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Abstract

A matrix A = [aij ] is called a 7-matrix if its entries satisfy the recurrence relation
αai−1,j−1 + βai−1,j = aij where α, β are fixed numbers. A 7-matrix is completely deter-
mined by its first row and first column. In this paper we determine the structure of 7-matrices
and investigate the sequences represented by columns of infinite 7-matrices.
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1. Introduction

Suppose that a particle at the origin of the coordinate plane starts to move and
that, at each time step, it jumps from the current position to right or upward by one
unit length with the probability α, β respectively, not staying trapped.
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At each time step the particle either moves right or up, but not both. Thus in
particular α + β = 1.

Notice that since the particle changes its position at each step, it passes through the
point (k, l) if and only if it reaches (k, l) at the clock time k + l. Let pk,l denote the
probability that this particle passes through the point (k, l). Then, since the particle
starts at (0, 0) it does pass through (0, 0) and hence p0,0 = 1. Clearly, p0,1 = α and
p1,0 = β. To reach the point (k, l), the particle either goes to the right from (k − 1, l)

to (k, l) or jumps up from (k, l − 1) to (k, l) and no other ways. Thus we have the
relation

αpk−1,l + βpk,l−1 = pk,l .

Let qk+l,k = pk,l . Then q0,0 = 1, q0,1 = 0, q1,0 = β, and the above equation may
be rewritten as

αqn−1,k−1 + βqn−1,k = qn,k, (1)

where n = k + l. It is easily seen that

qij = αjβi−j

(
i

j

)
(i, j = 0, 1, 2, . . .).

Motivated by this example, we are interested in matrices whose entries satisfy a
recurrence relation like (1).

Let A = [aij ] be an m × n matrix and let α, β be a pair of nonzero real numbers.
Suppose that the entries of A satisfy the recurrence relation

αai−1,j−1 + βai−1,j = aij (i = 2, 3, . . . , m; j = 2, 3, . . . , n). (2)

We see that once the entries in the first row and first column are determined then
all the entries are determined by the relation (2). The relative positions of the en-
tries ai−1,j−1, ai−1,j and aij in (2) form the ‘mirrored gamma’ or ‘figure 7’ shape.
So, we call the relation (2) the 7α,β -law, and we call a matrix a 7α,β -matrix if its
entries satisfies the 7α,β -law. A matrix is called a 7-matrix if it is a 7α,β -matrix for
some α, β. 71,1-matrices are called simple 7-matrices. The (n + 1) × (n + 1) Pascal
matrix

Pn =




1 0 0 · · · 0
1 1 0 · · · 0
1 2 1 · · · 0
...

...
...

. . .
...(

n
0

) (
n
1

) (
n
2

) · · · (
n
n

)




is a typical example of a simple 7-matrix.
In the past couple of decades, the Pascal triangle has been recognized as a matrix

with nice properties and various extensions of a Pascal matrix have been investigated
by several authors [2–5]. All the extensions of Pn that have appeared so far are ‘Pas-
cal functional matrices’, namely those that are obtained from Pn by replacing each
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of the entries
(
i
j

)
with a monomial in one or two indeterminates whose coefficient is(

i
j

)
, for example, Pn[x] = [xi−j

(
i
j

)] or �n(x, y) = [xi−j yi+j
(
i
j

)]. These ‘extended’

Pascal matrices have the same zero pattern as Pn.
The notion of a 7-matrix is certainly another extension of the Pascal matrix. 7-

Matrices, however, look quite different from the other extensions that have appeared
so far.

In this paper we investigate the structure and properties of 7-matrices along with
some applications of 7-matrices.

Throughout this paper, for a pair α, β of real numbers, let Pn(α, β) denote the
(n + 1) × (n + 1) matrix whose rows and columns are indexed by 0, 1, 2, . . . , n and
whose (i, j)-entry qij is defined by

qij = αjβi−j

(
i

j

)
(i, j = 0, 1, 2, . . . , n).

For a number x, let

Dx = diag(1, x, x2, . . . , xn).

Then it is easily seen that

Pn(α, β) = DβPnDαβ−1 .

Note that Pn = Pn(1, 1).
We close this section with the following simple property of Pn(α, β).

Theorem 1. If α, β /= 0, then Pn(α, β) is invertible and Pn(α, β)−1 =
Pn(1/α, −β/α).

