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Abstract

In this paper, some relationships between the Stirling matrix, the Vandermonde matrix,
the Benoulli numbers and the Eulerian numbers are studied from a matrix representation of
k!S(n, k) which will be called the factorial Stirling matrix, wher®n, k) are the Stirling
numbers of the second kind. As a consequence a number of interesting and useful identities
are obtained.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

In many contexts (see [1-4]), a number of interesting and useful identities involv-
ing binomial coefficients are obtained from a matrix representation of a particular
counting sequence. Such a matrix representation provides a powerful computational
tool for deriving identities and an explicit formula related to the sequence.

First, we begin our study with a well-known definition: for any real numband
an integelik, define
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. L if k>1,
(k)= 1 if k=0,
0 if k<O,

where[xly =x(x -1 ---(x —k+1).

Then theStirling numbers of the second kind S(n, k) for integersn andk with
0 < k < n are defined implicitly by

xt = Z Sn, K)[x]k.

k=0
We can rewrite the above equation fidras

=" KIS, k) (’;)
k=0

This expression can be represented as a system of matrix equations for €ach
0,1,...,

v(x) = ([11 & Sy)cx), )
where

v = [Lx 2" e = [(é) @ (z)]T

andS, = [k!S(n, k)] is then x n matrix whose(i, j)-entry is j!S(@, j) if i > j and
otherwise 0.
For exampleif n = 4, then

1 1.0 0 0 O1[®
x 1 0 0 0f|(
=01 2 0 o0||()
x3 01 6 6 0@
x4 0 1 14 36 24 [(2)

Note that

S, =S, -diag(1!, 2!, ..., nl),
whereS, = [S(n, k)] is then x n Stirling matrix of the second kind [3]. We will call
S, as afactorial Stirling matrix.

In many cases it is possible to obtain from a matrix representation of a particular
counting sequence an identity and an explicit formula for the general term of the
sequence.

In this paper, some relationships between the Stirling matrix, the Vandermonde
matrix, the Benoulli numbers and the Eulerian numbers from the factorial Stirling
matrix S, are studied. As a consequence we obtain interesting combinatorial identi-
ties related to theses numbers.
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2. Stirling matrix and Vander monde matrix

The factorial Stirling matrix can be used to obtain a summation formula which
contains one or more summations. We first obtain interesting determinants of certain
matrices in the decomposition of the Vandermonde matrix.

Matrix equation (1) suggests the Vandermonde matrix which is defined by

1 1 ... 1
X x+1 e xX+n
Vig1(x) := 2 D - aHn)?
" x+D" - (x+n)"
can be factorized by
Vap1(x) = ([1] @ $)Cpya (). @)

whereC,,;1(x) is the(n 4+ 1) x (n + 1) matrix whose(i, j)-entry is(xlﬁll).

Moreover, the following LU-factorization of,41(x) can be proved by repeated
application of the Pascal formula:

Cpi1(x) = Ayr1 (V)P 4, ®)

where P, 11 is the (n + 1) x (n + 1) Pascal matrix (see [1]) whosg, j)-entry is
(;j) if i > j and otherwise 0, and,,, 1 (x) isthe(n + 1) x (n + 1) lower triangular
matrix whose(i, j)-entry is(if/.) if i > j and otherwise 0. Also applying the Pascal
formula, it is easy to show that

Ch(x +1) =4,(1HCy(x). (4)

From (2) and (3), another factorization for the Vandermonde maiyix (x) is
obtained (see [3]).

Theorem 2.1. For any real number x, we have
Vir1(¥) = ([11 & 5,) App1(x) P .

