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GENERALIZATIONS OF CHEBYSHEV POLYNOMIALS

AND POLYNOMIAL MAPPINGS

YANG CHEN, JAMES GRIFFIN, AND MOURAD E.H. ISMAIL

Abstract. In this paper we show how polynomial mappings of degree K from
a union of disjoint intervals onto [−1, 1] generate a countable number of spe-
cial cases of generalizations of Chebyshev polynomials. We also derive a new
expression for these generalized Chebyshev polynomials for any genus g, from
which the coefficients of xn can be found explicitly in terms of the branch
points and the recurrence coefficients. We find that this representation is use-
ful for specializing to polynomial mapping cases for small K where we will
have explicit expressions for the recurrence coefficients in terms of the branch
points. We study in detail certain special cases of the polynomials for small
degree mappings and prove a theorem concerning the location of the zeroes
of the polynomials. We also derive an explicit expression for the discrimi-
nant for the genus 1 case of our Chebyshev polynomials that is valid for any
configuration of the branch point.

1. Introduction and preliminaries

Akhiezer [2], [1] and, Akhiezer and Tomčuk [3] introduced orthogonal polynomi-
als on two intervals which generalize the Chebyshev polynomials. He observed that
the study of properties of these polynomials requires the use of elliptic functions. In
the case of more than two intervals, Tomčuk [17], investigated their Bernstein-Szegő
asymptotics, with the theory of Hyperelliptic integrals, and found expressions in
terms of a certain Abelian integral of the third kind. However, in his formulation,
certain unknown points on a Hyperelliptic Riemann surface emerge due to the lack
of an explicit representation of the original polynomials. This was circumvented
in [9]. In his book on elliptic functions [4] Akhiezer obtained explicit formulas for
the two interval cases as an example of the application of elliptic functions to the
theory of conformal mapping.

In 1984 Al-Salam, Allaway, and Askey introduced sieved ultraspherical poly-
nomials which are orthogonal with respect to an absolutely continuous measure
supported on [−1, 1] but the weight function vanishes at k + 1 points. Ismail [12]
observed that the vanishing of the weight function means that the polynomials are
orthogonal on several adjacent intervals. He then introduced one additional pa-
rameter in the definition of the sieved ultraspherical polynomials which made them
orthogonal on several intervals with gaps. In particular his polynomials include
analogues of the Chebyshev polynomials of the first and second kind. Their contin-
uous spectrum is T−1

k ([−c, c]), for c ∈ (−1, 1), where Tk is a Chebyshev polynomial
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of the first kind. Moreover these polynomials have simple closed form expressions
and elementary generating functions. More general sieved polynomials are in [7].

In [14] a study of Chebyshev type polynomials was carried out. They arose
as extremal polynomials and are orthogonal on several intervals. The Chebyshev
type polynomials satisfy similar extremal properties to the classical Chebyshev
polynomials on [−1, 1]. In particular they deviate least from zero on a union of
disjoint intervals. The extremal polynomials also have the property that they are
orthogonal with respect to some weight function of the form

πg−1(x)√∏2g
j=1(x − aj)

, x ∈ E,

where E :=
⋃2g−1

j=1 (aj , aj+1), and the polynomial πg−1(x) is chosen such that the
weight is positive on the interior of E. The existence of an extremal polynomial on
any set E is clearly not guaranteed. It was shown in [14] that the existence of an
extremal polynomial on a set E is equivalent to the asymptotic periodicity of the
recurrence coefficients of a sequence of orthogonal polynomials on E. The extremal
polynomial also has the property that it maps the set E onto [−1, 1].

In [10], using a polynomial mapping of this kind, a prescription was given for
the construction of a sequence of orthogonal polynomials on E from a sequence
orthogonal on a single interval. The corresponding weight supported on E can be
obtained using the following procedure, outlined in [10]. In this generality closed
form expressions and generating functions are not available. This raises the question
of finding a class of polynomials as general as possible which has the extremal
properties of the polynomials in Peherstorfer [14] and the simple structural formulas
of Ismail’s polynomials in [12]. The first step was carried out in [9] and is further
developed here. In the present paper we develop this work further by borrowing
ideas from polynomial mappings and sieved polynomials.

We start by choosing a polynomial of degree K − 1 and call this polynomial
WK−1(t). Then we form the expression

(1.1)
WK−1(t)

MK(t) − x
=

WK−1(t)

lK
∏K

i=1(t − M−1
i (x))

=
K∑

i=1

ωi(x)

t − M−1
i (x)

where the M−1
i (x) are a complete set of inverse branches of MK(x) and lK is the

leading coefficient of MK(t). Rearranging the above equation and taking the limit
as t → M−1

i (x) we find

ωi(x) =
WK−1(M

−1
i (x))

M ′
K(M−1

i (x))
.

By comparing coefficients of tK−1 in (1.1) it is clear that

K∑

j=1

ωj(x) = c

where c is the quotient of the leading coefficients of WK−1(x) and MK(x). So,
having chosen a particular polynomial WK−1(x) we are in a position to define the
transformed weight function in the following way. Let E0 be the interval [a, b], and
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Pn(x) the polynomials orthogonal with respect to w0(x) over E0 :

hnδnm =

∫ b

a

Pn(x)Pm(x)w0(x)dx

=
1

c

∫ b

a

Pn(x)Pm(x)

⎛

⎝
K∑

j=1

ωj(x)

⎞

⎠w0(x)dx

=
1

c

K∑

j=1

∫

Aj

Pn(MK(t))Pm(MK(t))
WK−1(t)

M ′
K(t)

M ′
K(t)w0(MK(t))dt

=
1

c

∫

E

Pn(MK(t))Pm(MK(t))WK−1(t)w0(t)dt,

where

E :=

K⋃

j=1

Aj

and

M−1
j : [a, b] → Aj .

So the new sequence of polynomials is orthogonal on the disjoint set E with respect
to the measure

ŵ(t)dt = WK−1(t)w0(MK(t)).

It was shown in [10] that

P̂nK(x) = Pn(MK(x)), n = 0, 1, 2, ....

This generates every Kth polynomial in the sequence. The polynomials P̂nK+j(x),
1 ≤ j ≤ K − 1, are referred to as the intermediate polynomials. Formulas relating
the intermediate polynomials and recurrence coefficients of the new sequence to
known quantities of the old sequence are given in [10].