Proof. That Pn(α, β) is invertible for α, β /= 0 is trivial.
Since P −1

n = [(−1)i+j
(
i
j

)], we have P −1
n = D−1PnD−1. Thus it follows that

Pn(α, β)−1 = D−1
αβ−1P

−1
n D−1

β = Dβα−1D−1PnD−1Dβ−1

= D−βα−1PnD−β−1 = Pn

( 1

α
, −β

α

)
. �

2. The structure of 7-matrices

In this section, we determine the structure of 7-matrices. 7-Matrices are strongly
related to Pascal matrices. Let Vn(α, β) denote the set of all (n + 1) × (n + 1)7α,β -
matrices. Observe that the matrices in Vn(α, β) are completely determined by their
first row and their first column and the recurrence relation.
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In the sequel, we assume that the rows and columns of matrices in Vn(α, β) are
indexed by 0, 1, . . . , n, and we let ei (i = 1, . . . , n), denote the ith column of In, the
identity matrix of order n, and let fi (i = 0, 1, . . . , n), denote the (i + 1)th column
of In+1 so that [f0, f1, . . . , fn] = In+1.

Theorem 2. For n � 2, Vn(α, β) is a (2n + 1)-dimensional vector space.

Proof. Let A = [aij ], B = [bij ] ∈ Vn(α, β) and let λ, µ be real numbers. Let C =
λA + µB = [cij ]. Then the entries cij of C certainly satisfy the 7α,β -law because
both aij ’s and bij ’s do, so that Vn(α, β) is a subspace of the vector space of all
(n + 1) × (n + 1) matrices.

For i, j = 1, 2, . . . , n, let Bi0 and B0j denote the (n + 1) × (n + 1) 7α,β -matrices
of the form

Bi0 =
[

0 0T

ei Xi0

]
, B0j =

[
0 eT

j

0 X0j

]
,

and let

B00 =
[

1 0T

0 X00

]
∈ Vn(α, β),

where each of the matrices Xi0, X0j and X00 is an n × n matrix determined by the
row 0 and the column 0 of Bi0, B0j and B00 respectively and the recurrence rela-
tion. It is now readily seen that the 2n + 1 matrices Bn0, Bn−1,0, . . . , B10, B00, B01,

B02, . . . , B0n form a basis for Vn(α, β). �

The notion of 7-matrices can be extended to rectangular matrices with infinite
number of rows or columns. By the same argument as above we can show that the
set of all 7α,β -matrices of the same size, infinite or finite, forms a vector space. If the
size is m × n, then the dimension of the vector space is m + n − 1.

For a row vector v = (v1, v2, . . . , vk), let ←−v denote the column vector obtained
from v by reading the components in reverse order, namely, ←−v = (vk, vk−1, . . . , v1)

T.

Lemma 3. Let A ∈ Vn(α, β) and let x and y be the topmost row and the rightmost
column of A respectively. Then Pn(α, β)←−x = y.

Proof. Let A = [aij ]. Then x = (a00, a01, . . . , a0n). Let Bi0, B0j (i, j = 0,

1, . . . , n), be the basis for Vn(α, β) defined in the proof of Theorem 2 and let Qn =
Pn(α, β). Then Bi0fn = 0 (i = 1, 2, . . . , n). Notice that, for each j = 1, 2, . . . , n,
B0j = [Oj, Qn,j ], where Oj denotes the (n + 1) × j zero matrix and Qn,j

denotes the (n + 1) × (n + 1 − j) matrix obtained from Qn by deleting all col-
umns except those numbered 0, 1, . . . , n − j , and hence that the column n of B0j

equals the column n − j of Qn, i.e., that B0j fn = Qnfn−j (j = 0, 1, 2, . . . , n). Since
A = ∑n

i=1 ai0Bi0 + ∑n
j=0 a0jB0j , we have
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y = Afn =
n∑

j=0

a0jB0j fn =
n∑

j=0

a0jQnfn−j = Qn

n∑
j=0

a0,n−j fj

= Qn(a0,n, a0,n−1, . . . , a0,1, a0,0)
T = Qn

←−x . �

For the row vector c = (c−n, c−n+1, . . . , c−1, c0, c1, c2, . . . , cn) with 2n + 1
components, let T (c) denote the (n + 1) × (n + 1) Toeplitz matrix



c0 c1 c2 · · · cn−1 cn

c−1 c0 c1 · · · cn−2 cn−1
c−2 c−1 c0 · · · cn−3 cn−2
...

...
...

