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Abstract

In this paper, some relationships between the Stirling matrix, the Vandermonde matrix,
the Benoulli numbers and the Eulerian numbers are studied from a matrix representation of
k!S(n, k) which will be called the factorial Stirling matrix, whereS(n, k) are the Stirling
numbers of the second kind. As a consequence a number of interesting and useful identities
are obtained.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

In many contexts (see [1–4]), a number of interesting and useful identities involv-
ing binomial coefficients are obtained from a matrix representation of a particular
counting sequence. Such a matrix representation provides a powerful computational
tool for deriving identities and an explicit formula related to the sequence.

First, we begin our study with a well-known definition: for any real numberx and
an integerk, define
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(
x

k

)
=




[x]k
k! if k � 1,

1 if k = 0,

0 if k < 0,

where[x]k = x(x − 1) · · · (x − k + 1).
Then theStirling numbers of the second kind S(n, k) for integersn andk with

0 � k � n are defined implicitly by

xn =
n∑

k=0

S(n, k)[x]k.

We can rewrite the above equation forxn as

xn =
n∑

k=0

k!S(n, k)

(
x

k

)
.

This expression can be represented as a system of matrix equations for eachn =
0, 1, . . . ,

v(x) = ([1] ⊕ S̃n)c(x), (1)

where

v(x) = [
1 x · · · xn

]T
, c(x) =

[(
x

0

) (
x

1

)
· · ·

(
x

n

)]T

andS̃n = [k!S(n, k)] is then × n matrix whose(i, j)-entry isj !S(i, j) if i � j and
otherwise 0.

For example, if n = 4, then


1

x

x2

x3

x4




=




1 0 0 0 0

0 1 0 0 0

0 1 2 0 0

0 1 6 6 0

0 1 14 36 24







(
x
0

)
(
x
1

)(
x
2

)
(
x
3

)
(
x
4

)




.

Note that

S̃n = Sn · diag(1!, 2!, . . . , n!),
whereSn = [S(n, k)] is then × n Stirling matrix of the second kind [3]. We will call
S̃n as afactorial Stirling matrix.

In many cases it is possible to obtain from a matrix representation of a particular
counting sequence an identity and an explicit formula for the general term of the
sequence.

In this paper, some relationships between the Stirling matrix, the Vandermonde
matrix, the Benoulli numbers and the Eulerian numbers from the factorial Stirling
matrix S̃n are studied. As a consequence we obtain interesting combinatorial identi-
ties related to theses numbers.
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2. Stirling matrix and Vandermonde matrix

The factorial Stirling matrix can be used to obtain a summation formula which
contains one or more summations. We first obtain interesting determinants of certain
matrices in the decomposition of the Vandermonde matrix.

Matrix equation (1) suggests the Vandermonde matrix which is defined by

Vn+1(x) :=




1 1 · · · 1
x x + 1 · · · x + n

x2 (x + 1)2 · · · (x + n)2

...
...

...

xn (x + 1)n · · · (x + n)n




can be factorized by

Vn+1(x) = ([1] ⊕ S̃n)Cn+1(x), (2)

whereCn+1(x) is the(n + 1) × (n + 1) matrix whose(i, j)-entry is
(
x+j−1

i−1

)
.

Moreover, the following LU-factorization ofCn+1(x) can be proved by repeated
application of the Pascal formula:

Cn+1(x) = �n+1(x)P T
n+1, (3)

wherePn+1 is the (n + 1) × (n + 1) Pascal matrix (see [1]) whose(i, j)-entry is(
i−1
j−1

)
if i � j and otherwise 0, and�n+1(x) is the(n + 1) × (n + 1) lower triangular

matrix whose(i, j)-entry is
(

x
i−j

)
if i � j and otherwise 0. Also applying the Pascal

formula, it is easy to show that

Cn(x + 1) = �n(1)Cn(x). (4)

From (2) and (3), another factorization for the Vandermonde matrixVn+1(x) is
obtained (see [3]).

Theorem 2.1. For any real number x, we have

Vn+1(x) = ([1] ⊕ S̃n)�n+1(x)P T
n+1.

For example, if x = 1, then


1 1 1 1
1 2 3 4
12 22 32 42

13 23 33 43


=




1 0 0 0
0 1 0 0
0 1 2 0
0 1 6 6







1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1




×




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


 .
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For anyn × n matrixA, letA(i|j) be the(n − 1) × (n − 1) matrix obtained from
A by deleting theith row andj th column.

Corollary 2.2. For any real number x, we have:
(i) detCn+1(x) = 1,

(ii ) detCn+1(x)(1|n) =
(
x + n − 1

n

)
(x � 1).

