
ln g(x)

)
. (14)

Proof. Let f (x) = 1. Then D is an element of the Appell subgroup. By Corollary 2.4, there
exists an odd function ρ(x) such that g(x) = eρ(x). Since �(x,−x) = ρ(x), we obtain (14)
immediately from (7). Now let f (x) = g(x). ThenD is an element of the Bell subgroup. Taking
�(x, z) = ln

∣∣ z
x

∣∣ yields also (14) from (7). �

We note that ifD = (g(x), 1) is a pseudo-involution with nonnegative entries in the Appell sub-
group A, then there exists alsoB = (

√
g(x), 1) ∈ A such thatDM = BMB−1. It is known (e.g.

see [1]) that important pseudo-involutions in the Bell subgroup are the Pascal matrix, Nkwanta’s
RNA matrix (g(x), g(x)) and Aigner’s directed animal matrix (1 + xm(x), 1 + xm(x)) where
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g(x)= 1 − x + x2 −√
(1 − x + x2)2 − 4x2

2x2

= 1 + x + x2 + 2x3 + 4x4 + 8x5 + 17x6 + O(x7) (15)

and for the Motzkin numbers given by m(x) = (1 − x − √
1 − 2x − 3x2)/2x2

1 + xm(x) = 1 + x + x2 + 2x3 + 4x4 + 9x5 + 21x6 + O(x7). (16)

3. Some remarks on the question Q8.1

We now turn to the question Q8.1 concerning the existence of a certain Riordan matrixB having
the related combinatorial significance such that D = BMB−1 for which Riordan involution D
has some combinatorial significance.

In this section, we discuss the possibility for the question Q8.1 and we obtain an affirmative
answer for a pseudo-involution in the Bell subgroup.

In many cases, the Riordan matrix B determined by (7) does not have integer entries. So, it
does not seem easy to find directly the related significance inB for whichD = BMB−1 has some
combinatorial significance. In this case, we will look at the checkerboard subgroup. Because, the
checkerboard subgroup is the centralizer of M and thus this allows many choices for B.

Theorem 3.1. Let D be a Riordan involution and B a Riordan matrix such that D = BMB−1.

Then for any element C of the checkerboard subgroup, D may be expressed in terms of BC, i.e.

D = (BC)M(BC)−1. (17)

Proof. By Theorem 2.5, there exists the Riordan matrix B such that D = BMB−1. Now let
C = (g(x), f (x)) be a checkerboard matrix, i.e. g(x) and f (x) are both even functions. Thus

g(x) = g(−x) and f (x) = f (−x) ⇔ (g(x),−f (x)) = (g(−x),−f (−x))
⇔ (g(x), f (x))(1,−1) = (1,−1)((g(x), f (x))

⇔ CM = MC.

It follows that

D = BMB−1 = B(CMC−1)B−1 = (BC)M(BC)−1,

which completes the proof. �

Theorem 3.1 tells us that if D is a Riordan involution then there are infinitely many Riordan
matrices X of the form X = BC such that D = XMX−1 where B is the Riordan matrix given
by (7) and C is any checkerboard matrix. It also allows a possibility of finding some X of
combinatorial significance for a suitable choice of C, where D = XMX−1.

For a combinatorial consideration of a Riordan involution, it is natural to focus on pseudo-invo-
lutions with nonnegative integer entries. By virtue of Corollary 2.4, there is no pseudo-involution
with integer entries in the Appell subgroup. So we concentrate our focus to pseudo-involutions
in the Bell subgroup. A unit Riordan matrix has all ones on the main diagonal.

Theorem 3.2. Let D = (g(x), f (x)) be a pseudo-involution with nonnegative integer entries. If
there exists a unit Riordan matrix B with integer entries such that DM = BMB−1 then all the
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entries below the main diagonal of D are even numbers. Equivalently, [xn]g(x) and [xn]f (x)
are even for n � 1 and g(0) = f (0) = 1.

Proof. LetD = [dn,k]n,k�0 = (g(x), f (x)) be a pseudo-involution with nonnegative integer en-
tries. Since the main diagonal entries of D are all equal to 1, it is obvious that g(0) = f (0) = 1.
Suppose that there exists a unit Riordan matrix B with integer entries such thatDM = BMB−1.
Then we have

(−1)kdn,k =
n∑
j=0

(−1)j bn,j b̂j,k =
n∑
j=0

bn,2j b̂2j,k −
n∑
j=0

bn,2j+1b̂2j+1,k, (18)

where B = [bn,k]n,k�0 and B−1 = [b̂n,k]n,k�0. Since
∑n
j=0 bn,j b̂j,k = δnk , where δnk is the

Kronecker delta function, for nonnegative integers n, k with n /= k we have
∑n
j=0 bn,2j b̂2j,k =

−∑n
j=0 bn,2j+1b̂2j+1,k . It follows from (18) that

(−1)kdn,k = 2
n∑
j=0

bn,2j b̂2j,k, n /= k. (19)

SinceB is a unit Riordan matrix with integer entries,B−1 is so. Hence each term of the right-hand
side of (19) is integer and so dn,k ∈ 2Z, which implies that all the entries below the main diagonal
of D are even.