. . .
...

...

c−n+1 c−n+2 c−n+3 · · · c0 c1
c−n c−n+1 c−n+2 · · · c−1 c0




.

Associated with the above row vector c, let the (n + 1)-vectors ck (k = 0, 1,

2, . . . , n), be defined by

ck = (ck−n, ck−n+1, . . . , ck−1, ck). (3)

Then T (c) = [←−c 0,
←−c 1, . . . ,

←−c n].

Theorem 4. An (n + 1) × (n + 1) matrix A is a 7α,β -matrix if and only if A =
Pn(α, β)T for some (n + 1) × (n + 1) Toeplitz matrix T .

Proof. Suppose that A = [aij ] = [a0, a1, . . . , an] is an (n + 1)-square 7α,β -matrix.
Extend A to an (n + 1) × (2n + 1) matrix

Ã =




a0,−n a0,−n+1 · · · a0,−1 a0,0 a0,1 · · · a0,n

a1,−n a1,−n+1 · · · a1,−1 a1,0 a1,1 · · · a1,n

...
...

. . .
...

...
...

. . .
...

an,−n an,−n+1 · · · an,−1 an,0 an,1 · · · an,n


 ,

where the entries aij with 0 � i � n − 1, −(n − i) � j � −1 are chosen in such a
way that

aij = ai+1,j+1 − βai,j+1

α
,

while those aij with 1 � i � n, −n � j < −(n − i) are taken so that the entries
of Ã satisfy the 7α,β -law. Let c = (c−n, c−n+1, . . . , c−1, c0, c1, c2, . . . , cn) be the
topmost row of Ã. Then c is uniquely determined by the topmost row and leftmost
column of A.

For each k = 0, 1, . . . , n, let Ãk denote the (n + 1) × (n + 1) matrix obtained
from Ã by deleting all columns except those numbered k − n, k − n + 1, . . . ,
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k − 1, k, and let ck be the row vector defined in (3) associated with c. Then ck is
the topmost row of Ãk so that ak = Qn

←−c k , k = 0, 1, . . . , n, by Lemma 3, where
Qn = Pn(α, β). Thus A = [Qn

←−c 0, Qn
←−c 1, . . . , Qn

←−c n] = QnT (c).
To prove the converse, let A = [aij ] be an (n + 1) × (n + 1) matrix where 0 � i,

j � n, and suppose that A = Pn(α, β)T , where T is an (n + 1) × (n + 1) Toep-
litz matrix so that there exists an (2n + 1)-vector c = (c−n, c−n+1, . . . , c−1, c0, c1,

c2, . . . , cn) such that T = T (c). Let Qn = Pn(α, β) = [qij ], (0 � i, j � n), and
cr = (cr−n, cr−n+1, . . . , cr−1, cr ), (r = 0, 1, . . . , n). Then T = [←−c 0,

←−c 1, . . . ,
←−c n].

Since T fr = ←−c r for each r = 0, 1, . . . , n, we see, for i, j with 0 � i, j � n − 1, that

αaij + βai,j+1 = αfiQnT fj + βfiQnT fj+1

=
i∑

k=0

αqikcj−k +
i∑

k=0

βqikcj+1−k

= βqi0cj+1 +
i−1∑
k=0

(αqik + βqi,k+1)cj−k + αqiicj−i

= qi+1,0cj+1 +
i−1∑
k=0

qi+1,k+1cj+1−(k+1) + qi+1,i+1cj+1−(i+1)

= fi+1QnT fj+1 = ai+1,j+1,

since βqi0 = qi+1,0 and αqii = qi+1,i+1. Thus it is proved that A is a 7α,β -
matrix. �

Corollary. Let A be an (n + 1) × (n + 1)7α,β -matrix and let T be a Toeplitz matrix
such that A = Pn(α, β)T . Then A is invertible if and only if T is. If T is invertible,
then

A−1 = T −1Pn

( 1

α
, −β

α

)
.

3. The sequences of columns of 7-matrices

In this section we observe the relationship between the sequences ←−x and y where
x, y are the topmost row and the rightmost column of an infinite 7α,β -matrix

A =




· · · a0,−2 a0,−1 a0,0

· · · a1,−2 a1,−1 a1,0

· · · a2,−2 a2,−1 a2,0

...
...

...