Proof. (i) is an immediate consequence of (3). Noticing

Vn+1(x)(1|n) = S̃nCn+1(x)(1|n) (5)

from (2) and

det(Vn+1(x)(1|n)) =
n−1∏
k=1

k![x + n − 1]n and det(S̃n) =
n∏

k=1

k!,

we obtain (ii). �

For example,

detC4(x) = det




(
x
0

) (
x+1

0

) (
x+2

0

) (
x+3

0

)
(
x
1

) (
x+1

1

) (
x+2

1

) (
x+3

1

)
(
x
2

) (
x+1

2

) (
x+2

2

) (
x+3

2

)
(
x
3

) (
x+1

3

) (
x+2

3

) (
x+3

3

)




= 1

and

detC5(x)(1|5) = det




(
x
1

) (
x+1

1

) (
x+2

1

) (
x+3

1

)
(
x
2

) (
x+1

2

) (
x+2

2

) (
x+3

2

)
(
x
3

) (
x+1

3

) (
x+2

3

) (
x+3

3

)
(
x
4

) (
x+1

4

) (
x+2

4

) (
x+3

4

)




=
(

x + 3

4

)
.

More interesting fact is that̃Sn can be used to derive a summation formula. For
convenience, we define for eachk = 1, 2, . . . , n, the numbersZ1(n, k), Z2(n, k), . . .

by the recursive definition:

Z1(n, k)=1k + 2k + · · · + nk =
n∑

j=1

jk,

Zp(n, k)=
n∑

j=1

Zp−1(j, k) (p = 2, 3, . . .),
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and we denote for eachi = 1, 2, . . . , n and forp � 2,

xi (p)=
[(

p + i − 1

p

) (
p + i − 1

p + 1

)
· · ·

(
p + i − 1

p + k − 1

)]T

, (6)

zi (p)=[
Zp−1(i, 1) Zp−1(i, 2) · · ·Zp−1(i, k)

]T
. (7)

Now we are ready to prove the following:

Theorem 2.3. For each p = 1, 2, . . . , n, we have

S̃k

[(
n + p

p + 1

)
· · ·

(
n + p

p + k − 1

)]T

=[
Zp(n, 1) · · ·Zp(n, k)

]T
. (8)

Proof. For positive integersn, k with n � k, we prove by induction onn + p. Sub-
stitutingx = 1 in (5) proves (8) forp = 1. Now letp � 2. Applying the identity(

n + 1

k + 1

)
=

n∑
l=0

(
l

k

)
,

and using (6) and (7), by the induction we have

S̃kxn(p + 1) = S̃k(x1(p) + x2(p) + · · · + xn(p))

= z1(p) + z2(p) + · · · + zn(p)

= zn(p + 1),

which completes the proof.�

Formula (8) can be used to obtain multiple sums of powers of integers. For ex-
ample, if p = 1 thenZ1(n, k) expresses the sum of powers of the firstn positive
integers, and ifp = 2, then




1 0 0 0
1 2 0 0
1 6 6 0
1 14 36 24







(
n+2

3

)
(
n+2

4

)
(
n+2

5

)
(
n+2

6

)




=




1
6n(n + 1)(n + 2)

1
12n(n + 2)(n + 1)2

1
60n(n + 1)(n + 2)(3n2 + 6n + 1)

1
60n(n + 2)(n + 1)2(2n2 + 4n − 1)




= [Z2(n, 1) Z2(n, 2) Z2(n, 3) Z2(n, 4)]T

andZ2(n, k), k = 1, 2, 3, 4, expresses

1k + (1k + 2k) + · · · + (1k + 2k + · · · + nk) =
n∑

l=1


 l∑

j=1

jk


 .
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More generally, we obtain the following corollary from Theorem 2.3 and the def-
inition of Zp(n, k).

Corollary 2.4. For each p = 1, 2, . . . , n, we have

np∑
np−1=1

np−1∑
np−2=1

· · ·
n1∑

j=1

jk =
k∑

i=1

i!S(k, i)

(
n + p

i + p

)
,

where np := n.

3. Stirling matrix and Bernoulli numbers

TheBernoulli numbers Bn satisfy the recurrence relation
n∑

k=0

(
n + 1

k

)
Bk = 0 (9)

for all n � 1, with B0 = 1, and theBernoulli polynomials Bn(x) are given by

Bn(x) =
n∑

k=0

(
n

k

)
Bkx

n−k (10)

and satisfy

Bn+1(x + 1) − Bn+1(x) = (n + 1)xn (n � 0). (11)

The Bernoulli polynomials are important in obtaining closed form expressions for
the sums of powers of integers such as

Z1(n, k) = 1

k + 1
[Bk+1(n + 1) − Bk+1(0)],

from (11) (also see [5, p. 199]), and it is known that the Bernoulli numbersBn =
Bn(0) can be expressed in terms of the Stirling numbers such as (see [5, p. 147])

Bn =
n∑

k=0

(−1)kS(n, k)
k!

k + 1
(12)

for all n � 0.
In this section, we obtain other interesting identities related to the Bernoulli num-

bers in the decomposition of the factorial Stirling matrix. First we prove a very useful
lemma.

