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Abstract

The Pascal-type matrices obtained from the Stirling numbers of the first kind s(n, k) and
of the second kind S(n, k) are studied, respectively. It is shown that these matrices can be
factorized by the Pascal matrices. Also the LDU-factorization of a Vandermonde matrix of
the form Vn(x, x + 1, . . . , x + n− 1) for any real number x is obtained. Furthermore, some
well-known combinatorial identitiesareobtained from thematrix representation of theStirling
numbers, and thesematricesaregeneralized in one or two variables. © 2001 Elsevier Science
Inc. Al l rights reserved.
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1. Introduction

For integersn and k with n � k � 0, theStirling numbers of the first kind s(n, k)
and of the second kind S(n, k) can be defined as the coefficients in the following
expansion of avariablex (see [3, pp. 271–279]):

[x]n =
n∑
k=0

(−1)n−ks(n, k)xk

and

∗ Corresponding author.
E-mail addresses: gscheon@road.daejin.ac.kr (G.-S. Cheon), lion@math.skku.ac.kr (J.-S. Kim).

0024-3795/01/$ - see front matter � 2001 Elsevier Science Inc. Al l rights reserved.
PII: S 0 0 2 4 - 3 7 9 5 ( 0 1 ) 0 0 2 3 4 - 8



50 G.-S. Cheon, J.-S. Kim / Linear Algebra and its Applications 329 (2001) 49–59

xn =
n∑
k=0

S(n, k)[x]k, (1.1)

where

[x]n =
{
x(x − 1) · · · (x − n+ 1) if n � 1,
1 if n = 0.

(1.2)

It is known that for ann, k � 0, thes(n, k), S(n, k) and[n]k satisfy the following
Pascal-type recurrence relations:

s(n, k) = s(n− 1, k − 1)+ (n− 1)s(n− 1, k),

S(n, k) = S(n− 1, k − 1)+ kS(n− 1, k), (1.3)

[n]k = [n− 1]k + k[n− 1]k−1,

wheres(n,0) = s(0, k) = S(n,0) = S(0, k) = [0]k = 0 ands(0,0) = S(0,0) = 1,
and moreover theS(n, k) satisfies the following formula known as ‘vertical’ recur-
rence relation:

S(n, k) =
n−1∑
l=k−1

(
n− 1

l

)
S(l, k − 1). (1.4)

As we did for the Pascal triangle, we can define the Pascal-type matrices from the
Stirling numbers of the first kind and of the second kind, respectively. A
matrix representation of the Pascal triangle has catalyzed several investigations
(see [1,2,4,6,7]).

Then× n Pascal matrix [4] (also see [2]),Pn, is defined by

(Pn)ij =
{(

i−1
j−1

)
if i � j,

0 otherwise.

More generally, for a nonzero real variablex, the Pascal matrix was generalized
in Pn[x] andQn[x], respectively which are defined in [6] (also see [1]), and these
generalized Pascal matrices were also extended in�n[x, y] (see [7]) for any two
nonzero real variablesx andy where

(�n[x, y])ij =

x

i−j yi+j−2
(
i − 1
j − 1

)
if i � j,

0 otherwise.
(1.5)

By the definition, we see that

Pn[x] = �n[x,1], Qn[y] = �n[1, y],
(1.6)

Pn = Pn[1] = Qn[1] = �n[1,1].
Moreover, it is known that

P−1
n [x] = Pn[−x] =

[
(−1)i−j

(
i − 1
j − 1

)
xi−j

]
, (1.7)
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and in particular,P−1
n = P−1

n [1].
In [6] and [7], the factorizations ofPn[x], Qn[x], and�n[x, y] are obtained,

respectively.
In Section 2, we study the Pascal-type matrices which will be called the Stirling

matrices obtained from the Stirling numbers of the first kinds(n, k) and second kind
S(n, k). As a consequence it is shown that such matrices can be factorized by the
Pascal matrices. Also the LDU-factorization of a Vandermonde matrix of the form
Vn(x, x + 1, . . . , x + n− 1) for any real numberx is obtained.

In Section 3, some well-known combinatorial identities are obtained from the
matrix representation of the Stirling numbers.

Finally in Section 4, these matrices are generalized in one or two variables.

2. Stirling matrices of the second kind

For the Stirling numberss(i, j) andS(i, j) of the first kind and of the second kind
respectively, definesn andSn to be then× n matrices by

(sn)ij =
{
s(i, j) if i � j,

0 otherwise.

and

(Sn)ij =
{
S(i, j) if i � j,

0 otherwise.

We call the matricessn andSn Stirling matrix of the first kind andof the second
kind, respectively (see [5, p. 144]).