Moreover, since g(x)(xf (x))k is the kth column generating function of D, we have g(x) =
1 +∑

n�1 dn,0x
n when k = 0, which implies that g(x) has even coefficients except g(0) = 1. If

k = 1 then g(x)(xf (x)) = x +∑
n�2 dn,1x

n. By the Vandermonde convolution, f (x)must have
even coefficients except f (0) = 1, which completes the proof. �

We note that by Theorem 3.2, there is no unit Riordan matrix B with integer entries such that
(BMB−1)M is the Pascal matrix, or Nkwanta’s RNA matrix given by (15), or Aigner’s directed
animal matrix given by (16). However, we will show that the question Q8.1 has an affirmative
answer for these pseudo-involutions, see Corollary 3.5.

Lemma 3.3. LetD = (g(x), g(x)) be a pseudo-involution of the Bell subgroup.Then the Riordan
matrix of the form:

C =
(

e− x
2 φ(x),

1

x
ḡ(ex)φ(x)

)
(20)

is the checkerboard matrix whereφ(x) = e
x
2
(
cosh x2

)n
for anyn ∈ Z and ḡ(x) is the compositional

inverse of g(x).

Proof. Since cosh x2 is an even function, clearly e− x
2 φ(x) = (

cosh x2
)n is even for any n ∈ Z.

We only need to show that ḡ(ex)φ(x) is odd function for any n ∈ Z, equivalently, e
x
2 ḡ(ex) =

−e− x
2 ḡ(e−x) or t ḡ(t) = −ḡ

(
1
t

)
where t = ex . Since DM = (g(x),−g(x)) is a Riordan invo-

lution, we have g(x)g(−xg(x)) = 1 which implies xg(x) = −ḡ
(

1
g(x)

)
. By setting g(x) = t ,

we obtain t ḡ(t) = −ḡ
(

1
t

)
which implies that e

x
2 ḡ(ex) is odd function. Hence ḡ(ex)φ(x) =

e
x
2 ḡ(ex)

(
cosh x2

)n is odd function for any n ∈ Z, which completes the proof. �
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Theorem 3.4. Let D = (g(x), g(x)) be a pseudo-involution with nonnegative integer entries in
the Bell subgroup. Then there exists a unit Riordan matrix X = (ψ(x), ψ(x)) such that DM =
XMX−1, where

ψ(x) =
(

1 + g(x)

2

)2m+1 ( 1

g(x)

)m
, m ∈ Z. (21)

In particular, if g(x) has even coefficients except g(0) = 1 then the Riordan matrix X given by
(21) is of integer entries for any integer m.

Proof. By Corollary 2.6, there exists the Riordan matrix B given by (14) such that DM =
BMB−1. By Theorem 3.1 and Lemma 3.3, we have DM = (BC)M(BC)−1 where C is the
checkerboard matrix given by (20). By a matrix multiplication given by (1), we obtain

X :=BC =
(√

g(x),
ln g(x)

x

)
∗
(

e− x
2 φ(x),

ḡ(ex)

x
φ(x)

)
= (φ(ln g(x)), φ(ln g(x))).

By choosing n = 2m+ 1 for m ∈ Z, it follows from φ(x) = e
x
2
(
cosh x2

)2m+1 that

ψ(x) :=φ(ln g(x)) = √
g(x)

(
cosh(ln

√
g(x))

)2m+1

= √
g(x)

(
1

2

(√
g(x)+ 1√

g(x)

))2m+1

=
(

1 + g(x)

2

)2m+1 ( 1

g(x)

)m
. (22)

Since g(0) = 1, we have ψ(0) = 1 for any m ∈ Z. Hence X = (ψ(x), ψ(x)) is a unit Riordan
matrix for any m ∈ Z.

In particular, let g(x) = ∑
n�0 gnx

n, where g0 = 1 and gn ∈ 2Z for n � 1. It follows that
g(x)+1

2 has integer coefficients. Moreover, 1
g(0) = 1 and each coefficient ĝn for n � 1 of the recip-

rocal 1
g(x)

of g(x) has the determinantal expression (see p. 157, [2]) given by ĝn = (−1)n detH
whereH = [hi,j ] is the n× n lower Hessenberg matrix defined byhi,j = gi−j+1 for 1 � i, j � n

with gk = 0 for k < 0. Since gk for k � 0 is integer, it is obvious that ĝn is integer for n � 1. It
follows from (22) that ψ(x) has integer coefficients for any m ∈ Z. Hence X = (ψ(x), ψ(x)) is
a matrix of integer entries for any m ∈ Z, which completes the proof. �

Now, we give an affirmative answer for the question Q8.1 if D is a pseudo-involution in the
Bell subgroup.

