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We consider an infinite lower triangular matrix L = [�n,k]n,k∈N0

and a sequence � = (ωn)n∈N0
called the (a, b)-sequence such

that every element �n+1,k+1 except lying in column 0 can be ex-

pressed as

�n+1,k+1 =
�(n−k)/m�∑

i=0

ωi�n−ai,k+bi, ω0 �= 0

where a and b are integers with a + b = m > 0 and b ≥ 0. This

concept generalizes the A-sequence of a Riordan matrix. As a re-

sult, we explore several structural properties of Riordanmatrices by

means of (a, b)-sequences. In particular, if b < 0 then this leads to

an extended Riordan matrix which is a bilaterally infinite matrix.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let F = C[[z]] be the ring of formal power series (f.p.s) over the complex field C and let N0 =
{0, 1, 2, . . .}. For f = ∑

n≥0 fnz
n ∈ C[[z]], the order of f is the smallest integer n for which fn �= 0

and the set of all f.p.s of order r is denoted by Fr . In particular, F0 and F1 are sets of reciprocal and

compositional invertible f.p.s, respectively.

Any ordered pair (g, f ) ∈ F0 ×F1 defines an infinite lower triangularmatrix L = [�n,k]n,k∈N0
with

nonzero entries on the main diagonal in which �n,k = [zn]gf k , where [zn] is the coefficient operator.
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The matrix L is called the Riordan matrix 1 [12,15] and denoted by L = (g(z), f (z)) or simply (g, f ).
If we multiply (g, f ) by a column vector (c0, c1, . . .)

T with the generating function (GF) � then the

resulting column vector has the GF g�(f ). We call this property the fundamental theorem of a Riordan

matrix. One may express the theorem as (g, f )� = g�(f ). This also leads to the multiplication of

Riordan matrices which can be described in terms of GFs as (g, f )(h, �) = (gh(f ), �(f )).
The set of all Riordan matrices, under the above multiplication, forms a group denoted by R and

called the Riordan group [12]. It is easy to show that the identity is (1, z) and the inverse of (g, f ) is

(1/g(f̄ ), f̄ ) where f̄ is the compositional inverse, i.e., f (f̄ ) = f̄ (f ) = z. Particular subgroups of the

Riordan group are introduced in [11]. The group structure is of considerable independent interest. One

elementary use of the Riordan group is to prove and invert combinatorial identities as discussed by

Shapiro et al. [12] and Sprugnoli [15].

A Riordan matrix L = (g, f ) = [�n,k]n,k∈N0
is completely characterized [8] by two horizontal

sequences, together with �0,0 �= 0. The sequences are called the A-sequence (an)n∈N0
and the Z-

sequence (zn)n∈N0
such that

(i) �n+1,k+1 = ∑
j≥0 aj�n,k+j ,

(ii) �n+1,0 = ∑
j≥0 zj�n,j.

The Z-sequence characterizes column 0 and the A-sequence characterizes all the other columns of a

Riordanmatrix. Since every lower triangularmatrix has a unique Z-sequence,we can implicitly assume

its existence in all the subsequent theorems.

Recently, He and Sprugnoli [6] studied Riordan matrices through their A- and Z-sequence charac-

terization. More generally, Merlini et al. [8] determined zones which the generic element �n+1,k+1 is

allowed to linearly depend on. The following theorem gives this characterization of Riordan matrices.

Theorem 1.1 ([8]). A lower triangular matrix L = [�n,k]n,k∈N0
is Riordan if and only if there exists the

A-matrix
[
αi,j

]
i,j∈N0

, with α0,0 �= 0, and r sequences
(
ρ

[i]
j

)
j∈N0

(i = 1, 2, . . . , r) such that:

�n+1,k+1 = ∑
i�0

∑
j�0

αi,j�n−i,k+j +
r∑

i=1

∑
j�0

ρ
[i]
j �n+i,k+i+j+1. (1)

This theorem enables us to find new sequences in a Riordan matrix. This fact is our motivation of

this paper. For instance, we note that every element �n+1,k+1 of L = (g, f ) can be expressed as a linear

combination:

�n+1,k+1 =
n∑

i=0

αi,0�n−i,k, αi,0 = fi = [zi+1]f

which canbe viewed as aweighted “hockey stick identity". The sequence (fn)n∈N0
is a vertical sequence

called the V-sequence. It is also essentially the characterization of a Riordan matrix. We now observe

that the A- and the V-sequence may be regarded as sequences lying on the horizontal and the vertical

lines starting from �n,k , respectively.
In the present paper, more generally we are interested in a Riordan matrix L = [�n,k]n,k∈N0

and a

sequence � = (ωn)n∈N0
such that every element �n+1,k+1 except lying in column 0 can be expressed

as a linear combination with coefficients in � of the elements lying on the slanting diagonal obtained

by moving a units up or down and b units to the right starting from �n,k , i.e.,

�n+1,k+1 =
� n−k

m
�∑

i=0

ωi�n−ai,k+bi, ω0 �= 0 (2)

1 Sometimes it is called the proper Riordan array, see [15].
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Fig. 1. Example of (a, b)-sequences.

where a and b are integers such that a+ b = m ≥ 1 and b ≥ 0. The conditions on a, b assure that the

sums (2) are actually finite. This also happens when a < 0, b > 0 and−a < b, which possibly creates

an alternative extension to the one described in [8].

