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a b s t r a c t

Several important combinatorial arrays, after inserting some minus signs, turn out to be
involutions when considered as lower triangular matrices. Among these are the Pascal,
RNA, and directed animal matrices. These examples and many others are in the Bell
subgroup of the Riordan group. We characterize all such pseudo-involutions by means
of a single sequence called the ∆-sequence. Finally we compute the ∆-sequences for the
powers of a pseudo-involution in the Bell subgroup.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Wewill use a pair of formal power series g(z) = g0+g1z+g2z2+· · · and f (z) = f1z+ f2z2+· · ·with g0 6= 0. An infinite
lower triangular matrix D = (dn,k)n,k≥0 is called a Riordan matrix if its column k ≥ 0 has generating function g(z)(f (z))k,
i.e., dn,k = [zn]g(z)(f (z))k where [zn] is the coefficient operator. If in addition f1 6= 0 the Riordanmatrix is called proper [10]
and will be an element of the Riordan group to be defined later. With little loss of generality we will require that g0 = 1. As
is usual, we will write D = (g(z), f (z)).
Note that elements in the leftmost column of a Riordan matrix D = (g(z), f (z)) are g0, g1, g2, . . .. Since

dn,k = [zn]g(z)(f (z))k =
n∑
j=0

[z j]f (z)[zn−j]g(z)(f (z))k−1,

every element dn,k for n, k ≥ 1 can be expressed as a linear combination of the elements in the preceding column together
with the sequence (f1, f2, . . .), i.e.,

dn,k =
n∑
j=1

fjdn−j,k−1 = f1dn−1,k−1 + f2dn−2,k−1 + · · · + fnd0,k−1.

Originally, the term Riordan matrix was introduced by Shapiro et al. in [8]. Riordan matrices were later characterized
by some other sequences found by Merlini et al. [5] and Sprugnoli [10] but the original idea appeared in Rogers [6]. In fact,
every element of a Riordan matrix can be expressed as a linear combination of the elements in the preceding row. That is, if
D = (dn,k)n,k≥0 is a Riordan matrix, there exist unique sequences A = (a0, a1, a2, . . .) and Z = (z0, z1, z2, . . .)with a0 6= 0,
z0 6= 0 such that
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(i) dn+1,k+1 =
∑
∞

j=0 ajdn,k+j, (k, n = 0, 1 . . .),
(ii) dn+1,0 =

∑
∞

j=0 zjdn,j, (n = 0, 1, . . .).

Actually, the existence of the sequence A assures that the array is Riordan, and the sequence Z exists for every lower
triangular array having no zeros in the main diagonal. The coefficients a0, a1, a2, . . . and z0, z1, z2, . . . appearing in (i) and
(ii) are called the A-sequence and the Z-sequence of D, respectively. If A(z) and Z(z) are the generating functions of the
corresponding sequences A and Z of a RiordanmatrixD = (g(z), f (z)) then the functions g(z), f (z), A(z), Z(z) are connected
by the relations:

f (z) = zA(f (z)), and g(z) = 1/(1− zZ(f (z))). (1)

The set of proper Riordanmatrices forms a group called the Riordan groupwith the operation beingmatrixmultiplication
∗. In terms of the generating functions this works out as

(g(z), f (z)) ∗ (h(z), `(z)) = (g(z)h(f (z)), `(f (z))).

It is easy to see that the identity element of the Riordan group is I = (1, z), the usual identity matrix, and the inverse of
(g(z), f (z)) is

(
1

g(f̄ (z))
, f̄ (z)

)
, where f̄ (z) is the compositional inverse of f (z), i.e., f (f̄ (z)) = f̄ (f (z)) = z.

Usually, a proper Riordan matrix of combinatorial interest will have all nonnegative entries on and below the main
diagonal and cannot itself have order 2. If we restrict all entries to being real numbers then any element of finite order
must have order 1 or 2. An element D of the Riordan group is called a pseudo-involution if DM has order 2 where M =
(1,−z) = diag(1,−1, 1,−1, . . .). See [2–4] for more information regarding pseudo-involutions. Equivalent conditions are
thatMD is an involution or that D−1 = MDM which can be rephrased as D−1 =

(
(−1)n−k dn,k

)
n,k≥0.