Corollary 3.5 (Q8.1). Let D = (g(x), g(x)) be a pseudo-involution with nonnegative integer
entries in the Bell subgroup. If D = [dn,k]n,k�0 has some combinatorial property P then there
exists the Riordan matrixX = [xn,k]n,k�0 with the related property P such thatDM = XMX−1,
where

X =
(

1 + g(x)

2
,

1 + g(x)

2

)
. (23)

In particular, if dn,k counts some configuration with the property P then xn,n = 1 for n � 0 and
xn,k for n /= k is given by
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xn,k = 1

2k+1

k∑
�=0

(
k + 1
�+ 1

)
dn−k+�,�. (24)

Proof. By Theorem 3.4, if we choosem = 0 we obtain the Riordan matrix X given by (23) such
that DM = XMX−1. Now we show that if D has some combinatorial property P then X has
also the related property P .

First note that X given by (23) may be expressed by

X = (1 + g(x), 1 + g(x)) ∗
(

1

2
,

1

2

)
. (25)

Let G = (1 + g, 1 + g) = [gn,k]n,k�0, where g = g(x). We observe that

gn,k = [xn](1 + g)(x(1 + g))k = [xn−k](1 + g)k+1 =
k+1∑
�=0

(
k + 1
�

)
[xn−k]g�. (26)

If n = k then we have gn,n = 2n+1 for n � 0. Now let n /= k. It follows from (26) that

gn,k =
k+1∑
�=1

(
k + 1
�

)
[xn−k+�−1]x�−1g�. (27)

Since dn,k = [xn]g(xg)k = [xn]xkgk+1, from (27) we have

gn,k =
k∑
�=0

(
k + 1
�+ 1

)
dn−k+�,�. (28)

It implies that if dn,k counts some configuration with the property P then gn,k counts the related
configuration with the property P . Moreover, the entry xn,k of X given by (24) can be obtained
from (25) and (28). HenceD has some combinatorial property P then the Riordan matrixX such
that DM = XMX−1 should be have the related property P , which completes the proof. �

Example 1. Let us consider the pseudo-involution (see A081696, [8]) given by D = ((1 +
xC(x))C(x), (1 + xC(x))C(x)), where C(x) = 1−√

1−4x
2x is the generating function for the Cat-

alan numbers:

D =
(

1 − x − √
1 − 4x

x
,

1 − x − √
1 − 4x

x

)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
2 1 0 0 0
4 4 1 0 0

10 12 6 1 0
28 36 24 8 1

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Interestingly, from (23) we obtain the Catalan triangle [6]:

X = (C(x), C(x)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
2 2 1 0 0
5 5 3 1 0

14 14 9 4 1
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Now, one can easily see that DM = XMX−1. Obviously, this example shows an affirmative
answer for the question Q8.1.

Example 2. Let us consider the RNA matrix (g(x), g(x)) given by (15):

RNA = [rn,k]n,k�0 = (g(x), g(x)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
2 3 3 1 0 0
4 6 6 4 1 0
8 13 13 10 5 1

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is known [1] that RNA matrix has a lattice path interpretation. That is, rn,k counts the number of
NES-paths of length n and terminal height k where NES-path is a counting path which starts at
the origin (0, 0) and take unit steps,N(0, 1),E(1, 0), and S(0,−1)with the following restrictions:
no paths pass below the x-axis and no S step immediately follows an N step.

Now, consider the Riordan matrix X obtained from (25):

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
1 4 0 0 0 0
1 4 8 0 0 0
2 5 12 16 0 0
4 10 18 32 32 0
8 21 37 56 80 64

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 0 0 0 0
0 1

22 0 0 0 0
0 0 1

23 0 0 0
0 0 0 1

24 0 0
0 0 0 0 1

25 0
0 0 0 0 0 1

26

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By (28), we obtain

gn,k =
k∑
�=0

(
k + 1
�+ 1

)
rn−k+�,�.

For example

g3,2 =
(

3
1

)
r1,0 +

(
3
2

)
r2,1 +

(
3
3

)
r3,2 = 3 · 1 + 3 · 2 + 1 · 3 = 12.

Hence the Riordan matrixX has also lattice path interpretation byNES-paths as well as the RNA
matrix, which shows an affirmative answer for the question Q8.1.
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