For exampleif x = 1, then

1 1 1 1 1 0 0 0|1 0 0o O
1 2 3 4 0 1 0 of|1 1 0 O
12 22 32 42|7|0o 1 2 0|/|]0o 1 1 0
13 28 33 43 0 1 6 6/[0 0 1 1
1 1 1 1
01 2 3
“lo o 1 3|
0 0 0 1
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Foranyn x n matrix A, let A(i] j) be the(n — 1) x (n — 1) matrix obtained from
A by deleting theth row and;th column.
Corollary 2.2. For any real number x, we have:
(i) detCyi1(x) =1,
(i) detCra@@m = (* 1Y) > 1))

Proof. (i) is an immediate consequence of (3). Noticing

Var1(0)(An) = §,Crya(x) (L) (5)
from (2) and

n—1 n
det(V,11(x)(Lln)) = [ [ k'x +n — 1], and detS,) = [Tk
k=1 k=1
we obtain (ii). O
For example,
© Y () D)
X x+1 x+2 x+3
seecu —cer| (7 (9 (D]
@ (2) () ()
G (3 () (3

and

N

3

=

=
N4+ W+ N+ P+

N~
=

=
rF wt NF P+
SN \_D)\_/ S

(1)

| <x + 3)
() N4
G (%) (%)

More interesting fact is thaf, can be used to derive a summation formula. For

convenience, we define foreakh= 1, 2, .. ., n, the number&i(n, k), Z%(n, k), .. .
by the recursive definition:

N
N

N

detCs(x)(1/5) = det

=

Y~ = —
< T

x+2

~~ = 7

D= wx

n
Zn k=142 4 pnk =3 R,
j=1

ZP(n. k)= ZP'(j. k) (p=2.3..),
j=1
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and we denote foreach=1,2,...,n and forp > 2,
p+i—1><p+i—l> <p+i—1>:|T
X: (D)= , 6
=" () (0 ©
z(p)=[2""2G, ) 274, 2)--- 2" 4G, b 7)

Now we are ready to prove the following:

Theorem 2.3. Foreachp =1,2,...,n, wehave

St [(n s p) . ( n+p >T=[ZP(”’ 1---ZPn, k)]T_ 8)

p+1 p+k—-1

Proof. For positive integers, k with n > k, we prove by induction on + p. Sub-
stitutingx = 1 in (5) proves (8) fop = 1. Now letp > 2. Applying the identity

n+ 1) _ Xn: (l)
(k +1 = k
and using (6) and (7), by the induction we have

Sixa(p +1) = Sp(xa(p) + x2(p) + - - - 4+ Xu(p))
=21(p) + 22(p) +--- + Z,(p)
=27,(p+ 1),

which completes the proof.[]
Formula (8) can be used to obtain multiple sums of powers of integers. For ex-

ample, if p = 1 thenZ1(n, k) expresses the sum of powers of the firgpositive
integers, and ip = 2, then

("$?) i+ D +2)

1 O 0 0

1 2 o ofl|(PD)]_ Lt +2)(n + 12

i 164 3?6 204 ("$?) Ln(n+1)(n + 2 (3% +6n+1)
("] Lo+ 20+ D202+ 40— 1)

=[Z%n, 1) Z%n, 2) Z%(n, 3) Z%(n, H]"

andZ2(n, k), k = 1, 2, 3, 4, expresses

n !
1k+(1k+2k)+~-~+(1k+2k+---+nk)=Z( jk).
=1 \j=1
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More generally, we obtain the following corollary from Theorem 2.3 and the def-
inition of ZP (n, k).

Corollary 2.4. Foreachp =1,2,...,n, wehave

np np-1 ni

k
DD :Zi!S(k,i)(’:ip)
i=1 p

np_1=ln, o=1 j=1

wheren, :=n.

3. Stirling matrix and Bernoulli numbers

TheBernoulli numbers B, satisfy the recurrence relation

n

Z(”:l>3k=0 ©)

k=0
foralln > 1, with Bo = 1, and theBernoulli polynomials B, (x) are given by

Bu)=3" (Z) Bux"* (10)

k=0
and satisfy
Byt1(x +1) — Byy1(x) = (n+ Dx"  (n > 0). (11)

The Bernoulli polynomials are important in obtaining closed form expressions for
the sums of powers of integers such as

1
Z o, k) = B+ D) = B O,

from (11) (also see [5, p. 199]), and it is known that the Bernoulli numiBgrs-
B, (0) can be expressed in terms of the Stirling numbers such as (see [5, p. 147])

N, vk k!
B, = kZ‘:O( 1) S(n,k)k—+ 1 (12)

foralln > 0.