Lemma 3.1. For any integer n � 0, we have

(n + 1)xn =
n∑

k=0

(
n + 1

k

)
Bk(x). (13)
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Proof. Applying (10) and the identity(
n + 1

k

)(
n + 1 − k

j

)
=

(
n + 1

j + k

)(
j + k

k

)
,

we have

Bn+1(x + 1) − Bn+1(x)=
n∑

k=0

Bk

n−k∑
j=0

(
n + 1

k

)(
n + 1 − k

j

)
xj

=
n∑

k=0

Bk

n−k∑
j=0

(
n + 1

j + k

)(
j + k

k

)
xj . (14)

Expanding the last expression (14) gives(
n + 1

0

)
B0 +

(
n + 1

1

) {
B0

(
1

0

)
x + B1

(
1

1

)}

+ · · · +
(

n + 1

n

) {
B0

(
n

0

)
xn + B1

(
n

1

)
xn−1 + · · · + Bn

(
n

n

)}

=
n∑

k=0

(
n + 1

k

) k∑
j=0

(
k

j

)
Bjx

k−j

=
n∑

k=0

(
n + 1

k

)
Bk(x),

which proves (13) from (11). �

Note that substitutingx = 0 in (13) gives (9).
Defining the lower triangular matrix̂Pn = [( i

j−1

)] by

P̂n =




(1
0

)
(2
0

) (2
1

)
O

...
...

.. .(
n
0

) (
n
1

) · · · (
n

n−1

)




,

gives the following matrix representation of (13):

[1 2x · · · (n + 1)xn]T = P̂n+1[B0(x) B1(x) · · ·Bn(x)]T. (15)

Thus from (15) we obtain the closed form for the Bernoulli polynomials.
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For example, ifn = 4, then


1 0 0 0 0

−1
2

1
2 0 0 0

1
6 −1

2
1
3 0 0

0 1
4 −1

2
1
4 0

− 1
30 0 1

3 −1
2

1
5







1

2x

3x2

4x3

5x4




=




1

x − 1
2

x2 − x + 1
6

x3 − 3
2x2 + 1

2x

x4 − 2x3 + x2 − 1
30




.

Note thatP̂n is the ‘reverse’ of the Pascal matrixPn+1(1|1), and the Bernoulli
numbers appear in the first column of̂P −1

n (also see [4]).

Theorem 3.2. The factorial Stirling matrix S̃n+1 can be factorized as

S̃n+1 = P̂n+1([1] ⊕ S̃n).

Proof. Applying the identity (see [2, p. 209])

S(n, k) =
n−1∑

l=k−1

(
n − 1

l

)
S(l, k − 1),

we obtain

[P̂n+1([1] ⊕ S̃n)]ij =
i∑

k=j

(
i

i − k + 1

)
(j − 1)!S(k − 1, j − 1)

=
i−1∑

k=j−1

(
i

i − k

)
(j − 1)!S(k, j − 1)

=(j − 1)!
i−1∑

k=j−1

(
i

k

)
S(k, j − 1)

=(j − 1)!

 i∑

k=j−1

(
i

k

)
S(k, j − 1) −

(
i

i

)
S(i, j − 1)




=(j − 1)! (S(i + 1, j) − S(i, j − 1))

=j !S(i, j) = [S̃n+1]ij ,

which completes the proof.�
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Note that

[P̂ −1
n+1]ij = [([1] ⊕ S̃n)S̃

−1
n+1]ij

=
[
([1] ⊕ Sn)diag

(
1,

1

2
, . . . ,

1

n + 1

)
S−1

n+1

]
ij

=
n+1∑
k=1

1

k
S(i − 1, k − 1)s(k, j),

wheres(n, k) is the Stirling number of the first kind (see [2, p. 213]), i.e.,[s(k, j)] =
[S(k, j)]−1, which proves that the coefficients of the Bernoulli polynomial can be
expressed by the Stirling numbers of both kinds.

Corollary 3.3. Let Bn(x) = ∑n
k=0 bkx

k be the Bernoulli polynomial. Then for each
k = 0, 1 . . . , n, we have

bk =
n+1∑
l=1

k + 1

l
S(n, l − 1)s(l, k + 1).

In particular, sinces(l, 1) = (−1)l−1(l − 1)! for eachl = 1, 2, . . . , n + 1, we see
that

b0 =
n+1∑
l=1

(−1)l−1 (l − 1)!
l

S(n, l − 1) (n = 0, 1, . . .),

which is equal to the Bernoulli numberBn from (12).
Comparing the coefficients ofxn−k of Bn(x) in both (10) and Corollary 3.3 gives

the following corollary.