For example,

s4 =




1 0 0 0
1 1 0 0
2 3 1 0
6 11 6 1


 and S4 =




1 0 0 0
1 1 0 0
1 3 1 0
1 7 6 1


 .

From now on, we will use the notation⊕ for the direct sum of two matrices.
Using the definition ofSn, we can derive the following matrix representation from

(1.1):

Xn = ([1] ⊕ Sn−1)Fn, (2.1)

whereXn = [1x . . . xn−1]T andFn = [[x]0[x]1 . . . [x]n−1]T.
In this section, we mainly study Stirling matrixSn of the second kind since

S−1
n = [(−1)i−j s(i, j)] or s−1

n = [(−1)i−jS(i, j)]. (2.2)

First, we will discuss for a factorization ofSn.
For thek × k Pascal matrixPk, we define then× n matrix P̄k by

P̄k =
[
In−k O

O Pk

]
.
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Thus,P̄n = Pn andP̄1 is the identity matrix of ordern.

Lemma 2.1. For the n× n Pascal matrix Pn,

Sn = Pn([1] ⊕ Sn−1).

Proof. For eachi and j with i � j � 1, since the(i, j)-entry of [1] ⊕ Sn−1 is
S(i − 1, j − 1), from the definition of the matrix product and (1.4), we get

(Pn([1] ⊕ Sn−1))ij =
i−1∑
l=j−1

pi l+1S(l, j − 1)

=
i−1∑
l=j−1

(
i − 1
l

)
S(l, j − 1) = S(i, j) = (Sn)ij . �

For example,

S4 =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1







1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1


 .

The following theorem is an immediate consequence of Lemma 2.1.

Theorem 2.2. The Stirling matrix Sn of the second kind can be factorized by the
Pascal matrices P̄k ’s:

Sn = P̄nP̄n−1 · · · P̄2P̄1.

For example,

S4 =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1







1 0 0 0
0 1 0 0
0 1 1 0
0 1 2 1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


 .

We now turn our attention to the special matrices which can be expressed by the
Stirling matrices.

It is easy to see that Lemma 2.1 and (2.1) lead to

(x + 1)n =
n∑
k=0

S(n+ 1, k + 1)[x]k (2.3)

for eachn = 0,1, . . . Thus (2.1) and (2.3) suggest how the Vandermonde matrix
which is defined by the following way can be factorized.

DefineVn(x) to be then× n Vandermonde matrix by

Vn(x) :=Vn(x, x + 1, . . . , x + n− 1)
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=




1 1 · · · 1
x x + 1 · · · x + n− 1
x2 (x + 1)2 · · · (x + n− 1)2

...
...

...

xn−1 (x + 1)n−1 · · · (x + n− 1)n−1


 ,

and use the definition of[x]n in (1.2) to define then× n matrixLn by

(Ln)ij =
{[i − 1]j−1 if i � j,

0 otherwise.

For example,

L4 =




1 0 0 0
1 1 0 0
1 2 2 0
1 3 6 6


 .

By a simple computation we obtain

Ln = PnDn, (2.4)

whereDn = diag(1,1,2!, . . . , (n− 1)!). Thus, we have

L−1
n = D−1

n P−1
n =

[
(−1)i−j 1

(i−1)!
(
i − 1
j − 1

)]
.

Applying the binomial theorem, it is easy to show that for any real numberx and
for the Pascal matrixPn,

PnVn(x) = Vn(x + 1).

Thus, we have

detVn(x) = detVn(x + 1).

Lemma 2.3. For the n× n Stirling matrix Sn of the second kind,

Vn(1) = SnL
T
n .

Proof. Applying (1.1) and (1.3) for eachi, j = 1,2, . . . , n, we have

(
SnL

T
n

)
ij

=
i∑
k=1

S(i, k)[j − 1]k−1

=
i∑
k=1

{S(i − 1, k − 1)+ kS(i − 1, k)}[j − 1]k−1

=
i∑
k=1

{S(i − 1, k − 1)[j − 1]k−1 + S(i − 1, k)k[j − 1]k−1}
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=
i∑
k=1

[S(i − 1, k − 1)[j − 1]k−1 + S(i − 1, k){[j ]k − [j − 1]k}]

=
i−1∑
k=1

S(i − 1, k)[j ]k

=j i−1 = (Vn(1))ij ,

since

i∑
k=1

S(i − 1, k − 1)[j − 1]k−1 =
i∑

k=1

S(i − 1, k)[j − 1]k,

which completes the proof.�

In the following theorem, we obtain the LDU factorization ofVn(x) for any real
numberx.

Theorem 2.4. For any real number x and the generalized Pascal matrix Pn[x] in
(1.6),

Vn(x) = (Pn[x − 1]Sn)DnP T
n .