In this context, � = (ωn)n∈N0
is said to be the (a, b)-ray sequence, simply (a, b)-sequence of a

Riordanmatrix.We observe explicitly that an (a, b)-sequence is different from any (ap, bp)-sequence,
when p > 1. This is obvious, but stresses the fact that the concept does not simply depend on the

slope of the ray sequence.

We also note that the (0, 1)- and the (1, 0)-sequence exactly coincide with the A- and the V-

sequence, respectively. Thus this concept generalizes the A- and the V-sequence of Riordan matrices.

For example, see Fig. 1.

Even though every Riordan matrix has both the (0, 1)- and the (1, 0)-sequence, it may not have

the (a, b)-sequence for some a and b. As we shall see, the Pascal matrix (1/(1 − z), z/(1 − z)) does
not have the (1, 1)-sequence.

From Theorem 1.1, it follows that every infinite lower triangular matrix with a (a, b)-sequence is a

Riordan matrix. In particular, some (a, b)-sequences might be expressed in terms of elements of the

A-matrix and r sequences in Theorem 1.1 as

(i) � = (α0,0, αa,b, α2a,2b, . . .) if a ≥ 0,

(ii) � = (α0,0, ρ
[−a]
m−1, ρ

[−2a]
2m−1, . . .) where a + b = m if a < 0.

Throughout this paper, we are mainly interested in ray-sequences of a Riordan matrix in the Ri-

ordan group. Specifically, in Section 2 we obtain several structural properties of Riordan matrices by

means of ray sequences. As an application of (a, b)-sequences, the kth weighted (a, b)-diagonal sum
with a weight sequence formed by moving a unit up or down and b unit to the right starting from

�k,0 is discussed in Section 3. In Section 4, we will observe other ray sequence called a companion se-

quence obtained from the reflecting concept of (a, b)-sequences. This leads us extending the Riordan

matrix which is a bilaterally infinite matrix. Finally, in Section 5 we will examine our results for the

(extended) Riordan matrix with ray sequences of r-ary numbers (e.g., the Catalan numbers and the

ternary numbers). It allows us to derive several combinatorial identities.

2. Ray sequences of a Riordan matrix

The concept of ray-sequences of a Riordan matrix plays a very important role in this approach. For

a positive integer m, let us define the set

�m = {zg(zm) ∈ F1 | g(z) ∈ F0}.
The following theorem will be very useful in our study.
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Theorem 2.1. Let L = (g, f ) = [�n,k]n,k∈N0
be a Riordan matrix and �(z) the GF for the sequence

(ωn)n∈N0
with ω0 �= 0. Then the following are equivalent for any pair (a, b) ∈ Z × Z such that a+ b ≥ 1

and b ≥ 0:
(i) L has the unique (a, b)-sequence (ωn)n∈N0

.

(ii) f is the solution of the functional equation

f = z�
(
zaf b

)
. (3)

(iii) f ∈ �m where m = a + b.

Proof. (i) ⇒ (ii): By the definition, if L = (g, f ) has a (a, b)-sequence (ωn)∈N0
then we have

gf k = ∑
n≥0

ωnz
1+angf k−1+bn, (k ≥ 1)

which implies that f satisfies

f = ∑
n≥0

ωnz
1+anf bn = z

∑
n≥0

ωn(z
af b)n = z�

(
zaf b

)
.

(ii) ⇒ (iii): Let f = z
∑

n�0 fnz
n ∈ F1 and a + b = m. Since zaf b ∈ Fm, it follows from (3) that

fk =
[
zk

]
zϕ

(
zaf b

)
= 0 for k such that k �≡ 1 (modm). Hence f ∈ �m.

(iii) ⇒ (i): Let f ∈ �m. We may assume that f = ẑf (zm) where f̂ = ∑
n�0 fnz

n ∈ F0. For the

Riordan matrix (1, ẑf b), b ∈ N0, let us consider the linear system in matrix form as

(1, ẑf b)(ω0, ω1, ω2, . . .)
T = (f0, f1, f2, . . .)

T . (4)

With the GFs we can express (4) as (1, ẑf b)� = f̂ . It follows (1, zmf̂ b(zm))� = f̂ (zm) for an integer

m = a + b ≥ 1. Hence the system (4) is obviously equivalent to the system :

(1, zaf b)� = f /z. (5)

Bymultiplying both left sides of (5) by (zgf k, z), and then applying the fundamental theoremweobtain

(zgf k, zaf b)� = gf k+1. (6)

Let us compare the coefficients of both sides of (6). Since

[zn+1](zgf k, zaf b)� = [zn+1] ∑
i≥0

ωiz
ai+1gf k+bi = ∑

i≥0

ωi[zn−ai]gf k+bi

= ∑
i�0

ωi�n−ai,k+bi

and [zn+1]gf k+1 = �n+1,k+1,we obtain the Eq. (2) to be the (a, b)-sequence of L. Further, since (1, ẑf b)
is invertible, the system (4) has a unique solution

(ω0, ω1, ω2, . . .)
T = (1, ẑf b)−1(f0, f1, f2, . . .)