In this section, we obtain other interesting identities related to the Bernoulli num-
bers in the decomposition of the factorial Stirling matrix. First we prove a very useful
lemma.

Lemma3.1. For anyinteger n > 0, we have

(n+Da" = (” + 1) Bi(x). (13)

k=0 k



G.-S Cheon, J.-S. Kim/ Linear Algebra and its Applications 357 (2002) 247-258

Proof. Applying (10) and the identity

(-G

we have
n n—k
n+1I\/n+1-k\ .
Buii(x +1) — Byp1(x)=) Bt Y ( L )( ) )xf
k=0  j=0 J
n n—k .
1 k\
:ZBkZ <7+k)(1 : )x-/.
i oM T

Expanding the last expression (14) gives

(o (1) )
e (Y e nl e on)

n k

k i)
k=0 j=0

n n41
( r )Bk(X),
k=0

which proves (13) from (11). O

Note that substituting = 0 in (13) gives (9).
Defining the lower triangular matriR, = [(j’_l)] by

®
Ao |G B 0
B G (M

gives the following matrix representation of (13):

[12¢ -+ (04 Dx"]" = PyyalBo(x) Ba(x) -+ By(x)]".

253

(14)

(15)

Thus from (15) we obtain the closed form for the Bernoulli polynomials.
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For example, iz = 4, then

1 0 0 0 Olr17 T 1

-2 3 0 0 Of|2 x—1
bbb o offa| | Hoaed

0 i -b % ooffad| | C-plem
b 0 3 3 iflse) Lfoateaogl

Note thatP, is the ‘reverse’ of thAe Pascal matri®,1(1|1), and the Bernoulli
numbers appear in the first columnBf * (also see [4]).

Theorem 3.2. Thefactorial Sirling matrix §n+1 can be factorized as

Spi1= P11 @ S).

Proof. Applying the identity (see [2, p. 209])

n—1

Smky= Y <" ; 1)5(1, k—1),

I=k—1
we obtain

i

[Prya(L1 @ S)1ij=) (l. ~ ,i N 1) (—DISk—-1,j-1

k=j
i—1 ;
= ( k)(j—l)!S(k,j—n
k=1 N T
i—1 ;
= - 1! Z <k>S(k’]_1)
k=j—1
. L/ . i
= - 1! (k_,zl (k)SUc, j—1 - (l.)so, j- 1))

= -DISGE+1))-SG0, —-1)

=j1SG, j) = [Spsalij»

which completes the proof.[]
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Note that

[P L = [ @ S)S, L

= | (1] & Sy)dia 13 L st
=1( diag U n+1ij

n+1

- %sa — Lk — sk, ),

k=1

wheres (1, k) is the Stirling number of the first kind (see [2, p. 213)), i[e(k, j)] =
[S(k, j)]‘l, which proves that the coefficients of the Bernoulli polynomial can be
expressed by the Stirling numbers of both kinds.

Corollary 3.3. Let B,(x) =) ;_g brx* bethe Bernoulli polynomial. Then for each
k=0,1...,n, wehave

n+1 +1
be=Y_ — S0l =Dk + 1)
=1

In particular sinces(l, 1) = (—1)~1( — 1)!foreachl = 1,2, ..., n + 1, we see
that
n+1 (l )
bo—;( 1)/t ——Sm -1 (@=01..),

which is equal to the Bernoulli numbé;, from (12).
Comparing the coefficients af*—* of B, (x) in both (10) and Corollary 3.3 gives
the following corollary.