Some explicit expressions for the Chebyshev polynomials on several intervals,
along with many other important results, can be found in [9]. This paper is orga-
nized as follows. In this section we recall the theta function representation of these
polynomials which was derived in [9]. We also present some facts concerning the
polynomials that will be referred to throughout this paper.

Section 2 is a study of two auxiliary polynomials Sg(x; n) and Gg+1(x; n), of
degree g and g + 1 respectively. The auxiliary polynomials are fundamental to the
theory of the generalization of Chebyshev polynomials under consideration. We also
derive for the first time non-linear difference equations satisfied by the recurrence
coefficients that appear in the three term recurrence relation.

In section 3 we derive a product representation for our polynomials from which
one can obtain the coefficients of the polynomial in terms of the recurrence coef-
ficients and the branch points. This representation is a new one that involves the
auxiliary polynomials studied in section 2. It is particularly useful when we con-
sider certain configurations of the branch points where the recurrence coefficients
simplify into an algebraic form.

In section 4 of this paper we show how certain polynomial mappings give rise to
a countable number of special cases of our generalization of the Chebyshev polyno-
mials. These cases correspond to when the recurrence coefficients are periodic. We
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give explicit formulas for the polynomials of degree not equal to an integer multiple
of the period.

The monic form of the Chebyshev polynomials on several intervals will be de-
noted by Pn(x). They are orthogonal on E := [−1, α] ∪g−1

j=1 [βj , αj+1] ∪ [βg, 1] with
respect to the following weight:

(1.2) w(x) =
1

π

√ ∏g
j=1(x − αj)

(1 − x2)
∏g

j=1(x − βj)
,

so that ∫

E

Pn(x)Pm(x)w(x)dx = δnmhn.

The polynomials of the second kind are

(1.3) Qn(x) =

∫

E

Pn(x) − Pn(t)

x − t
w(t)dt.

Both Pn(x) and Qn(x) satisfy the recurrence relation

(1.4) xun(x) = un+1(x) + bn+1un(x) + anun−1(x);

see [2]. The Stieltjes transform of the weight function is

ψ(z) :=

∫

E

w(t)dt

z − t
=

√ ∏g
j=1(z − αj)

(z2 − 1)
∏g

j=1(z − βj)
, z /∈ E.

Note that

ψ(x) =
π

i
w(x).

In [9], Chen and Lawrence considered a hyperelliptic Riemann surface of genus g,

y2(z) = (z2 − 1)

g∏

j=1

(z − αj)(z − βj),

from which a representation for the polynomials in terms of the associated Riemann
theta function was constructed. They also gave a representation for the recurrence
coefficients in terms of the theta functions. To formulate these representations the
following facts regarding this Riemann surface are required.

A canonical basis of cycles is chosen on the surface that is composed of 2g closed
contours. We denote by the a-cycles the g closed contours that lie on one sheet of
the surface, and the b-cycles to be the remaining g contours that travel over both
sheets. For a surface of genus g a basis of holomorphic differentials can be written
in terms of g linearly independent differentials,

{
dx

y(x)
,
x dx

y(x)
, ...,

xg−1dx

y(x)

}
.

If we let

Ajk =

∫

ak

xg−j

y(x)
dx,

then the dωj as defined,

dωj =

g∑

j=1

(A−1)jk
xg−j

y(x)
dx,
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form an orthonormal basis such that∫

aj

dωk = δjk.

We can then define the period matrix B whose entries are

Bjk =

∫

bj

dωk.

The Riemann theta function associated with the surface is defined to be

ϑ(s; B) = ϑ(s) :=
∑

t∈Zg

exp(iπ(t, Bt) + 2πi(t, s)),

where s is a g-vector, and (u, v) denotes the standard scalar product of two vectors.
Convergence of the series is assured since ℑB is a positive definite matrix. The
theta function has the following properties. For t ∈ Zg,

ϑ(−s) = ϑ(s),

ϑ(s + t) = ϑ(s),

ϑ(s + Bt) = e−iπ[(t,Bt)+2(t,s)]ϑ(s).

Both the polynomials and the recurrence coefficients are given below. The expres-
sions are taken from [9]. However, in view of lemma 10.2 in [9] and the quasi-
periodicity of the theta functions we have simplified the expressions slightly:

(1.5) Pn(x) =
1

2

(
En(px) + Ẽn(px)

)
,

where, for n ≥ 1,

En(px) = 2e−n(χ0+Ω(px)) ϑ(u+)ϑ(ux − nB̂)

ϑ(u+ + nB̂)ϑ(ux)

and

Ẽn(px) = 2en(Ω(px)−χ0)
ϑ(u+)ϑ(ux + nB̂)

ϑ(u+ + nB̂)ϑ(ux)
.

Using this notation,

(1.6) Qn(x) =
ψ(x)

2

(
Ẽn(px) − En(px)

)
.

Here, px is a point on the top sheet of the Riemann surface that corresponds to a
point x in the complex plane, and

Ω(px) =

∫ px

p1

dΩ

:=

∫ px

p1

tg +
∑g−1

j=0 kjt
j

y(t)
dt.

The kj can be determined from the condition that
∫

aj

dΩ = 0, j = 1, ..., g.

ux is defined to be a g-vector,

ux :=

(∫ px

p1

dω1, ...,

∫ px

p1

dωg

)T

,
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and u± := u∞± . If B̂ is the vector whose components are

B̂j =
1

2πi

∫

bj

dΩ, j = 1, ..., g,

then
B̂ ≡ u+ − u− (mod Z

g).

Finally, the equilibrium potential of the set E is

(1.7) χ0 =

∫ ∞+

p1

(
tg +

∑g
j=0 kjt

j

y(t)
− 1

t

)
dt.

With this notation, we have the following expressions for the recurrence coefficients:

(1.8) an =

⎧
⎨

⎩
2e−2χ0 ϑ(u+−B̂)

ϑ(u++B̂)
if n = 1,

e−2χ0 ϑ(u++(n−1)B̂)ϑ(u+−nB̂)

ϑ(u+−(n−1)B̂)ϑ(u++nB̂)
if n > 1

and
(1.9)

bn =
1

2

g∑

j=1

(βj − αj) +

g∑

j=1

(A−1)j1

[
ϑ′

j(u++B̂)

ϑ(u++B̂)
−

ϑ′
j(u+)

ϑ(u+)
+

ϑ′
j(u++(n−1)B̂)

ϑ(u++(n−1)B̂)
−

ϑ′
j(u++nB̂)

ϑ(u++nB̂)

]
.