In this paper, we find a new single defining sequence for these Riordan matrices that are essentially self-inverse. We
call this new sequence the ∆-sequence and tabulate about ten examples at the end of this article. Further we compute the
∆-sequence for powers of a pseudo-involution in the Bell subgroup [7] which is the set of all proper Riordan matrices of the
form

(
f (z)
z , f (z)

)
.

2. ∆-sequence of the Riordan matrix

We begin with an example. The RNA matrix [2] is given by

RNA =
(
f (z)
z
, f (z)

)
=



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0
2 3 3 1 0 0 0
4 6 6 4 1 0 0
8 13 13 10 5 1 0
17 28 30 24 15 6 1

· · ·


where f (z) =

1−z+z2−
√
(1−z+z2)2−4z2

2z . From (1), it is easy to see that the RNA matrix has the A-sequence
(1, 1, 0, 1,−1, 2, . . .) and the Z-sequence (1, 0, 1,−1, 2, . . .). By way of contrast it will turn out that this is the unique
element in the Bell subgroup with the ∆-sequence (1, 1, 1, . . .). There is also a connection with biology. The reason this is
called the RNA matrix is that the elements in the left hand column are the number of possible RNA secondary structures on
a chain of length n. The remaining elements of the matrix count such chains with k vertices designated as the start of a yet
to be completed link.
Now, we observe that every element of RNA = (rn,k)n,k≥0 can be expressed as a linear combination of the elements in

the diagonal starting just above the element and going up and to the right together with the one element up one row and
to the left. For example,

r5,0 = 8 = 1 · 4+ 1 · 3+ 1 · 1 = 1 · r4,0 + 1 · r3,1 + 1 · r2,2,
r5,1 = 13 = 4+ 1 · 6+ 1 · 3 = r4,0 + 1 · r4,1 + 1 · r3,2

and in general,

rn+1,k = rn,k−1 +
∑
j≥0

1 · rn−j,k+j (2)

where rn,k−1 = 0 if k = 0.
There are two other examplesworthmentioning at this point. One is the Pascal trianglematrix which is well known to be

a pseudo-involution in this equivalent form. If P =
(( n
k

))
n,k≥0 then P

−1
=
(
(−1)n−k

( n
k

))
n,k≥0. The∆-sequence for Pascal’s

triangle is (1, 0, 0, 0, . . .). The other example comes from physics and is the directed animals matrix discussed in Section 3.
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Motivated by these examples, we focus our attention on the new sequence of Riordan matrices whose entries satisfy a
linear combination like (2).
Let D = (dn,k)n,k≥0 be a Riordan matrix. We say that D has a ∆-sequence (b0, b1, b2, . . .) if there exist numbers

b0, b1, b2, . . .which are independent of n and k such that

dn+1,k = dn,k−1 +
∑
j≥0

bj · dn−j,k+j

where dn,k−1 = 0 if k = 0. We denote the corresponding generating function as∆ (z).

Lemma 2.1. Let D = (g(z), f (z)) be a Riordan matrix. Then D has a ∆-sequence (b0, b1, b2, . . .) if and only if g(z) and f (z)
satisfy the following:
(i) g(z) = 1+ zg(z)∆(zf (z)),
(ii) f (z) = z + zf (z)∆(zf (z)).
Proof. We prove this using generating functions. By the definition, D has a ∆-sequence (b0, b1, b2, . . .) if and only if for
k ≥ 1 we have

g(z)(f (z))k = z(g(z)(f (z))k−1 + b0g(z)(f (z))k + b1zg(z)(f (z))k+1 + · · ·), (3)

and for k = 0, recalling that g(0) = g0 = 1, we have

g(z) = 1+ zg(z)(b0 + b1zf (z)+ b2(zf (z))2 + · · ·) = 1+ zg(z)∆(zf (z)).

Dividing both sides of (3) by g(z)(f (z))k−1 yields

f (z) = z + zf (z)(b0 + b1zf (z)+ b2(zf (z))2 + · · ·) = z + zf (z)∆(zf (z)).