T .

Therefore, if f ∈ �m then L = (g, f ) has the unique (a, b)-sequence (ωn)n∈N0
where a, b ∈ Z such

that a + b ≥ 1 and b ≥ 0. This completes the proof. �
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Let us now consider the set of Riordan matrices defined by

Hm = {(g, f ) ∈ R | g ∈ F0, f ∈ �m}.
Theorem 2.1 asserts that every Riordan matrix in Hm has a (a, b)-sequence for any integer pair (a, b)
such that a+ b = m ≥ 1 and b ≥ 0. Thus we see that a Riordanmatrix L = (g, f ) ∈ Hm has infinitely

many ray sequences of the form (a − c, b + c) for each c = 0, 1, 2, . . . where a + b = m.

Further, since �(f ) ∈ �m and f̄ ∈ �m for any f , � ∈ �m, it can be readily shown that the set Hm

forms a group under the Riordan multiplication, which leads to the following theorem.

Theorem 2.2. For each m = 1, 2, . . ., the set Hm is a subgroup of the Riordan group. Further, Hk is a

subgroup ofHm if and only if k is a multiple of m.

By Theorem 2.2, we obtain infinitely many subgroups of the Riordan group by means of

(a, b)-sequences. Clearly, H1 is the Riordan group R. Since H2 = {(g, f ) ∈ R | g ∈ F0, f is an even

function}, we see that C � H2 � R where C is the checkerboard subgroup {(g, f ) ∈ R | g is an even,

f is an odd function}.
Fromnowon, the (a, b)-sequence and its GF are denoted by�(a,b) and�(a,b)(z), respectively. Since

�(0,1)(z) is the GF for the A-sequence, we have f = zA(f ) from (3). More generally, it follows from

zA(f ) = f = z�(a,b)(z
af b) that the A-sequence and the ray-sequence are connected by

A(z) = �(a,b)(z
m/Aa), m = a + b.

Theorem 2.3. For c ≥ 1, let �(a−c,b+c) be a ray sequence of L = (g, f ) ∈ Hm. Then

�(a−c,b+c)(z) = z

z�(a−c+1,b+c−1)(z)
.

Proof. It suffices to show the case c = 1. By Theorem 2.1, L has the (a, b)-sequence if and only if

L has the (a − 1, b + 1)-sequence. Let ϕ(z) = �(a−1,b+1)(z). By (3) we have z�(a,b)(z
af b) = f =

zϕ(za−1f b+1). It follows

�(a,b)(z
af b) = ϕ(za−1f b+1) = ϕ(zaf bf /z) = ϕ(zaf b�(a,b)(z

af b)).

Replacing zaf b by w and then by setting h(w) = w�(a,b)(w) we obtain

h(w)/w = ϕ(h(w)). (7)

Since w�(a,b)(w) ∈ F1 there exists the compositional inverse h̄(w). Substituting w = h̄(w) into (7)

yields ϕ(w) = w/h̄(w). Thus we have

�(a−1,b+1)(w) = w/w�(a,b)(w),

as desired. �

Theorem 2.4. If Li = (Gi, Fi) ∈ Hm has the (ai, bi)-sequence for i = 1, 2, then the product L1L2 ∈ Hm

has the (a, b)-sequence such that

�(a,b)

(
zaf b

)
= �(a1,b1)

(
za1F

b1
1

)
�(a2,b2)

(
F
a2
1 f b2

)
, (8)

where f = F2(F1).
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Proof. Since f = F2(F1) ∈ �m, the proof immediately follows from (3) that

z�(a,b)

(
zaf b

)
= f = F2(F1) = F1�(a2,b2)

(
F
a2
1 F

b2
2 (F1)

)
= z�(a1,b1)

(
za1F

b1
1

)
�(a2,b2)

(
F
a2
1 f b2

)
,

as desired. �

In particular, if Ai(z) and A(z) are GFs for A-sequences of Li and L1L2 respectively, then from (8) we

obtain

A(f ) = A1(F1)A2(f ) = A1(f /A2(f ))A2(f ).

By replacing z by f̄ we derive A(z) = A2(z)A1(z/A2(z)) (also see [6, Theorem 3.3]).

Theorem 2.5. If L ∈ Hm has the (a, b)-sequence with �(a,b)(z) for a ≥ 0, then L−1 ∈ Hm has the

(b, a)-sequence with the GF 1/�(a,b)(z).