Here,

ϑ′
j(u) :=

∂

∂uj
ϑ(u).

Also,

(1.10) hn = 2e−2nχ0
ϑ(u+ − nB̂)

ϑ(u+ + nB̂)
.

Theorem 1.1. The polynomials of the second kind Qn(x) satisfy the following

orthogonality relation:

(1.11)

∫

E

Qn(x)Qm(x)
1

w(x)
dx = δnmh̃n,

where,

h̃n = π2hn.

Proof. We wish to evaluate the following integral:

Ij =

∫

E

Qn(t)

w(t)
tjdt, 0 ≤ j < n − 1.

We have

Qn(z) = Pn(z)ψ(z) −
∫

E

Pn(t)

z − t
w(t)dt

= Pn(z)ψ(z) − 1

z

∫

E

Pn(t)

1 − t
z

w(t)dt

= Pn(z)ψ(z) − 1

z

∫

E

Pn(t)
∞∑

j=0

(
t

z

)j

dt

= Pn(z)ψ(z) −
(

hn

zn+1
+ O

(
1

zn+2

))
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where the last line follows from the orthogonality of the Pn(x). Therefore,

Qn(z)

ψ(z)
= Pn(z) − 1

ψ(z)

(
hn

zn+1
+ O

(
1

zn+2

))
.

We rewrite Ij as a contour integral using a closed contour Λ [9] in the slit complex
plane that encircles all of the branch points. By continuous deformation of the
contour onto the intervals that make up E we have

Ij =

∫

E

Qn(t)

w(t)
tjdt

=
π

2i

∫

Λ

Qn(z)

ψ(z)
zjdz.

So Ij can be written as

Ij =

∫

Λ

Pn(z)zjdz −
∫

Λ

hn

zn+1 + O
(

1
zn+2

)

ψ(z)
zjdz.

The differential Pn(z)zjdz has no residue at infinity for any j. The differential
zj

zn+1ψ(z)dz has no residue at infinity for j = 0, ..., n − 2. Consequently, for these

values of j, both integrals are zero, which proves the orthogonality of the Qn(z)
with respect to 1

w(z) . The integral In−1 is equal to the square of the weighted L2

norm of Qn(z). In this case there is a residue at infinity. The residue is −hn and
therefore

h̃n = π2hn. �

Theorem 1.2. Let Ẽ be the reflection of E around the point x = 0, namely

Ẽ := [−1,−βg] ∪1
j=g−1 [−αj+1,−βj ] ∪ [−α1, 1].

Let {P̃n(x)} be the monic polynomials orthogonal on Ẽ with respect to w̃(x), where

w̃(x) =
1

π

√ ∏g
j=1(x + βj)

(1 − x2)
∏g

j=1(x + αj)
.

Then we have for n ≥ g
(1.12)

P̃n(x) =
(−1)n+g

Dn

∏g
j=1(x + βj)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pn−g(β1) . . . . . . . . . Pn+g(β1)
...

...
...

...
...

Pn−g(βg) . . . . . . . . . Pn+g(βg)
Qn−g(α1) . . . . . . . . . Qn+g(α1)

...
...

...
...

...

Qn−g(αg) . . . . . . . . . Qn+g(αg)
Pn−g(−x) . . . Pn(−x) . . . Pn+g(−x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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If n < g, then

P̃n(x) =
(−1)n+g

Dn

∏g
j=1(x + βj)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . . . . 0 P0(β1) . . . Pn+g(β1)
...

...
...

...
...

...
...

0 . . . . . . 0 P0(βg) . . . Pn+g(βg)

α0
1 α1 . . . αg−n−1

1 Q0(α1) . . . Qn+g(α1)
...

...
...

...
...

...
...

α0
g αg . . . αg−n−1

g Q0(αg) . . . Qn+g(αg)
0 0 0 0 P0(−x) . . . Pn+g(−x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In both equations, Dn is equal to the coefficient of Pn+g(−x) appearing in each

determinant.

Proof. Starting with the orthogonality relation of the P̃n(x) we make the change
of variables x → −x:

h̃nδnm =

∫

Ẽ

P̃n(x)P̃m(x)

√ ∏g
j=1(x + βj)

(1 − x2)
∏g

j=1(x + αj)
dx

=

∫

E

P̃n(−x)P̃m(−x)

√ ∏g
j=1(x − βj)

(1 − x2)
∏g

j=1(x − αj)
dx

=

∫

E

P̃n(−x)P̃m(−x)

√ ∏g
j=1(x − αj)

(1 − x2)
∏g

j=1(x − βj)

(∏g
j=1(x − βj)∏g
j=1(x − αj)

)
dx.

So the P̃n(−x) are orthogonal with respect to a weight function that is w(x)
multiplied by a rational function. In general if we know the polynomials orthogonal
with respect to a weight µ(x) and we wish to find the polynomials orthogonal with
respect to R(x)µ(x) where R(x) is a rational function that is positive on the interval
of orthogonality, we may invoke a theorem of Uvarov that gives these polynomials
in terms of the original ones. The theorem was first published in [18] and also
appears in [19]. In our case the rational function has zeros and poles at the end
points of the subintervals that make up E. However, a brief examination of the
proof will show that the theorem is still applicable in this case. The result follows
directly from the theorem. �

In section 2 we wish to study the following polynomials:

(1.13) Sg(x; n) := P 2
n(x)

g∏

j=1

(x − αj) − Q2
n(x)(x2 − 1)

g∏

j=1

(x − βj)

and

(1.14) Gg+1(x; n) := Pn(x)Pn−1(x)

g∏

j=1

(x−αj)−Qn(x)Qn−1(x)(x2−1)

g∏

j=1

(x−βj).

These functions are fundamental in the theory of the generalizations of Chebyshev
polynomials considered here.

Theorem 1.3. The functions Sg(x; n) and Gg+1(x; n) are polynomials of degree g
and g + 1 respectively.
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Proof. From (1.3) we know that

Qn(z) = Pn(z)ψ(z) −
∫

E

Pn(t)

z − t
w(t)dt.