Hence the proof is completed. �

Note that zg (z) = f (z) in Lemma 2.1 which is precisely the condition that an element is in the Bell subgroup.
Naturally not every Riordan matrix in the Bell subgroup has a∆-sequence. For instance,

(
1

√
1− 4z

,
z

√
1− 4z

)
=


1 0 0 0 0
2 1 0 0 0
6 4 1 0 0
20 16 6 1 0
70 64 30 8 1

· · ·


is in the Bell subgroup but has no∆-sequence.
We now characterize all Riordan matrices with a ∆-sequence. In this paper, we will abbreviate a pseudo-involution in

the Bell subgroup to PIBell matrix. We note that the RNA matrix is a PIBell matrix.
From (1), it is easy to show that if D = (g(z), f (z)) is a pseudo-involution then

A(z) =
−z
f (−z)

and Z(z) =
g(−z)− 1
f (−z)

. (4)

Theorem 2.2. Let D = (g(z), f (z)) be a Riordan matrix. Then D has a∆-sequence if and only if D is a PIBell matrix.
Proof. Suppose that D = (g(z), f (z)) has a∆-sequence with the generating function∆(z) =

∑
∞

n=0 bnz
n. From Lemma 2.1

it is obvious that g(z) = f (z)
z and hence D is an element of the Bell subgroup.

Now, we show that D =
(
f (z)
z , f (z)

)
is a pseudo-involution. It suffices to show that (DM)2 = (1, z), i.e., f (−f (z)) = −z.

Let y = −f (z). It follows from (ii) of Lemma 2.1 that −y = z − yz∆(−zy). By transposing y and z, we obtain −z =
y − zy∆(−yz). This implies that y is a compositional inverse of −f (z), i.e. −f (−f (z)) = z. Hence D =

(
f (z)
z , f (z)

)
is a

pseudo-involution.
Conversely, suppose that D =

(
f (z)
z , f (z)

)
is a pseudo-involution. It follows from (4) and g(z) = f (z)

z that

Z(−z) =
f (z)− z
zf (z)

. (5)

We claim that D has the generating function∆(z) such that∆(zf (z)) = Z(−z). In fact, from (5) we have

z + zf (z)∆(zf (z)) = z + zf (z)
(
f (z)− z
zf (z)

)
= f (z),

which shows (ii) of Lemma 2.1, and clearly (i) holds for g(z) = f (z)
z . Hence by Lemma 2.1, D has the ∆-sequence satisfying

∆(zf (z)) = Z(−z). Thus the proof is completed. �
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Theorem 2.2 allows us to obtain a pseudo-involution associated with that sequence in the Bell subgroup whenever
∆-sequence is given. However the formula (ii) of Lemma 2.1 cannot be inverted because zf (z) does not have a compositional
inverse.
It is known [10] that D = (g(z), f (z)) is a Riordan matrix in the Bell subgroup if and only if A-sequence and Z-sequence

are connected by A(z) = 1+ zZ(z). Hence if D =
(
f (z)
z , f (z)

)
is a pseudo-involution then the functions f (z), A(z),∆(z) are

connected by the relation

A(−z) = 1− z∆(zf (z)).

Theorem 2.3. Let D = (dn,k)n,k≥0 = (g(z), f (z)) be a PIBell matrix with a∆-sequence (b0, b1, b2, . . .). Then D can be expressed
as a linear combination in terms of SkD̄Sk+1, i.e.,

D = D̄+
∞∑
k=0

bkSkD̄Sk+1 (6)

where D̄ = (1, f (z)), and S = [sn,k]n,k≥0 is the infinite (0, 1)-shifted matrix defined by sn,k = 1 if k = n − 1 for n ≥ 0
and 0 otherwise.

Proof. Note that the (n, k)-entry (D̄)n,k of D̄ is dn−1,k−1 and the multiplication of S j to the left (or right) of D yields the
shifted matrix S jD (or DS j) whose (n, k)-entry is (S jD)n,k = (D̄)n−j,k (or (DS j)n,k = (D̄)n,k+j, resp.). By the definition of the
∆-sequence, we have

dn,k = dn−1,k−1 +
∑
j≥0

bjdn−j−1,k+j = (D̄)n,k +
∑
j≥0

bj(S jD̄S j+1)n,k,

which proves (6). �

3. Application

Let us consider the directed animal matrix [1,7] given by

(1+ zM(z), z(1+ zM(z))) =



1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
2 3 3 1 0 0
4 6 6 4 1 0
9 13 13 10 5 1