Proof. Let L = (g, f ). Then L−1 = (1/g(f̄ ), f̄ ). Since f ∈ �m, by Theorem 2.1 f = z�(a,b)(z
af b). By

setting f (z) = w we have w = f̄�(a,b)(f̄
awb). Hence f̄ = w/�(a,b)

(
wbf̄ a

)
, which implies that L−1

has the (b, a)-sequence whose GF is 1/�(a,b). �

Here, it would be interesting to observe Riordan matrices with a (1, 1)-sequence since it leads to a

connection with the involutions of the Riordan group. See [1–4,7] for related topics.

Example 2.6. Let us consider the Riordan matrix L = (f /z, f ) with the (1, 1)-sequence (1, 2, 2, . . .).

Since �(1,1)(z) = 1+z
1−z

, from (3) we have f = z
1+zf

1−zf
. Solving this equation we find that f = zS(z2)

where S(z) = (1 − z − √
1 − 6z + z2)/2z is the GF for the large Schröder numbers 1, 2, 6, 22, . . .

(A006318 in [13]). Thusweobtain the Schröder triangle L = (S(z2), zS(z2))of the checkerboard type. If

we notice that 1/�(1,1)(z) = �(1,1)(−z), by Theorem2.5we see that�(1,1)(−z) is the (1,1)-sequence

GF of L−1 and thus L−1 = (S(−z2), zS(−z2)). In fact,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0 1

2 0 1

0 4 0 1

6 0 6 0 1

0 16 0 8 0 1

22 0 30 0 10 0 1

· · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0 1

−2 0 1

0 −4 0 1

6 0 −6 0 1

0 16 0 −8 0 1

−22 0 30 0 −10 0 1

· · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A Riordan matrix Q = (g(z2), zg(z2)), g ∈ F0 is said to be quasi-involution if its inverse is

Q−1 = (g(−z2), zg(−z2)). Thus quasi-involutions are essentially self-inverse after inserting some

minus signs.

We now characterize the quasi-involution.

Theorem 2.7. A Riordan matrix Q = (g(z2), zg(z2)) is quasi-involution if and only if Q has the (1, 1)-
sequence such that �(1,1)(z) = 1/�(1,1)(−z).
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Proof. Let �(1,1)(z) = ∑
n≥0 ωnz

n, and let Q−1 = [q†n,k]n,k∈N0
. Since Q = [qn,k]n,k∈N0

is an element

of the checkerboard subgroup, it is obvious that Q is a quasi involution if and only if q
†
n,k = (−1)�qn,k

as n− k = 2� ≥ 2 and q
†
n,k = qn,k = 0 otherwise. Hence for any (n, k) such that n− k = 2�we have

q
†
n+1,k+1 = (−1)�qn+1,k+1 = (−1)�

∑
j≥0

ωjqn−j,k+j

= (−1)�
∑
j≥0

(−1)(n−k−2j)/2ωjq
†
n−j,k+j = ∑

j≥0

(−1)jωjq
†
n−j,k+j,

which implies that �(1,1)(−z) is the GF for the (1, 1)-sequence of Q−1. By Theorem 2.5, the proof is

completed. �

Remark. Every Riordan matrix (g(z2), zg(z2)) with the (1, 1)-sequence of the form

�(1,1)(z) =
(
he + ho

he − ho

)m

, m ∈ Z

is a quasi involution where he is an even and ho is an odd function.

3. The (a, b)-diagonal sums

One might observe that rising diagonal sums in the Pascal matrix establish the Fibonacci sequence

(Fn)n∈N0
with F0 = F1 = 1. The rising diagonal sums are formed by moving 1 unit up and 1 unit to

the right.

We are now interested in the (a, b)-diagonal sums formed by moving a unit up or down and b unit

to the right. First, we look at (2) when k = 0 for each n = 0, 1, 2, . . .. This leads to the concept of

weighted diagonal sums of a Riordan matrix.

For integers a, b such that a+ b > 0, b � 0, we define the kthweighted (a, b)-diagonal sumwith a

weight sequence (πi)i≥0 of a Riordan matrix L = [�n,k]n,k∈N0
by

δ
(a,b)
k := π0�k,0 + π1�k−a,b + π2�k−2a,2b + · · · = ∑

i≥0

πi�k−ia,ib

where �k−ia,ib = 0 if k − ia < 0. The corresponding GF is denoted by �(a,b)(z), i.e., �(a,b)(z) =∑
k≥0 δ

(a,b)
k zk .