Expanding the integrand in powers of t we have

1

z − t
=

1

z
+

t

z2
+

t2

z3
+ ....

Therefore, as z → ∞+, we have

Pn(z)ψ(z) − Qn(z) = O

(
1

zn+1

)
,

and similarly,

Pn(z)ψ(z) + Qn(z) = O
(
zn−1

)
.

Multiplying the two together gives

P 2
n(z)ψ2(z) − Q2

n(z) = O

(
1

z2

)
.

Therefore,

g∏

j=1

(z − αj)P
2
n(z) − (z2 − 1)

g∏

j=1

(z − βj)Q
2
n(z) = O (zg) .

Since the left hand side is a polynomial it follows that it must be of degree g. For
(1.14) we form the following product:

(Pn(z)ψ(z) − Qn(z)) (Pn−1(z)ψ(z) + Qn−1(z))

= Pn(z)Pn−1(z)ψ(z) − Qn(z)Qn−1(z) − ψ(z)hn−1

where we have used

Pn−1(z)Qn(z) − Pn(z)Qn−1(z) = hn−1,

which is the Wronskian. As a result,
g∏

j=1

(z − αj)Pn(z)Pn−1(z) − (z2 − 1)

g∏

j=1

(z − βj)Qn(z)Qn−1(z) = O
(
zg+1

)
. �

From (1.13) and (1.14) we have

(1.15) En(px)Ẽn(px) =
Sg(x; n)∏g

j=1(x − αj)
.

Also,

En(px)Ẽn−1(px) =
Gg+1(x; n) + hn−1y(x)∏g

j=1(x − αj)
,(1.16)

Ẽn(px)En−1(px) =
Gg+1(x; n) − hn−1y(x)∏g

j=1(x − αj)
.(1.17)

An alternative representation for the polynomials of the first and second kind
was also given in [9], resulting from a coupled system of differential equations

(1.18) Pn(z) := ρn(z) cosΨn(z)
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and

(1.19) Qn(z) := iψ(z)ρn(z) sin Ψn(z),

where

ρn(z) =

√
Sg(z; n)∏g

j=1(z − αj)

and

Ψn(z) = i

∫ z

1

(
∑g−1

j=0 cj(n)tj − ntg + 1
2

∑g
j=1

yj(n)
t−γj(n))

y
dt,

where the branch of the square root is chosen in such a way that ρn(z) →
√

2hn,
as ℜz → ∞ and 2hn is the leading coefficient of Sg(z; n), to be shown later. Here
the path of integration is from 1 to an arbitrary complex point z with the property
ℑz > 0, and the path of integration is entirely in the upper half plane. Expressions
for the real values are then obtained by the analytical continuation of those above
allowing z → x ∈ R.

In these expressions, the γj(n) are the zeroes of Sg(x, n), and yi = y(px)|px=γj(n).

The cj(n) are the first g + 1 expansion coefficients of d
dx ln En(px) in terms of the

following basis:
{

1

y
,
x

y
, ...,

xg

y
,

1

x − α1
, ...,

1

x − αg
,

y + y1

y(x − γ1(n))
, ...,

y + yg

y(x − γg(n))

}
.

This is the basis for meromorphic functions on the Riemann surface defined by
y(x) whose zeroes must include simple zeroes at ±∞ and whose poles must be
from amongst the set p1, p−1, pαj

, pβj
, pγj

, j = 1, ..., g, where the poles at the α
points can be at most double poles and the other poles must be simple poles.

2. Evaluating the polynomials Sg(x; n) and Gg+1(x; n)

In this section we give an algorithm for determining the coefficients of Sg(x; n)
and Gg+1(x; n) in terms of the recurrence coefficients and the branch points. Let

Sg(x; n) =

g∑

j=0

ηj(n)xj

and

Gg+1(x; n) =

g+1∑

j=0

ξj(n)xj.

Then we have,

ψ(z)P 2
n(z) − Q2

n(z)

ψ(z)
=

ηg(n)zg + ... + η0(n)

y(z)
,(2.1)

ψ(z)Pn(z)Pn−1(z) − Qn(z)Qn−1(z)

ψ(z)
=

ξg+1(n)zg+1 + ... + ξ0(n)

y(z)
.(2.2)

To find the ηj(n) coefficients we integrate both sides of (2.1) along the contour Λ.
Note that,

ψ(z) =
π

i
W (z),
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where

W (z) =
i

π

√ ∏g
j=1(z − αj)

(z2 − 1)
∏g

j=1(z − βj)
,

and for t ∈ E,

(2.3) lim
ǫ→0+

W (t + iǫ) = w(t) :=
1

π

√ ∏g
j=1(t − αj)

(1 − t2)
∏g

j=1(t − βj)
.

We obtain the following:

(2.4)
π

i

∫

Λ

W (z)P 2
n(z)dz − i

π

∫

Λ

Q2
n(z)

W (z)
dz =

g∑

j=0

ηj(n)Ij,

where

Ij =

∫

Λ

zj

y(z)
dz.

The Ij can be evaluated by evaluating the residue at infinity, in which case,

Ij = 0, j < g,

and

Ig+k =

∫

Λ

zg+k

[
(z2 − 1)

∏g
j=1(z − αj)(z − βj)

]1/2
dz

which under the substitution z = 1/Z becomes

Ig+k = −
∫

Ω

dZ

Zk+1
[
(1 − Z2)

∏g
j=1(1 − αjZ)(1 − βjZ)

]1/2
.

So in general the integrand of Ig+k has a pole of order k + 1 at infinity. Hence if

f(Z) =

⎡

⎣(1 − Z2)

g∏

j=1

(1 − αjZ)(1 − βjZ)

⎤

⎦
−1/2

,

then

(2.5) Ig+k = −2πi
f (k)(0)

k!

where f (k)(Z) denotes the kth derivative of f . Deforming Λ onto E (2.4) becomes

4hn =
i

π
ηg(n)Ig.

From (2.5) we have,

Ig = −2πi,

and therefore,

ηg(n) = 2hn.
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To find the remaining ηj(n) coefficients we multiply (2.1) by successive powers of
z and perform the same integration. This leaves us with the following system of
equations that we can use to solve for the ηg(n):

r0(n) = Igηg(n),

r1(n) = Ig+1ηg(n) + Igηg−1(n),

r2(n) = Ig+2ηg(n) + Ig+1ηg−1(n) + Igηg−2(n)

...

rg(n) =

g∑

j=0

Ig+jηj .