· · · · · ·

 ,

where M(z) =
∑
n≥0Mnz

n
=

1−z−
√
1−2z−3z2

2z2
is the generating function for the Motzkin numbers Mn. It is known [7] that

the entry m(n, k) of the directed animal matrix counts the number of single-source directed animals consisting of n points
of which k are on the x-axis. Further, there is an interesting hook shaped recursion:

m(n+ 1, k) = m(n, k− 1)+
∑
j≥0

m(n− 1, k− 1+ j)

wherem(n, k− 1) = 0 if k = 0.
The directed animal matrix is a PIBell matrix and ∆-sequence is (1, 1, 2, 5, 14 . . .), the Catalan numbers Cn. In fact, if

D = ( f (z)z , f (z)) is the Riordan matrix with∆(z) = (1−
√
1− 4z)/2z =

∑
n≥0 Cnz

n then it follows from (ii) of Lemma 2.1
that

1−
√
1− 4t
2t

=
t − z2

zt
, (zf (z) = t).

Solving the above equation for t yields t = z(1+ z −
√
1− 2z − 3z2)/2. Since t = zf (z)we have

f (z) =
1+ z −

√
1− 2z − 3z2

2
= z(1+ zM(z)),

which implies that D is the directed animal matrix and is a PIBell matrix from Theorem 2.2.
Hence we obtain another interesting recursion from the∆-sequence:

m(n+ 1, k) = m(n, k− 1)+
∑
j≥0

Cj ·m(n− j, k+ j)

where Cj = 1
j+1

(
2j
j

)
is the j-th Catalan number andm(n, k− 1) = 0 if k = 0.
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4. ∆-sequence of an integral power

In this section, we compute the∆-sequence of an integral power of a PIBell matrix.
Let us define a composition f (n)(z) of f (z) of order n ≥ 2 by

f (n)(z) := (f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

)(z).

Now let D =
(
f (z)
z , f (z)

)
be a Riordan matrix in the Bell subgroup. Closure in the Bell subgroup implies that for any

nonnegative integer n,

Dn =
(
f (n)(z)
z

, f (n)(z)
)
.

Lemma 4.1. If D = (g(z), f (z)) is a pseudo-involution then Dn is a pseudo-involution for n ∈ Z.

Proof. It is obvious for the cases of n = 0, 1. Let n = 2 and let D = (g(z), f (z)) be a pseudo-involution, i.e., (DM)2 = I or
DMD = M . Then

(D2M)2 = D(DMD)DM = DMDM = I,

which implies that D2 is a pseudo-involution. Suppose that Dn is a pseudo-involution for n ≥ 2. Proceeding by induction we
have

(Dn+1M)2 = D(DnMDn)DM = DMDM = I.

Similarly, one can easily show thatDn is a pseudo-involution for each n < 0, since (DM)2 = I if and only if (D−1M)2 = I . �

Theorem 4.2. Let D =
(
f (z)
z , f (z)

)
be a pseudo-involution for the∆-sequence (b, bd, bd2, bd3 . . .)with the generating function

∆(z) = b
1−dz (b, d ∈ R). Then D

n has the∆-sequence with the generating function n∆(z).

Proof. First, we characterize the pseudo-involution D =
(
f (z)
z , f (z)

)
where∆(z) = b

1−dz . It follows from (ii) of Lemma 2.1

that if d = 0 then f (z) = z
1−bz , and if d 6= 0 then

f := f (z) =
1− bz + dz2 −

√
(1− bz + dz2)2 − 4dz2

2dz
.

Let d 6= 0 and n ≥ 2. Then we have Dn =
(
f (n)(z)
z , f (n)(z)

)
. We claim that

f (n)(z) =
1− nbz + dz2 −

√
(1− nbz + dz2)2 − 4dz2

2dz
. (7)

We proceed by induction n ≥ 2. It is easy to show that (7) holds for n = 2. By applying induction, we obtain

f (n+1)(z) = f (n)(f (z)) =
1− nbf + df 2 −

√
(1− nbf + df 2)2 − 4df 2

2df
.