Theorem 3.1. Let L = (g, f ) be a Riordan matrix and φ(z) be the GF for a weight sequence (πi)i≥0. Then

�(a,b)(z) = gφ
(
zaf b

)
. (9)

Proof. It immediately follows from

�(a,b)(z) = ∑
i≥0

πiz
iagf ib = g

∑
i≥0

πi(z
af b)i = gφ

(
zaf b

)
. �

Using φ(z) = 1/(1 − z) we obtain the GF for (a, b)-diagonal sums with weights all 1 given by

�(a,b)(z) = g

1 − zaf b
. (10)

In particular, �(1,1)(z) and �(0,1)(z) represent the GFs for rising diagonal sums and row sums of a

Riordan matrix, respectively. Also see [10].
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Example 3.2. Let us consider the well-known identities

B = 1 + zC2

1 − zC2
and C = 1

1 − zC
,

where B = 1/
√

1 − 4z and C = (1 − √
1 − 4z)/2z are the GFs for the central binomial numbers

Bn =
(
2n

n

)
and the Catalan numbers Cn = 1

n+1

(
2n

n

)
, respectively.

We can interpret the first identity as follows. Take φ(z) = 1+z
1−z

= 1 + 2z + 2z2 + · · · . Since

B = 1 + zC2

1 − zC2
= φ(zC2) = φ(z−1 · (zC)2) = �(−1,2)(z)

it follows from (9) that the nth central binomial numbers
(
2n

n

)
are the same as weighted (−1, 2)-

diagonal sums with the weight sequence (1, 2, 2, . . .) of the associated Catalan matrix (1, zC). Sim-

ilarly, the second identity tells us that the nth row sum of (1, zC) is the nth Catalan number 1
n+1

(
2n

n

)
by (10).

In addition, we can also find other identity B = C/(1 − zC2) connecting C with B from the non-

weighted (−1, 2)-diagonal sums of the Catalan matrix (C, zC).

4. Extending the Riordan matrix

As previously noted, the concept of a (a, b)-sequence � = (ωn)n∈N0
for a Riordan matrix L =

[�n,k]n,k∈N0
may be viewed as every element �n+1,k+1 can be expressed as a linear combination with

coefficients in � of the elements in L lying on the line t1 with the slope a/b (1/0 means ∞) starting

from �n,k .
In this section, we will observe other ray sequence obtained from reflecting the line t1 about the

line with the slope 1 that passes through the element �n+1,k+1. This concept leads to an extended

Riordan matrix which is a bilaterally infinite matrix.

We begin by defining a finite Riordan matrix. A matrix Ln = (g, f )n is said to be Riordan matrix

of order n if it is the n × n principal submatrix of L = (g, f ). The flip-transpose LFn of Ln is defined by

LFn = ELTnE where E is the n × n backward identity matrix, i.e.,

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

· · ·
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 4.1. Let L = (g, f ) be a Riordan matrix. Then LFn is the invertible Riordan matrix of order n given

by (g(f̄ ) · f̄ ′ · (z/f̄ )n, f̄ )n.

Proof. Let L = [�i,j]i,j∈N0
and let LFn = [�Fi,j]0≤i,j<n. Applying Theorem 3 in [9] to L−1 = (1/g(f̄ ), f̄ ),

we obtain

�i,j = [zi−j]g(f̄ ) · f̄ ′ · (z/f̄ )i+1.

Thus

�Fi,j = �n−j−1,n−i−1 = [zi−j]g(f̄ ) · f̄ ′ · (z/f̄ )n−j = [zi]g(f̄ ) · f̄ ′ · (z/f̄ )n−jzj

= [zi]
(
g(f̄ ) · f̄ ′ · (z/f̄ )n

)
f̄ j.
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It follows LFn = (g(f̄ ) · f̄ ′ · (z/f̄ )n, f̄ )n, as desired. Further, LFn is invertible since the first GF of LFn belongs

to F0 and f̄ ∈ F1. Hence the proof is completed. �

The following is an immediate consequence of Theorem 2.1.

Lemma 4.2. If f ∈ �m then an n × n Riordan matrix (g, f )n has a (a, b)-sequence satisfying (2) for

nonnegative integer pair (a, b) such that a + b = m ≥ 1 and b ≥ 0.

Theorem 4.3. Let L = [�i,j]i,j≥0 ∈ Hm be a Riordan matrix. Then there exists a unique sequence �∗ =
(ω∗

n)n∈N0
with ω∗

0 �= 0 such that every element �n+1,k+1 except lying in column 0 can be expressed as

a linear combination with coefficients in �∗ of the elements lying on the line with the slope b/a starting

from �n+2,k+2 where a, b ≥ 0 are integers such that a + b = m ≥ 1, i.e.,

�n+1,k+1 =
� n−k

m
�∑

i=0

ω∗
i �n+2−bi,k+2+ai (n, k ∈ N0). (11)

Proof. For a sufficiently large n, let us consider Ln = (g, f )n = [�i,j]i,j∈N0
where f ∈ �m. By Theorem

4.1, LFn = [�Fi,j]0≤i,j<n is an n × n Riordan matrix. Further, since f̄ ∈ �m, by Lemma 4.2 it has some

(a, b)-sequence (ω∗
n)n∈N0

where a, b ≥ 0 are integers such that a + b = m ≥ 1. Thus

�n−j−2,n−i−2 = �Fi+1,j+1 = ∑
k≥0

ω∗
k�

F
i−ak,j+bk = ∑

k≥0

ω∗
k�n−(j+bk)−1,n−(i−ak)−1

= ∑
k≥0

ω∗
k�n−j−bk−1,n−i+ak−1.