Here,

(2.6) rk(n) =
4π

i

∫

E

zkP 2
n(z)w(z)dz.

These constants are obtained by iterating the three term recurrence relation k times
in (2.6). The recurrence relation can also be expressed in matrix form by

Lp = zp,

where

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 0 0 0 0
a1 b2 1 0 0 0 0
0 a2 b3 1 0 0 0
0 0 a3 b4 1 0 0
0 0 0 a4 b5 1 0

0 0 0 0
. . .

. . .
. . .

0 0 0 0 0
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0(z)
P1(z)
P2(z)
P3(z)

...

...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case,

zkp = Lkp,

zPn(z) =
∞∑

m=0

Lnmpm,

zkPn(z) =
∞∑

m=0

[Lk]nmPm(z).

From the expression for rk(n) in (2.6) it is clear that

(2.7) rk(n) =
4πhn

i
[Lk]n−1,n.

To find the ξj(n) we use the same method. We know from the proof of theorem
(1.3) that

ξg+1(n) = hn−1.
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Multiplying (2.2) by successive powers of z and integrating we have the following
system of equations:

0 = Ig+1ξg+1(n) + Igξg(n),

s1(n) = Ig+2ξg+1(n) + Ig+1ξg(n) + Igξg−1(n),

s2(n) = Ig+3ξg+1(n) + Ig+2ξg(n) + Ig+1ξg−1(n) + Igξg−2(n)

...

sg(n) =

g+1∑

j=0

Ig+jξj(n).

Here,

sk(n) =
4π

i

∫

E

zkPn(z)Pn−1(z)w(z)dz.

In terms of the Jacobi matrix,

sk(n) =
4πhn

i
[Lk]nn.

For g = 1 we have,

S1(x, n) = 2hn

(
x + bn+1 −

(α + β)

2

)
, n ≥ 1,

G2(x, n) = hn−1

(
x2 − α + β

2
x + 2an − 1

8
(α − β)2 − 1

2

)
, n ≥ 2,

S1(x, 0) = (x − α),

G2(x, 1) = (x − b1)(x − α).

The auxiliary polynomials for g = 2 can be found in Appendix B.

Non-linear difference equations. We can use the polynomials studied in this
section to derive a pair of non-linear difference equations for each genus that are sat-
isfied by the recurrence coefficients {an} and {bn}. Using the three term recurrence
relation,

Sg(z; n)∏g
j=1(z − αj)

= En(pz)Ẽn(pz)

= (z − bn)2En−1(pz)Ẽn−1(pz)

− an−1(z − bn)(En−2(pz)Ẽn−1(pz) + Ẽn−2(pz)En−1(pz))

+ a2
n−1En−2(pz)Ẽn−2(pz)

=
(z − bn)2Sg(z; n − 1) + a2

n−2Sg(z; n − 2) − 2an−1(z − bn)Gg+1(z; n − 1)∏g
j=1(z − αj)

.

(2.8)

Evaluating both sides at z = bn gives

Sg(bn; n) = a2
n−1Sg(bn, n − 2).

If we write this out fully for g = 1 we have

(2.9) an

(
bn+1 + bn − α + β

2

)
= an−1

(
bn + bn−1 −

α + β

2

)
.
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This is the first difference relation for the recurrence coefficients. To get the second
we note that

Gg+1(z; n)∏g
j=1(z − αj)

=
1

2

(
En(pz)Ẽn−1(pz) + Ẽn(pz)En−1(pz)

)

=
1

2

((
(z − bn)En−1(pz) − an−1En−2(pz)

)
Ẽn−1(pz)

+
(
(z − bn)Ẽn−1(pz) − an−1Ẽn−2(pz)

)
En−1(pz)

)

= (z − bn)En−1(pz)Ẽn−1(pz)

− an−1

2

(
En−2(pz)Ẽn−1(pz) + Ẽn−2(pz)En−1(pz)

)

=
(z − bn)Sg(z; n − 1) − an−1Gg+1(z; n − 1)∏g

j=1(z − αj)
.(2.10)

If we evaluate this at z = bn we get

Gg+1(bn; n) = −an−1Gg+1(bn; n − 1).

Writing this out for genus 1,

(2.11) an + an−1 =
1

2
+

(β − α)2

8
+

α + β

2
bn − b2

n.

This is the second difference equation for the recurrence coefficients. Both equations
are valid for n ≥ 3.

3. Product representation for Pn(x) and Qn(x)

In this section we use the polynomials derived in section 2 to derive a repre-
sentation for the generalized Chebyshev polynomials where the coefficients of the
powers of x are given in terms of the branch points and the recurrence coefficients.
From (1.5) we have

Pn(x) =
1

2

(
En(px) + Ẽn(px)

)
.

We define the following functions:

f+(x; n) :=
En(px)

En−1(px)
,

f−(x; n) :=
Ẽn(px)

Ẽn−1(px)
.

Using (1.13) and (1.14) we can write

(3.1) f+(x; n) =
En(px)Ẽn−1(px)

En−1(px)Ẽn−1(px)
=

Gg+1(x; n) + hn−1y(x)

Sg(x; n − 1)
.

Similarly,

(3.2) f−(x; n) =
Ẽn(px)En−1(px)

Ẽn−1(px)En−1(px)
=

Gg+1(x; n) − hn−1y(x)

Sg(x; n − 1)
.

Since, E0(px) = 1, we have, for any x ∈ C

(3.3) Pn(x) =
1

2

⎛

⎝
n∏

j=1

f+(x, j) +
n∏

j=1

f−(x, j)

⎞

⎠ .
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Similarly,

(3.4) Qn(x) =
ψ(x)

2

⎛

⎝
n∏

j=1

f+(x, j) −
n∏

j=1

f−(x, j)

⎞

⎠ .

(3.3) and (3.4) are valid for any genus g and require only knowledge of the branch
points and the recurrence coefficients. They do not require any knowledge of the γ
points. If we look at the genus 1 case we find that

f±(x; n) =
x2 − α+β

2 x + 2an − 1
8 (α − β)2 − 1

2 ±
√

(x2 − 1)(x − α)(x − β)

2(x + bn+1 − α+β
2 )

.