Corollary 3.4. For any n with k = 0, 1, 2, . . . , n, we have

Bk = 1(
n
k

) n+1∑
l=1

n − k + 1

l
S(n, l − 1)s(l, n − k + 1).

4. Stirling matrix and Eulerian numbers

For eachk = 0, 1, . . . , n − 1, (n � 1), the Eulerian numbers E(n, k) are given
by the sum

E(n, k) =
k∑

j=0

(−1)j
(

n + 1

j

)
(k + 1 − j)n,
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which also satisfy the recurrence relation

E(n, k) = (k + 1)E(n − 1, k) + (n − k)E(n − 1, k − 1) (n � 2),

whereE(n, 0) = E(n, n − 1) = 1. These numbers are one of the most celebrated
numbers associated with random permutations.

It is known [5, p. 149] that the Eulerian numbersE(n, k) are closely related to the
Stirling numbers of the second kindS(n, k) via

S(n, m) = 1

m!
n−1∑
k=0

E(n, k)

(
k

n − m

)
(n � m, n � 1). (16)

This suggests a means of finding relationships between the Stirling matrix and
the Eulerian matrix obtained from the triangular array of the Eulerian numbers. In
this section, we find the relationships between the factorial Stirling matrix and the
Eulerian matrix, and we obtain some interesting identities in a decomposition of the
Eulerian matrix.

Then × n Eulerian matrix En = [E(n, k)] is the triangular matrix whose(i, j)-
entry isE(i, j − 1) if i � j and otherwise 0.

For example,

E5 =




1 0 0 0 0
1 1 0 0 0
1 4 1 0 0
1 11 11 1 0
1 26 66 26 1


 .

The Eulerian matrix is closely related to the matrixS̃n. First, defineŜn to be the
‘reverse’ ofS̃n whose(i, j)-entry is(i − j + 1)!S(i, i − j + 1) if i � j and other-
wise 0.

Theorem 4.1. For the n × n Pascal matrix Pn, we have

EnPn = Ŝn. (17)

Proof. Applying (16), we have

(EnPn)ij =
n∑

k=1

(En)ik(Pn)kj

=
n∑

k=1

En(i, k − 1)

(
k − 1

j − 1

)

=
i∑

k=j

En(i, k − 1)

(
k − 1

j − 1

)
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=
i−1∑

k=j−1

En(i, k)

(
k

j − 1

)

=
i−1∑

k=i−(i−j+1)

En(i, k)

(
k

i − (i − j + 1)

)

= (i − j + 1)!S(i, i − j + 1)

= (Ŝn)ij . �
Thus we obtain the factorization of the Eulerian matrix:

En = ŜnP
−1
n . (18)

For example,

E5 =




1 0 0 0 0
2 1 0 0 0
6 6 1 0 0
24 36 14 1 0
120 240 150 30 1







1 0 0 0 0
−1 1 0 0 0

1 −2 1 0 0
−1 3 −3 1 0

1 −4 6 −4 1


 .

In particular, from (18) we get an interesting combinatorial identity which gives
other explicit formulas for the Eulerian numbers.

Corollary 4.2. For each k = 1, 2, . . . , n, we have

E(n, k) =
n∑

j=1

(−1)n−k−j+1j !S(n, j)

(
n − j

k − 1

)
.

In [3], it was shown that the Vandermonde matrixVn(x) which is defined in Sec-
tion 2 can be factorized as

PnVn(x − 1) = Vn(x).

SincePn = E−1
n Ŝn, we see that

EnVn(x) = ŜnVn(x − 1). (19)

Thus we have the following result from the(n, 1)-entries of both sides of(19).

Corollary 4.3.
n∑

k=1

E(n, k)xk−1 =
n∑

k=1

k!S(n, k)(x − 1)n−k. (20)

Substitutingx = 2 in (20) gives
n∑

k=1

E(n, k)2k−1 =
n∑

k=1

k!S(n, k),
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which proves theFubini formula [2, p. 228], and noticing theEulerian polynomial

fn(x) :=
n∑

k=1

E(n, k)xk

we obtain

fn(x) = x

n∑
k=1

k!S(n, k)(x − 1)n−k,

which proves the theorem of Frobenius[2, p. 244].
We end this section obtaining another factorization for the Eulerian matrix. It is

easy to show that the following corollary holds from(2), (4), and(19).

Corollary 4.4

En = Ŝn([1] ⊕ S̃n−1)�n(1)−1([1] ⊕ S̃n−1)
−1.

Thus from(18), we obtain the factorization for the Pascal matrixPn.

Pn = ([1] ⊕ S̃n−1)�n(1)([1] ⊕ S̃n−1)
−1.
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