Substituting s = n − j − 3, t = n − i − 3 yields

�s+1,t+1 = ∑
k≥0

ω∗
k�s+2−bk,t+2+ak,

as desired when n → ∞. The uniqueness follows from the uniqueness of the (a, b)-sequence of a

Riordan matrix in Hm. �

In Lemma 2.4.1 of [8], it is shown that every element �n+1,k+1 of a Riordanmatrix can be expressed

as a horizontal sequence starting from �n+2,k+2. The sequence is called the B-sequence of the Riordan

matrix and its generating function is B(z) = A(z)−1. If a = 0, b = 1 in Theorem 4.3 then we have the

following corollary. It asserts that every element �n+1,k+1 of a Riordan matrix can be expressed as a

vertical sequence starting from �n+2,k+2.

Corollary 4.4. An infinite lower triangular matrix L = [�i,j]i,j≥0 is a Riordan matrix if and only if there

exists a unique sequence �∗ = (ω∗
n)n∈N0

with ω∗
0 �= 0 such that every element �n+1,k+1 except lying

in column 0 can be expressed as a linear combination with coefficients in �∗ of the elements in the next

column starting from the next row, i.e.,

�n+1,k+1 =
n−k∑
i=0

ω∗
i �n+2−i,k+2 (n, k ∈ N0). (12)

Further, �∗(z) = z
f (z)

, which coincides with the A-sequence of L−1.

Proof. Let L be an infinite lower triangular matrix with the sequence �∗ satisfying (12). By the defin-

ition, �∗ coincides with the A-sequence of LFn for a sufficiently large n. Hence Ln = (LFn)
F is a Riordan

matrix of order n and so is Lwhen n → ∞. Further, we have f̄ = z�∗(f̄ ). Thus�∗(z) = z
f (z)

, which is

obviously the A-sequence of L−1. The converse follows from Theorem 4.3. It completes the proof. �
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Fig. 2. Two kinds of ray-sequences.

Remark. If (ωm)m∈N0
is a ray sequence of (g, f )−1 then (ωm)m∈N0

is also ray sequence of (g, f )Fn as

n → ∞.

By Theorems 2.1 and 4.3, we see that if L = (g, f ) ∈ Hm then for any nonnegative integer pair (a, b)
such that a+b = m ≥ 1, L has both the (a, b)-sequence (ωn)n∈N0

starting from �n,k and the sequence

(ω∗
n)n∈N0

starting from �n+2,k+2. We note that it may be viewed as all the elements �n+2−bi,k+2+ai for

i = 0, 1, 2, . . . are lying on the line t∗1 with the slope b/a starting from �n+2,k+2, which is obtained

from reflecting the line t1 with the slope a/b starting at �n,k about the line t0 with the slope 1 that

passes through the element �n+1,k+1, see Fig. 2.

Let us now consider a (a, b)-sequence of L = [�n,k] ∈ Hm when a < 0. In this case, we are

interested in the elements �n+2−bi,k+2+ai for i = 0, 1, 2, . . . lying on the line t∗1 which satisfy (11). If

we allow extending the matrix L to negative columns, then (11) is valid for any integer pair (a, b)with

a+b = m ≥ 1, and someelementsmight be locatedonnegative columns. Thereforewe candefine�n,k
for all integers n and k to be (11) where �n,k = 0 when n < k. By the extension of Taylor expansion, it

can be shown that such extendedmatrix agreeswith an extended Riordanmatrix 2 〈g, f 〉 := [�n,k]n,k∈Z

defined by for all integers n and k,

�n,k = [zn]gf k
where g ∈ F0 and f ∈ �m.

We note that for an extended Riordan matrix LE := 〈g, f 〉, both Theorems 2.1 and 4.3 are valid for

any pair (a, b) ∈ Z × Z such that a + b ≥ 1. Thus let us still denote a (a, b)-sequence of LE by �(a,b)

for given integers a, b such that a + b = m ≥ 1.

From now on, we will call the sequence (ω∗
n)n∈N0

in Theorem 4.3 the companion sequence of�(a,b).

It is denoted by �c
(a,b). In particular, the companion sequences of A- and V-sequence are denoted by

Ac and Vc respectively.

Theorem 4.5. Let f ∈ �m. For each (a, b)-sequence �(a,b) of an extended Riordan matrix LE = 〈g, f 〉,
LE has the corresponding companion sequence �c

(a,b).

Proof. By Theorem 4.3, it suffices to show that two cases: (i) a < 0 and b ≥ 0, (ii) a ≥ 0 and b < 0.