If we take the limit as α → β we see that

S1(x, n) → 2hn(x − α), n ≥ 1,

G2(x, n) → hn−1x(x − α),

and,

f±(x, n) → 1

2
(x ±

√
x2 − 1) =

1

2
e±iθ, x = cos θ, n ≥ 2.

Note that
f±(x, 1) → e±iθ.

Thus we can see that (3.3) is a natural generalization of the following formula for
the classical Chebyshev polynomials:

Tn(x) =
(x +

√
x2 − 1)n + (x −

√
x2 − 1)n

2n
.

In general, (3.3) and (3.4) are very effective representations of the polynomials
for the purpose of extracting the polynomial coefficients. The appearance of the
theta function of the Riemann surface is still apparent in the expression for the
recurrence coefficients. One may also wish to study certain special cases of the
Akhiezer polynomials when the recurrence coefficients become algebraic functions
of the branch points αi and βi. In this case (3.3) is particularly useful, as one could
insert directly the value of the recurrence coefficients. In the next section we will
encounter some of these special cases. The following formulas follow naturally from
(3.3):

(3.5) Pn(x) =
Gg+1(x, n)

Sg(x, n − 1)
Pn−1(x) +

hn−1(x
2 − 1)

∏g
j=1(x − βj)

Sg(x, n − 1)
Qn−1(x),

and the corresponding formula for the Qn is

(3.6) Qn(x) =
Gg+1(x, n)

Sg(x, n − 1)
Qn−1(x) +

hn−1

∏g
j=1(x − αj)

Sg(x, n − 1)
Pn−1(x).

Letting αi → βi in (3.5) we obtain as expected the analogous formula for the
Chebyshev case:

2Tn(x) = xTn−1(x) + (x2 − 1)Un−1(x).

Here Tn(x) and Un(x) are monic Chebyshev polynomials of the first and second
kind respectively. Now we show how the product representations of (3.3) and (3.4)
can be used to re-express the differential relations derived in [9], where Pn(x) and
the Qn(x) were shown to satisfy

(3.7) P ′
n(x) = f1(x; n)Pn(x) + f2(x; n)Qn(x),
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and

(3.8) Q′
n(x) = f3(x; n)Pn(x) + f4(x; n)Qn(x),

where

f1(x; n) =
1

2

g∑

j=1

(
1

x − γj
− 1

x − αj

)
,

f2(x; n) =
nxg −∑g−1

j=0 cjx
j − 1

2

∑g
j=1

yj

x−γj∏g
j=1(x − αj)

,

and

f3(x; n) = ψ2(x)f2(x; n),

f4(x; n) =
ψ′(x)

ψ(x)
+ f1(x; n).

The definitions of all the constants appearing in the above formulas can be found
in section 1. From [9],

f1(x; n) =
ρ′n(x)

ρn(x)
,

and

(3.9) f2(x; n) = i
Ψ′

n(x)

ψ(x)
.

Using (3.1) we can express f1(x; n) and f2(x; n) in more explicit terms. Recall that

ρn(x) =

√
Sg(x, n)∏g

j=1(x − αj)
.

Therefore, we can write

(3.10) f1(x; n) =
ρ′n(x)

ρn(x)
=

1

2

⎛

⎝S′
g(x, n)

Sg(x, n)
−

g∑

j=1

1

x − αj

⎞

⎠ .

This is simply a restatement of the earlier definition if we recall that the γi(n) are
the zeroes of Sg(x, n). In order to re-express f2(x; n), we observe that

n∏

j=1

f±(x, j) = ρn(x)e±iΨn(x).

Therefore,
n∏

j=1

f+(x, j)

f−(x, j)
= e2iΨn(x) or ln

n∏

j=1

f+(x, j)

f−(x, j)
= 2iΨn(x) (mod 2π).

From the definitions of f±(x, j) we have

(3.11) 2iΨn(x) =

n∑

j=1

ln

(
Gg+1(x; j) + hj−1y(x)

Gg+1(x; j) − hj−1y(x)

)
(mod 2π).

Hence,

(3.12) iΨ′
n(x) =

n∑

j=1

[
y′(x)Gg+1(x; j) − y(x)G′

g+1(x; j)

Sg(x; j)Sg(x; j − 1)

]
hj−1.
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Substituting the above into (3.9) gives us the differential relations (3.7) and (3.8)
completely in terms of the recurrence coefficients and the branch points. Note that,
generally when γl(k) ∈ (αl, βl), k ≥ 1, we can evaluate Ψn(αl) by taking the limit
x → αl in (3.11). From (1.13) and (1.14) we see that for x = αl the only non-zero
term appearing in the sum in (3.11) is the j = 1 term. For j > 1, Gg+1(αl; j)
cannot be zero since this would imply, from (1.13) and (1.14), that γl(j) = αl. We
have

lim
x→αl

2iΨn(x) = lim
x→αl

ln

(
Gg+1(x; 1) + y(x)

Gg+1(x; 1) − y(x)

)
(mod 2π).

We know that

Gg+1(x; 1) = (x − b1)

g∏

j=1

(x − αj)

and therefore,

lim
x→αl

Ψn(x) =
π

2
(mod π).

Discriminants. In this section we derive an expression for the discriminant when
g = 1. Once we have knowledge of the differential relations satisfied by a sequence
of polynomials one can in general use this information to say something about
the discriminant. The discriminant is useful when we consider certain electrostatic
problems regarding the zeroes of the polynomials. See [16] and [13] for more de-
tails. The expressions we derive in this section are restricted to the cases when the
polynomials do not have zeroes at the branch points. If we write

Pn(x) =

n∏

j=1

(x − xj,n),

then the discriminant is defined to be the following:

(3.13) D[Pn(x)] :=
∏

1≤i<j≤n

(xi,n − xj,n)2.

Since

P ′
n(x) =

n∑

j=1

Pn(x)

(x − xj,n)

it is easily verified that

(−1)
n(n−1)

2

n∏

j=1

P ′
n(xj,n) = D[Pn(x)].

From (3.7), assuming that Pn(x) has no zeroes at the branch points, we have

P ′
n(xj,n) = f2(xj,n; n)Qn(xj,n).

To evaluate Qn(xj,n), recall that

Pn(x) = ρn(x) cosΨn(x),

and

Qn(x) = iψ(x)ρn(x) sinΨn(x).