 . (4)
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Theorem 5. Let A be an infinite 7α,β -matrix in (4) and let x, y be the topmost row
and the rightmost column of A. If f (x), g(x) are the generating functions of the
sequences ←−x and y respectively, then

(a) g(x) = 1

1 − βx
f

( αx

1 − βx

)
,

(b) f (x) = 1

1 + βx/α
g

(
x/α

1 + βx/α

)
.

Proof. (a) Let qnk = αkβn−k
(
n
k

)
, (n, k = 0, 1, 2, . . .). For each k = 0, 1, 2, . . . , we

have

(αx)k

(1 − βx)k+1
=

∞∑
j=0

αkxk

(
k + j

j

)
βjxj =

∞∑
j=0

αkβj

(
k + j

k

)
xk+j

=
∞∑

n=k

αkβn−k

(
n

k

)
xn =

∞∑
n=0

αkβn−k

(
n

k

)
xn =

∞∑
n=0

qnkx
n.

Since qnk = 0 for k > n, we also have

an0 = (qn0, qn1, . . . , qnn)(a0,0, a0,−1, . . . , a0,−n)
T =

∞∑
k=0

qnka0,−k.

Thus we get that

1

1 − βx
f

(
αx

1 − βx

)
= 1

1 − βx

∞∑
k=0

a0,−k

(
αx

1 − βx

)k

=
∞∑

k=0

a0,−k(αx)k

(1 − βx)k+1
=

∞∑
k=0

∞∑
n=0

qnka0,−kx
n

=
∞∑

n=0

∞∑
k=0

qnka0,−kx
n =

∞∑
n=0

an0x
n = g(x),

and the proof of (a) is complete.
(b) The matrix

Ã =




· · · a2,0 a1,0 a0,0

· · · a2,−1 a1,−1 a0,−1

· · · a2,−2 a1,−2 a0,−2

...
...

...
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obtained form A by flipping along the back diagonal is a 7λ,µ-matrix with λ = 1/α,
µ = −β/α. Thus (b) follows from (a). �

As an example of Theorem 4, let us look at the following infinite matrix

A =




· · · 0
(0

0

)
0 0 · · · 0

· · · 0
(1

0

) (1
1

)
0 · · · 0

· · · 0
(2

0

) (2
1

) (2
2

) · · · 0
...

...
...

...
...

· · · 0
(
p
0

) (
p
1

) (
p
2

) · · · (
p
p

)
· · · 0

(
p+1

0

) (
p+1

1

) (
p+1

2

) · · · (
p+1
p

)
...

...
...

...
...




.

A is a simple infinite 7-matrix. The generating function of the sequence obtained by
reading the topmost row backward is f (x) = xp. We can calculate

1

1 − x
f

( x

1 − x

)
= xp

(1 − x)p+1
= xp

∞∑
k=0

(
p + k

p

)
xk =

∞∑
n=0

(
n

p

)
xn,

which, indeed, is the generating function of a sequence appeared in the rightmost
column of A.

If g(x) is the generating function of a sequence, then certainly g(x)/(1 − x) is
the generating function of the partial sums of the sequence. Now

1

1 − x

1

1 − x
f

( x

1 − x

)
= xp

(1 − x)p+2
= xp

∞∑
k=0

(
p + k + 1

p + 1

)
xk

=
∞∑

n=0

(
n + 1

p + 1

)
xn

gives rise to the well known identity(
p

p

)
+

(
p + 1

p

)
+ · · · +

(
n

p

)
=

(
n + 1

p + 1

)
.

As another example, let

A =




· · · 125 64 27 8 1 0
· · · 91 61 37 19 7 1
· · · 36 30 24 18 12 6
· · · 6 6 6 6 6 6
· · · 0 0 0 0 0 0

...
...

...
...

...
...




,
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where the topmost row read backward is the sequence (03, 13, 23, . . .) and the row i

read backward is the difference sequence of the sequence in row i − 1 read backward
(i = 1, 2, . . .). Then A is a 71,−1-matrix. Since g(x) = x + 6x2 + 6x3, we have the
generating function

f (x) = 1

1 − x
f

( x

1 − x

)

= 1

1 − x

( x

1 − x
+ 6x2

(1 − x)2
+ 6x3

(1 − x)3

)

= x + 4x2 + x3

(1 − x)4

of the sequence (03, 13, 23, . . .).

4. Some applications

Let us consider an infinite simple 7-matrix, i.e., an infinite 7α,β -matrix with α =
β = 1, of the form

A =




· · · a0,−2 a0,−1 a0,0

· · · a1,−2 a1,−1 a1,0

· · · a2,−2 a2,−1 a2,0

...
...