First assume that (i) a < 0 and b ≥ 0. For a fixed integer pair (n, k) such that n > k, let us define the

γ × γ submatrix Lγ := L[α, . . . , β] obtained from LE by taking the elements of LE lying in both row

and columns α, α + 1, . . . , β where γ = β − α + 1 and α = � an+bk
m

� + 1 , β = � ak+bn
m

� + 1. Since

α ≤ k + 2 + ai and α ≤ n + 2 − bi, it suffices to consider a (a, b)-sequence of Lγ . First we observe

2 TheconceptofanextendedRiordanmatrixhasbeenpresentedbyR.Sprugnoli, in the invited talkat theconference“Combinatorics

2010" held in Verbania (Italy) from June 28 to July 3, 2010, see [14].
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that Lγ may be viewed as a proper Riordan matrix (ĝ, f )γ where ĝ = z−αgf α . Thus by Theorem 4.1,

LFγ is also finite Riordan matrix given by (ĝ∗, f̄ )γ where ĝ∗ = ĝ(f̄ ) · f̄ ′ · (z/f̄ )γ .

Let us denote LE = [�i,j]i,j∈Z, Lγ = [�̂i,j]o≤i,j<γ and LFγ = [�̂∗
i,j]o≤i,j<γ . Since �i,j = �̂i−α,j−α and

�̂i,j = �̂∗
γ−j−1,γ−i−1, we have

�n+1,k+1 = �̂n−α+1,k−α+1 = �̂∗
β−k−1,β−n−1. (13)

Since f̄ ∈ �m, by Theorem 2.1 there exists some (a, b)-sequence (ω∗
i )i∈N0

such that

�̂∗
β−k−1,β−n−1 =

� n−k
m

�∑
i=0

ω∗
i �̂

∗
β−k−2−ai,β−n−2+bi. (14)

We will now show that (ω∗
i )i∈N0

is the companion sequence of �(a,b). It follows from (13) and (14)

that

�n+1,k+1 =
N∑

i=0

ω∗
i �̂

∗
β−k−2−ai,β−n−2+bi =

N∑
i=0

ω∗
i �̂γ−(β−n−2+bi)−1,γ−(β−k−2−ai)−1

=
N∑

i=0

ω∗
i �̂n−α+2−bi,k−α+2+ai =

N∑
i=0

ω∗
i �n+2−bi,k+2+ai.

Hence from (11), it follows that (ω∗
i )i∈N0

is the companion sequence of �(a,b), i.e., �
c
(a,b) = (ω∗

i )i∈N0
.

By a similar argument, if we take α = � ak+bn
m

� − 1 and β = � an+bk
m

� + 3, one can show that the

case (ii). �

We note that if f ∈ �m then LE = 〈g, f 〉 has both (a, b)- and (b, a)-sequence because of a + b =
m ≥ 1.

Theorem 4.6. Let f ∈ �m and a + b = m ≥ 1. Then the GF for the companion sequence of �(a,b) of

LE = 〈g, f 〉 is given by

�c
(a,b)(z) = 1

�(b,a)(z)
. (15)

Proof. Since f ∈ �m and a + b = m, applying Theorem 2.1 to the extended Riordan matrix there

exists a unique (b, a)-sequence �(b,a) such that f = z�(b,a)(z
bf a). Further, �c

(a,b) coincides with

the (a, b)-sequence of LFγ = (ĝ∗, f̄ ). By Theorem 2.1 again, we have f̄ = z�c
(a,b)(z

af̄ b) and thus

f = z/�c
(a,b)(z

bf a). Hence f = z�(b,a)(z
bf a) = z/�c

(a,b)(z
bf a), which implies (15). �

Corollary 4.7. Let A(z) and V(z) be GFs of the A- and V-sequence of a Riordan matrix L = (g, f ),
respectively. Then

Ac(z) = 1

V(z)
and Vc(z) = 1

A(z)
. (16)

Theorem 4.8. Let LE = 〈g, f 〉 = [�n,k]n,k∈Z be an extended Riordan matrix where f ∈ �m. For each

integer s there exists a s-sequence (ωn,s)n∈N0
with the GF �s

(a,b)(z) such that

�n+1,k+1 =
� n−k

m
�∑

i=0

ωi,s�n+1−s−ai,k+1−s+bi, s ∈ Z. (17)
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Proof. First let s ≥ 0. We proceed by induction on s. Since (ωn,0)n∈N0
= (1, 0, 0, . . .), it holds

for s = 0. Let s ≥ 1. Assume that there exists a s-sequence (ωn,s)n∈N0
with the GF �s

(a,b)(z). Since

(a, b)-sequence is (ωn,1)n∈N0
, applying to �n+1−s−ai,k+1−s+bi we have

�n+1,k+1 = ∑
i≥0

ωi,s�n+1−s−ai,k+1−s+bi

= ∑
i≥0

ωi,s

∑
u≥0

ωu,1�(n+1−s−ai)−1−au,(k+1−s+bi)−1+bu

= ∑
i≥0

∑
u≥0

ωi,sωu,1�n−s−a(i+u),k−s+b(i+u).

By setting v = i + u, we obtain

�n+1,k+1 = ∑
v≥0

⎛⎝ v∑
i=0

ωi,sωv−i,1

⎞⎠ �n−s−av,k−s+bv.