Since we have
1

iψ(x)

Qn(x)

Pn(x)
= tan Ψn(x),
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it must be that
tanΨn(xj,n) = ±∞,

and therefore if xj,n is a zero of Pn(x), then we do have

cosΨn(xj,n) = 0.

Hence,
sin Ψn(xj,n) = ±1.

Therefore, it is always true that

|Qn(xj,n)| = |iψ(xj,n)ρn(xj,n)|.
The sign depends on the value of n and j. To show this dependence, we note that
the quantity

iψ(xj,n)ρn(xj,n) = i

√√√√ 2hn

x2
j,n − 1

g∏

l=1

xj,n − γl(n)

xj,n − βl

is positive. Since theorem (7.1) in [9] states that any zero of Pn(x) on the interval
(αl, βl) must lie in (αl, γl) and since the zeroes of Pn(x) and Qn(x) interlace, we
must have

sin Ψ2n(xj,2n) = (−1)j

and
sin Ψ2n−1(xj,2n−1) = (−1)j+1.

Therefore,
Qn(xj,n) = (−1)n+jiψ(xj,n)ρn(xj,n),

and

D[Pn(x)] = (−1)
n(n−1)

2

n∏

j=1

P ′
n(xj,n)

= (−1)
n(n−1)

2

n∏

j=1

(−1)n+j+ 1
2

√
2hn

√ ∏g
i=1(xj,n − γi(n))

(x2
j,n − 1)

∏g
i=1(xj,n − βi)

f2(xj,n)

= (−1)
n
2 (2hn)

n
2

√ ∏g
j=1 Pn(γj(n))

Pn(1)Pn(−1)
∏g

j=1 Pn(βj)

n∏

j=1

f2(xj,n).(3.14)

Now in this most general form we cannot yet evaluate the discriminant for general
g since we do not know how to evaluate the product of the f2(xj,n). However,
examining the form of f2(x; n) we see that it is a rational function. In certain
special cases we may know enough about this function to factor it in which case we
can express the unknown quantity in (3.14) as Pn(x) evaluated at the zeroes and
poles of f2(x; n). For g = 1 we can always do this, in which case,

D[Pn(x)] = (−1)
n
2 (2hn)

n
2

√
Pn(γ(n))

Pn(1)Pn(−1)Pn(β)

n∏

j=1

f2(xj,n).

Now

f2(x; n) =
n(x − r+(n))(x − r−(n))

(x − γ(n))(x − α)

where

r±(n) =
(c0/n + γ) ±

√
(c0/n − γ)2 + 2y1/n

2
.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CHEBYSHEV POLYNOMIALS, GENERALIZED 4805

Therefore, we have for the square of the discriminant

(3.15) D2[Pn(x)] = (2n2hn)n (−1)nP 2
n(r+)P 2

n(r−)

P 2
n(α)Pn(1)Pn(−1)Pn(β)Pn(γ(n))

.

The product Pn(β)Pn(γn) is always positive since we know from [9] that Pn(x) can-
not have a zero in the interval (γ(n), β). A similar calculation for the polynomials
of the second kind gives

(3.16) D2[Qn(x)] = (2n2hn)n−1 Q2
n(r+(n))Q2

n(r−(n))

Q2
n(1)Q2

n(−1)Q2
n(β)Qn(γ(n))Qn(α)

.

Again, in this case we require that Qn(x) have no zeroes at the branch points.
These discriminants are valid for genus 1. Indeed we know explicitly the values

of γ(n) and r±(n) for g = 1. It is clear from the derivations in this section that the
equivalent expressions for general genus g are

(3.17) D2[Pn(x)] = (2n2hn)n
(−1)n

∏2g
j=1 P 2

n(rj(n))

Pn(1)Pn(−1)
∏g

j=1[Pn(βj)Pn(γj(n))P 2
n(αj)]

,

and

(3.18) D2[Qn(x)] = (2n2hn)n−1

∏2g
j=1 Q2

n(rj(n))

Q2
n(1)Q2

n(−1)
∏g

j=1[Q
2
n(βj)Qn(γj(n))Qn(αj)]

,

where the {rj(n)} are the 2g roots of the polynomial
⎡

⎣
g∏

j=1

(x − γj(n))

⎤

⎦

⎛

⎝nxg −
g−1∑

j=0

cj(n)xj − 1

2

g∑

j=1

yj

x − γj(n)

⎞

⎠ .

4. Connection with polynomial mappings

The theta function expressions for the recurrence coefficients an and bn of the
generalized Chebyshev polynomials are given in (1.8) and (1.9). Consider for the
moment two different values of the recurrence coefficients, for example, bn and bn+K,

where n and K are both integers. If K is chosen such that KB̂ ∈ Zg, then from the
periodicity properties of the theta functions we have

bn+K = bn.

From the expression for the an coefficients, we will also have

an+K = an, n ≥ 2.

When the entries of the vector B̂ are all rational numbers, we can always find
an integer K such that KB̂ ∈ Zg. If we take the smallest integer that satisfies
this requirement we will then have the smallest integer over which the recurrence
coefficients themselves repeat, that is, the recurrence coefficients are periodic with
period K. If at least one of the entries is an irrational number we are unable to find
an integer K that satisfies the periodicity requirement.

We will study the effect that this periodicity has on our previous constructions
and use this to explain the connection between the generalized Chebyshev poly-
nomials and non-trivial polynomial mappings [10]. Throughout this section K is a
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given fixed integer. First consider PnK(x). From (1.5), and with the periodicity
condition, we see that the θ factors cancel in equation (1.6), therefore

(4.1) PnK(x) =
∆nK

2
(enK(Ω(px)) + e−nK(Ω(px))),

hence,

(4.2) PK(x) =
∆K

2
(eK(Ω(px)) + e−K(Ω(px))).

Here,

(4.3) ∆nK = 2e−nKχ0 .

Therefore,

PnK(x) = 2n−1∆nKTn

(
eKΩ(x) + e−KΩ(x)

2

)

= ∆n
KTn

(
PK(x)

∆K

)
,(4.4)

where Tn(x) is the monic Chebyshev polynomial. From the expression for hn in
(1.10) we see that

hK = 2e−2Kχ0 .

It follows that

∆K =
√

2hK,

and therefore,

(4.5) PnK(x) = (2hK)
n
2 Tn

(
PK(x)√

2hK

)
.