Proof. From (2.4) and Lemma 2.3, for any real numberx we get

(
(Pn[x − 1]Sn)LT

n

)
ij

=(Pn[x − 1]Vn(1))ij

=
i−1∑
k=0

(
i − 1
k

)
(x − 1)i−1−kj k = (x + j − 1)i−1

=(Vn(x))ij . �

For example,

V4(x)=




1 1 1 1
x x + 1 x + 2 x + 3
x2 (x + 1)2 (x + 2)2 (x + 3)2

x3 (x + 1)3 (x + 2)3 (x + 3)3




=




1 0 0 0
x − 1 1 0 0
(x − 1)2 2(x − 1) 1 0
(x − 1)3 3(x − 1)2 3(x − 1) 1







1 0 0 0
1 1 0 0
1 3 1 0
1 7 6 1
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×




1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 6







1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1




=




1 0 0 0
x 1 0 0
x2 2x + 1 1 0
x3 3x2 + 3x + 1 3x + 3 1




×




1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 6







1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


 .

Corollary 2.5. For any real number x,

detVn(x) =
n−1∏
k=0

k!

For the inverse ofVn(x), from (1.7) and Theorem 2.4 we see that

Vn(x)
−1 = P T

n [−1]D−1
n S−1

n Pn[1 − x].

3. Some combinatorial identities

In this section, we obtain some well-known identities for a Stirling number from
its matrix representation.

Applying Theorem 2.4 forx = 1, we obtain

Sn = Vn(1)
(
P−1
n

)T
D−1
n . (3.1)

Computing the matrix product in (3.1) and comparing with the last row ofSn, we
can obtain the following representation forS(n, k), known as Stirling formula:

S(n, k) = 1

(k − 1)!
k∑
t=1

(−1)k−t
(
k − 1
t − 1

)
tn−1 (k = 1,2, . . . , n).

Again applying (1.7) and (2.2) to Lemma 2.1, since

sn = ([1] ⊕ sn−1])Pn, (3.2)

by a simple matrix product, it is easy to see that the Stirling numbers(n, k) of the
first kind satisfies the following ‘horizontal’ recurrence relation which gives other
explicit formula for thes(n, k) (see [5, p. 215)]
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s(n, k) =
n−1∑
l=k−1

(
l

k − 1

)
s(n− 1, l).

Moreover, from Lemma 2.1 and (3.2), since

Pn = Sn([1] ⊕ sn−1) or Pn = ([1] ⊕ Sn−1)sn,

a binomial coefficient
(
n
k

)
can be expressed by the Stirling numbers of the first kind

and of the second kind as follows:(
n

k

)
=

n∑
t=k
(−1)t−kS(n+ 1, t + 1)s(t, k)

or (
n

k

)
=

n∑
t=k
(−1)n−t S(n, t)s(t + 1, k + 1).

Finally, note that theBell number ω(n) is defined by

ω(n) =
n∑
k=1

S(n, k), n � 1.

By virtue of the matrix, theith Bell numberω(i) is just the sum of the entries in
the ith row of the Stirling matrixSn of the second kind. Thus, from Lemma 2.1 we
get

Pn
[
1 ω(1) · · · ω(n− 1)

]T = [
ω(1) ω(2) · · · ω(n)

]T
.

More generally, if we note that for eachn = 0,1, . . .

�mω(n) =
m∑
k=0

(−1)m−k
(
m

k

)
ω(n+ k) (m = 0,1, . . .)

whereω(0) := 1 and� is the difference operator which is defined by

�ω(n) = ω(n + 1)− ω(n) and �mω = �(�m−1ω) (m = 2,3, . . .),

by a simple matrix computation we get

Pn




ω(0) ω(1) · · · ω(n − 1)
ω(1) ω(2) · · · ω(n)
...

...
...

...

ω(n− 1) ω(n) · · · ω(2n− 2)




=



ω(1) �ω(1) · · · �n−1ω(1)
ω(2) �ω(2) · · · �n−1ω(2)
...

...
...

...

ω(n) �ω(n) · · · �n−1ω(n)


 . (3.3)
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From (3.3), for eachn=1,2,. . . it is easy to establish the following identity:

�mω(n) =
n−1∑
k=0

(
n− 1
k

)
ω(m+ k) (m = 0,1, . . . , n− 1), (3.4)

where�0ω(n) := ω(n).
In particular, from (3.4) we get the following well-known identities (see [5,

pp. 210–211]):

ω(n) =
n−1∑
k=0

(
n− 1
k

)
ω(k) (n � 1)

and

ω(n) = �nω(1).

4. Generalizations of the Stirling matrices

For any nonzero real numberx, then× n generalized Stirling matrix of the first
kind sn[x] andof the second kind Sn[x] are defined by

(sn[x])ij =
{
xi−j s(i, j) if i � j,

0 otherwise

and

(Sn[x])ij =
{
xi−j S(i, j) if i � j,

0 otherwise.