Corollary 3.4. Foranynwithk=0,1,2,...,n, wehave
n+1

1 n—k+1
By = n Z;S(n,l—l)s(l,n—k—i-l),
(k)l 1 [
4. Stirling matrix and Eulerian numbers

Foreachk =0,1,...,n — 1, (n > 1), the Eulerian numbers E(n, k) are given
by the sum

k
E(n k) =) (-1’ (" j 1)<k +1- )",
j=0
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which also satisfy the recurrence relation
Emk)y=kC+DEn—-1Lk+m—-—kKHEn—-1k—-1) un=>2),

whereE(n,0) = E(n,n — 1) = 1. These numbers are one of the most celebrated
numbers associated with random permutations.

Itis known [5, p. 149] that the Eulerian numbdign, k) are closely related to the
Stirling numbers of the second kirftin, k) via

n—1
S(n,m):%ZE(n,k)<n5m> m>=m, n>1). (16)
" k=0

This suggests a means of finding relationships between the Stirling matrix and
the Eulerian matrix obtained from the triangular array of the Eulerian numbers. In
this section, we find the relationships between the factorial Stirling matrix and the
Eulerian matrix, and we obtain some interesting identities in a decomposition of the
Eulerian matrix.

Then x n Eulerian matrix E,, = [E(n, k)] is the triangular matrix whosg, j)-
entryise(i, j — 1) if i > j and otherwise 0.

For example,
1 0 0 0 O
1 1 0 0 o
Es=|1 4 1 0 0f.
1 11 11 1 O
1 26 66 26 1

The Eule~rian matrix is closely related to the matﬁ;( First, definei, to be the
‘reverse’ of S, whose(i, j)-entry is(i — j + D!S(@,i — j + 1) if i > j and other-
wise 0.

Theorem 4.1. For then x n Pascal matrix P,, we have

E,P, =S,. (17)

Proof. Applying (16), we have

(EnPu)ij = Z(En)ik(Pn)kj

k=1

=anEn<i,k—1><k._1)
k=1 j-1
=Y Enli.k— 1)<k,_ 1>
; j—1

k=j
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=§E(ik)< k)
n\t, ]_1

k=j—1
i-1
k
= Y EG, k)(. o )
k=i—(i—j+1) i—G—-j+D
=0 —j+DISGi—j+1)
= (Sp)ij- U
Thus we obtain the factorization of the Eulerian matrix:
E,=S8,P L. (18)
For example,
1 0 0 0 1 0 0 0
2 1 0 0O 0]]|-1 1 0 0 O
Es=| 6 6 1 0O O 1 -2 1 0 Of.
24 36 14 1 -1 3 -3 1 0
120 240 150 30 1 -4 6 -4 1

In particular, from (18) we get an interesting combinatorial identity which gives
other explicit formulas for the Eulerian numbers.

Corollary 4.2. Foreachk=1,2,...,n, wehave

Bt by = ;<—1)”kf+1sz(n, ”(Z B i)

In [3], it was shown that the Vandermonde matvixx) which is defined in Sec-
tion 2 can be factorized as

PyVy(x — 1) = Vy(x).
SinceP, = E; 1§, we see that
EpVi(x) = SV (x — 1. (19)
Thus we have the following result from tlie, 1)-entries of both sides afL9).

Corollary 4.3.
D E@m ox* "t = "kIS(n, ky(x — 1", (20)
k=1 k=1

Substitutinge = 2 in (20) gives

Y Em 2t =Y "kSm. b,
k=1

k=1
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which proves thé&ubini formula [2, p. 228], and noticing théEulerian polynomial

fo@) =Y En, k)x*

k=1
we obtain
Fu) =x ) KISt k) (x — )",
k=1
which proves the theorem of Frobenis p. 244).

We end this section obtaining another factorization for the Eulerian matrix. It is
easy to show that the following corollary holds fra), (4), and(19).

Corollary 4.4
E,=S,(1& S04, (& 5,-0) "
Thus from(18), we obtain the factorization for the Pascal matPix

P= (US4, LU S,-1) L.
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