...


 .

Since, for a fixed j , ai,−j−1 + ai,−j = ai+1,−j , i.e, ai+1,−j − ai,−j = ai,−j−1
(i = 0, 1, . . .), we see that for each j = 0, 1, 2, . . . , the column −j − 1 is the differ-
ence sequence of the column −j so that it is the j th difference sequence of the
sequence in the column 0. Let bj = a0,−j (j = 0, 1, 2, . . .), for brevity, and let
f (x) = b0 + b1x + b2x

2 + · · · . Then

1

1 − x
f

( x

1 − x

)
= b0

1 − x
+ b1x

(1 − x)2
+ b2x

2

(1 − x)3
+ · · ·

= b0

∞∑
n=0

xn + b1

∞∑
n=0

(
n

1

)
xn + b2

∞∑
n=0

(
n

2

)
xn + · · ·

=
∞∑

n=0

n∑
j=0

bj

(
n

j

)
xn.

So, by Theorem 5(a), we see that the general term of the sequence in the right-
most column of A can be obtained from the sequence in the topmost row of A read
backward as
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an,0 =
n∑

j=0

a0,−j

(
n

j

)
(n = 0, 1, 2, . . .). (5)

Now, let si be the ith partial sum of the sequence in the rightmost column of A,
i.e., si = a00 + a10 + · · · + ai0, (i = 0, 1, 2, . . .). Then the generating function of
the sequence s0, s1, s2, . . . is

1

1 − x

1

1 − x
f

(
x

1 − x

)

= b0

(1 − x)2
+ b1x

(1 − x)3
+ b2x

2

(1 − x)4
+ · · ·

= b0

∞∑
n=0

(
n + 1

1

)
xn + b1

∞∑
n=0

(
n + 1

2

)
xn + b2

∞∑
n=0

(
n + 2

3

)
xn + · · ·

=
∞∑

n=0

n∑
j=0

bj

(
n + 1

j + 1

)
xn.

Therefore

sn =
n∑

j=0

a0,−j

(
n + 1

j + 1

)
(n = 0, 1, 2, . . .). (6)

The formulas (5) and (6) with (a0,0, a0,−1, a0,−2, . . .) being a finite sequence are
well known in the literature (see [1], for example).

For a pair of nonnegative integers n, k with n � 0, k � 1, let rn,k denote the
number of regions that result from a k-dimensional Euclidean space by putting n

(k − 1)-dimensional hyperplanes in it. Then, clearly,

r0k = 1 (k = 1, 2, . . .),

rn1 = n + 1 (n = 0, 1, 2, . . .).

It is well known that the numbers rij satisfy the 7-law

rij + ri,j+1 = ri+1,j+1 (i = 0, 1, 2, . . . ; j = 1, 2, . . .)

(see [1], for example) so that the matrix

A =




r01 r02 r03 · · · r0p

r11 r12 r12 · · · r1p

r21 r22 r23 · · · r2p

...
...

...
...




is a simple 7-matrix where p is any fixed positive integer. The matrix A can be
extended to an infinite simple 7-matrix
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Ã =




· · · 0 0 r00 r01 r02 · · · r0p

· · · 0 0 r10 r11 r12 · · · r1p

· · · 0 0 r20 r21 r22 · · · r2p
...

...
...

...
...

...




=




· · · 0 0 1 1 1 · · · 1
· · · 0 0 1 2 ∗ · · · ∗
· · · 0 0 1 3 ∗ · · · ∗

...
...

...
...

...
...


 .

The generating function of the sequence obtained from the topmost row read back-
ward is

f (x) = 1 + x + x2 + · · · + xp.

So, by Theorem 5 again, the generating function of the sequence (r0p, r1p, r2p, . . .)

is calculated as

1

1 − x
f

( x

1 − x

)
= 1

1 − x
+ x

(1 − x)2
+ · · · + xp

(1 − x)p+1

=
∞∑

n=0

xn +
∞∑

n=0

(
n

1

)
xn + · · · +

∞∑
n=0

(
n

p

)
xn

=
∞∑

n=0

((
n

0

)
+

(
n

1

)
+ · · · +

(
n

p

))
xn,

from which the well known identity

rnp =
(

n

0

)
+

(
n

1

)
+ · · · +

(
n

p

)

follows.
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