By the definition, we see thatsn[1] = sn andSn[1] = Sn.
Also, for thek × k generalized Pascal matrixPk[x] we define then× n matrix

P̄k[x] by

P̄k[x] =
[
In−k O

O Pk[x]
]
.

Sincesn[1] = sn andSn[1] = Sn, it is easy to prove the following lemma.

Lemma 4.1. Let x be a nonzero real number. Then
(a) s−1

n [x] = Sn[−x],
(b) S−1

n [x] = sn[−x].

The following theorem follows from Lemmas 2.1 and 4.1.

Theorem 4.2. Let x be a nonzero real number. Then
(a) Sn[x] = Pn[x]([1] ⊕ Sn−1[x]),
(b) Sn[x] = P̄n[x] P̄n−1[x] . . . P̄2[x] P̄1[x],
(c) S−1

n [x] = P̄1[−x] P̄2[−x] . . . P̄n−1[−x] P̄n[−x].
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For example,

S4[x]=




1 0 0 0
x 1 0 0
x2 3x 1 0
x3 7x2 6x 1




=




1 0 0 0
x 1 0 0
x2 2x 1 0
x3 3x2 3x 1







1 0 0 0
0 1 0 0
0 x 1 0
0 x2 3x 1


 .

Again, if we define then× n matricestn[x] andTn[x] by

(tn[x])ij =
{
xi+j−2s(i, j) if i � j,

0 otherwise,

and

(Tn[x])ij =
{
xi+j−2S(i, j) if i � j,

0 otherwise,

it is easy to see that the following theorem holds by the similar arguments forsn[x]
andSn[x].

Theorem 4.3. Let x be a nonzero real number. Then for the generalized Pascal
matrices Pn[x] andQn[x] defined in (1.6),the following results hold:

(a) t−1
n [x] = Tn

[ − 1
x

]
,

(b) T −1
n [x] = tn

[ − 1
x

]
,

(c) tn[x] = ([1] ⊕ sn−1[x])Qn[x],
(d) Tn[x] = Qn[x]

([1] ⊕ Sn−1
[ 1
x

])
,

(e) tn[x] = P̄1[x]P̄2[x] . . . P̄n−1[x]Qn[x],
(f) Tn[x] = Qn[x]P̄n−1

[ 1
x

]
. . . P̄2

[ 1
x

]
P̄1

[ 1
x

]
,

(g) t−1
n [x] = Q̄n

[ − 1
x

]
P̄n−1[−x] . . . P̄2[−x]P̄1[−x],

(h) T −1
n [x] = P̄1

[ − 1
x

]
P̄2

[ − 1
x

]
. . . P̄n−1

[ − 1
x

]
Q̄n

[ − 1
x

]
.

Furthermore, for any two nonzero real numbersx and y we define then× n

matrices�n[x, y] and�n[x, y] by

(ψn[x, y])ij =
{
xi−j yi+j−2s(i, j) if i � j,

0 otherwise

and
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(ωn[x, y])ij =
{
xi−j yi+j−2S(i, j) if i � j,

0 otherwise.

By the definition, we see that

�n[x,1] = Sn[x], �n[1, y] = Tn[y],
�n[x,1] = sn[x], �n[1, y] = tn[y].

It is easy to see that the following theorems hold by the similar arguments for
sn[x] andSn[x].

Theorem 4.4. Let x and y be any nonzero real numbers. Then for the extended
generalized Pascal matrix �n[x, y] defined in (1.5),the following results hold:
(a) �n[−x, y] = �n[x,−y],
(b) �n[−x, y] = �n[x,−y],
(c) �−1

n [x, y] = �n

[ − x, 1
y

] = �n

[
x,− 1

y

]
,

(d) �−1
n [x, y] = �n

[ − x, 1
y

] = �n
[
x,− 1

y

]
,

(e) �n[x, y] = �n[x, y]
([1] ⊕ Sn−1

[
x
y

])
,

(f) �n[x, y] = ([1] ⊕ sn−1[xy])�n[x, y],
(g) �n[x, y] = �n[x, y]P̄n−1

[
x
y

]
. . . P̄2

[
x
y

]
P̄1

[
x
y

]
,

(h) �n[x, y] = P̄1[xy]P̄2[xy] . . . P̄n−1[xy]�n[x, y],
(i) �−1

n [x, y] = �n
[
x,− 1

y

]
P̄n−1[−xy] . . . P̄2[−xy]P̄1[−xy],

(j) �−1
n [x, y] = P̄1

[ − x
y

]
P̄2

[ − x
y

]
. . . P̄n−1

[ − x
y

]
�n

[
x,− 1

y

]
.
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