Since 1+ bf + df 2 = f+dz2f
z we have

f (n+1)(z) =
f+dz2f
z − (n+ 1)bf −

√
(
f+dz2f
z − (n+ 1)bf )2 − 4df 2

2df

=
1− (n+ 1)bz + dz2 −

√
(1− (n+ 1)bz + dz2)2 − 4dz2

2dz
,

which proves (7). Just note that f (n) (z) is the generating function that goes with the generating function nb
1−dz for the

∆-sequence. Hence Dn has the∆-sequence with the generating function n∆(z).
Now let d = 0. Then Dn =

( 1
1−nbz ,

z
1−nbz

)
. It is easy to show that Dn has the∆-sequence (nb, 0, 0, . . .), i.e., the generating

function is n∆(z).
For n < 0, let n = −m (m > 0). Then Dn = (D−1)m. Hence a similar argument yields the theorem. Thus the proof is

completed. �
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Table 1
Riordan arrays with the special∆-sequences.

∆-sequences ∆(z) f (z) Comments

1, 0, 0, 0, 0, . . . 1 z
1−z Pascal triangle

1, 1, 0, 0, 0, . . . 1+ z 1−z−
√
(1−z)2−4z3

2z2
A023431

1, 2, 0, 0, 0, . . . 1+ 2z 1−z−
√
(1−z)2−8z3

4z2
A025249

2, 1, 0, 0, 0, . . . 2+ z 1−2z−
√
(1−2z)2−4z3

2z2
A091561

3, 1, 0, 0, 0, . . . 3+ z 1−3z−
√
(1−3z)2−4z3

2z2
A000245

1, 1, 1, 1, 1, . . . 1
1−z

1−z+z2−
√
(1−z+z2)2−4z2

2z RNA matrix

n, n, n, n, n, . . . n
1−z

1−nz+z2−
√
(1−nz+z2)2−4z2

2z (RNA matrix)n

1, 1, 2, 5, 14, . . . C = 1−
√
1−4z
2z

1+z−
√
1−2z−3z2

2 Directed animal matrix
2, 2, 4, 10, 28, . . . 2C z(2C − 1) A068875

1, 2, 6, 22, 90, . . . 1−z−
√
1−6z+z2

2z
1+z+z2−(1+z+z2)2−4z(1+z)2

2(1+z) A078481

−1, 1,−1, 1,−1, . . . −1
1+z −

1+z−z2−
√
(1+z−z2)2+4z2

2z A129509

By a simple computation, we see that the RNA matrix = (r(n, k))n,k≥0 has the ∆-sequence (1, 1, 1, . . .) with the
generating function∆(z) = 1

1−z . Hence we obtain an interesting recursion:

r(n+ 1, k) = r(n, k− 1)+
∑
j≥0

r(n− j, k+ j) if n, k ≥ 0

where rn,k−1 = 0 if k = 0 for n ≥ 0.
The following corollary is an immediate consequence of Theorem 4.2.

Corollary 4.3. Let R be the RNA matrix with∆-sequence (1, 1, 1, . . .). Then Rn has the∆-sequence (n, n, n, . . .) for n ∈ Z.

We end this paper describing a list of PIBell matrices with some interesting∆-sequences in Table 1.
See Sloane’s Encyclopedia of Integer Sequences [9] formuchmore information about these sequences butwe briefly note

three of these sequences that count Dyck orMotzkin paths with various restrictions. The sequence A023431 countsMotzkin
paths with no peaks and no consecutive up steps, A000245 counts Dyck paths that start with two consecutive up steps, and
A068875 counts Dyck paths with no consecutive UDUD steps.
If (f (z) /z, f (z)) is a PIBell matrix with the ∆-sequence then

(
(f (z) /z)n , f (z)

)
is a pseudo-involution for all integers

n with the same ∆-sequence except for the leftmost column. It remains an open problem to find all generating functions
g (z) such that (g (z) , f (z)) is a pseudo-involution. A possible starting point is the observation that for any Riordan group
element (g (z) , f (z)) there is a semidirect product factorization

(g (z) , f (z)) =
(
zg (z)
f (z)

, z
)
∗

(
f (z)
z
, f (z)

)
into an element in the Appell subgroup (i.e. f (z) = z) and an element in the Bell subgroup.
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