Thus by induction, (ωn,s+1)n∈N0
is the (s + 1)-sequence of LE where

ωn,s+1 =
n∑

i=0

ωi,sωn−i,1. (18)

Moreover, it follows from (18) that∑
n≥0

ωn,s+1z
n = �s

(a,b)(z)�(a,b)(z) = �
s+1
(a,b)(z).

By a similar argument, one can show that the case s < 0. It completes the proof. �

5. Examples and combinatorial identities

Several kinds of Riordan matrices are related to the r-ary numbers given by b
(r)
n := 1

(r−1)n+1

(
rn

n

)
,

e.g., the Pascal and the Catalanmatrices. The GFBr(z) = ∑
n≥0 b

(r)
n zn satisfies the functional equation

Br(z) = 1 + zBr
r(z), (r ∈ Z). It can be shown [5] that the following identity is valid for all real

numbers s:

B
s
r(z) = ∑

n≥0

s

rn + s

(
rn + s

n

)
zn. (19)

In this section, we will examine our previous results for the Riordan matrix with a ray sequence of

r-ary numbers. It allows us to derive several combinatorial identities.

Theorem 5.1. For an integer pair (a, b) such that a + b = m ≥ 1, let �(a,b)(z) be the GF for the (a, b)-
sequence of LE = 〈g, f 〉 where f ∈ �m. Then �(a,b)(z) = Br(z) if and only if �(a−1,b+1)(z) = Br−1(z).

Proof. Let ϕ = z/h̄ where h = zBr(z). Since Br(z) = 1 + zBr
r(z), we have h = z + hr/zr−2. By

replacing z by h̄, we obtain z = h̄ + zr/h̄r−2, i.e., z/h̄ = 1 + z(zr−1/h̄r−1). Hence ϕ = 1 + zϕr−1,

which implies ϕ = Br−1(z). By Theorem 2.3, the proof is completed. �

The next corollary follows from Theorems 5.1 and 4.6.

Corollary 5.2. Let A(z) be the GF for the A-sequence of LE = 〈g, f 〉. For each integer i we have:

(i) A(z) = Br(z) if and only if �(i,1−i)(z) = Bi+r(z);
(ii) A(z) = Br(z) if and only if �c

(i,1−i)(z) = 1/B1−i+r(z).
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Example 5.3. Let us consider the extended Catalan matrix LE = 〈C, zC〉 = [
�n,k

]
n,k∈Z which is a

bilaterally infinite matrix, where �n,k = k+1
n+1

(
2n−k

n

)
if n �= −1, and �−1,−1 = 1, �−1,k = −1 for

k < −1. The matrix is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · ·
1

−3 1

0 −2 1

−1 −1 − 1 1

−3 −2 −1 0 1

−9 −5 −2 0 1 1

−28 −14 −5 0 2 2 1

−90 −42 −14 0 5 5 3 1

−297 −132 −42 0 14 14 9 4 1

−1001 −429 −132 0 42 42 28 14 5 1

−3432 −1430 −429 0 132 132 90 48 20 6 1

−11934 −4862 −1430 0 429 429 297 165 75 27 7 1

−41990 −16796 −4862 0 1430 1430 1001 572 275 110 35 8 1

· · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since A(z) = 1
1−z

= B1(z), from Corollary 5.2 and Theorem 4.8, it follows that LE has (i, 1 −
i)-sequences and the corresponding companion sequences such that �(i,1−i)(z) = B1+i(z) and

�c
(i,1−i)(z) = 1/B2−i(z) = Bi−1(−z) for i ∈ Z.

For examples, let i = 2. Since

�(2,−1)(z) = B3(z) = 1 + z + 3z2 + 12z3 + 55z4 + · · · ,

�c
(2,−1)(z) = B1(−z) = 1 − z + z2 − z3 + z4 − · · · ,

the boxed element �4,1 = C4 = 14 may be expressed by means of the (2, −1)-sequence and its

companion sequence, respectively:

14 = 1 · 5 + 1 · 0 + 3 · (−1) + 12 · 1,
14 = 1 · 28 + (−1) · 20 + 1 · 7 + (−1) · 1.

Further, LE has s-sequences with the GFs �s
(i,1−i)(z) = Bs

1+i(z) for (i, s) ∈ Z × Z. Thus �n+1,k+1

can be expressed in terms of r-ary numbers as

�n+1,k+1 =
n−k∑
j=0

[zj]Bs
1+i(z)�n+1−s−ij,k+1−s+(1−i)j.

In particular, if k = 0 then for any pair (i, s) ∈ Z × Z, the nth Catalan number can be expressed as

Cn+1 =
n∑

j=0

s(j − ij − s + 2)

(j + ij + s)(n − ij − s + 2)

(
j + ij + s

j

)(
2n − j − ij − s + 1

n − j

)
.
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From this expression one can derive several combinatorial identities for the Catalan numbers.
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