The corresponding formula for the polynomials of the second kind is

(4.6) QnK(x) = (2hK)
n−1

2 QK(x)Un

(
PK(x)√

2hK

)
,

where Un(x) is the Chebyshev polynomial of the second kind (degree n−1). Recall
that

En(px)Ẽn(px) =
Sg(x; n)∏g

j=1(x − αj)
.

When KB̂ ∈ Zg, we have

En(px)Ẽn(px) = 4e−2nχ0 .

Therefore, since the γj(n) are the zeroes of Sg(x; n) we must have γj(K) = αj . It
will be shown later in this section that the maximum value of g permitted for the
polynomials is K − 1. Therefore, if we put g = K − 1 and n = K in (1.13) we see
immediately that

QK(x) =

K−1∏

j=1

(x − αj).

Hence,

QnK(x) = (2hK)
n−1

2 Un

(
PK(x)√

2hK

) K−1∏

j=1

(x − αj).
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In the language of (3.3), (4.5) becomes

PnK(x) =
(
∏K

j=1 f+(x, j))n + (
∏K

j=1 f−(x, j))n

2n
,

and (4.6) becomes

QnK(x) = ψ(x)
(
∏K

j=1 f+(x, j))n − (
∏K

j=1 f−(x, j))n

2n
.

Using the theta function expressions, we can verify the following:

f+(x, K + 1) =
ẼK+1(px)

ẼK(px)
=

∆̃K+1

∆̃K∆̃1

f+(x, 1).

Similarly we can deduce that

∆̃K+1

∆̃K∆̃1

=
1

2
,

and therefore,

f±(x, K + 1) =
1

2
f±(x, 1).

An analogous calculation shows that

f±(x, K + j) = f±(x, j), 1 < j < K,

as we expect from looking at the explicit structure of the f±(x, j).
If we know the period K, then we can use the PK(x) with (4.5) to generate every

Kth polynomial in the sequence. To obtain the intermediate polynomials PnK+j for
j = 1, ...,K − 1 we use the fact that

EnK+j(px) =
1

2

(
j∏

l=1

f+(x; l)

)
EnK(px) =

1

2
Ej(px)EnK(px),

which follows directly from the theta function representation of these functions,
and therefore,
(4.7)

PnK+j(x) =
1

2

(
Pj(x)PnK(x) +

1

ψ2(x)
Qj(x)QnK(x)

)
, 1 ≤ j < K, n ≥ 1.

Similarly,

(4.8) QnK+j(x) =
1

2
(Pj(x)QnK(x) + Qj(x)PnK(x)) , 1 ≤ j < K, n ≥ 1.

So if we know the first K polynomials of the first and second kind we can generate
all of the remaining polynomials using (4.5), (4.6), (4.7) and (4.8).

From the theory of the classical Chebyshev polynomials we have

Tm(x)Tn(x) =

{
Tm+n(x) + 1

22n Tm−n(x), m > n �= 0,
T2n(x) + 1

22n−1 T0, m = n.

Similarly,

Um(x)Tn(x) =

{
Um+n(x) + 1

22n Um−n(x), m ≥ n �= 0,
Um+n(x) − 1

22m Un−m(x), n ≥ m �= 0.

Analogous formulas to the ones above do not hold for all of the generalized Cheby-
shev polynomials. However, PnK play a similar role to the classical Chebyshev
polynomials.
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Lemma 1. For any m, n ∈ Z+ we have

(4.9) Pn(x)PmK(x) =

⎧
⎨

⎩

Pn+mK(x) + hmK

2 Pn−mK(x), n > mK �= 0,

Pn+mK(x) + hn

2 PmK−n(x), mK > n �= 0,
P2mK(x) + hmKP0(x), n = mK.

Proof. From section 1,

Pn(x) = e−nχ0
ϑ(u+)

ϑ(u+ + nB̂)

[
enΩ(px) ϑ(ux + nB̂)

ϑ(ux)
+ e−nΩ(px) ϑ(ux − nB̂)

ϑ(ux)

]
,

and

PmK(x) = e−mKχ0

[
emKΩ(px) + e−mKΩ(px)

]
.

Therefore,

Pn(x)PmK(x) = e−(n+mK)χ0
ϑ(u+)

ϑ(u+ + nB̂)

[
e(n+mK)Ω(px) ϑ(ux + nB̂)

ϑ(ux)

+ e−(n+mK)Ω(px) ϑ(ux − nB̂)

ϑ(ux)

+ e(n−mK)Ω(px) ϑ(ux + nB̂)

ϑ(ux)
+ e−(n−mK)Ω(px) ϑ(ux − nB̂)

ϑ(ux)

]
.

From the periodicity of the theta functions we may add the vector ±mKB̂ to any
of the arguments of the theta functions without changing the equality. We make
this change in the argument of the theta functions in such a way that we are left
with (4.9). �

Similarly, for the polynomials of the second kind, we have

Qn(x)PmK(x) =

{
Qn+mK(x) + hmK

2 Qn−mK(x), n ≥ mK �= 0

Qn+mK(x) − hn

2 QmK−n(x), mK ≥ n �= 0

}
.

Combining (4.9) and (4.7) we obtain

PnK−j(x) =
1

hj

(
Pnk(x)Pj(x) − Qnk(x)Qj(x)

ψ2(x)

)
, j = 1, ...,K − 1.

Similarly,

QnK−j(x) =
1

hj
(QnK(x)Pj(x) − PnK(x)Qj(x)).

From (1.8) it follows from the periodicity properties of the theta functions that

aj = aK−j+1, j = 1, ...,K − 1.

The bn also have a similar behaviour, and one can show that

bj = bK−j+2, j = 1, ...,K − 1.

However, this is not obvious from the form of the recurrence coefficients given in
(1.9). To prove the above equality we start with the three term recurrence relation
(1.4) with n = K − j + 1 and x = 1, so that

PK−j+1(1) = PK−j+2(1) + bK−j+2PK−j+1(1) + aK−j+1PK−j(1).

From the expression for PnK−j(x) we have

PnK−j(1) =
PnK(1)Pj(1)

hj
.
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Substituting this into the three term recurrence relation we obtain

Pj−1(1) = Pj(1) + bK−j+2Pj−1(1) + aj−1Pj−2(1).

Comparing this with (1.4) at x = 1 and n = j − 1 we see that bK−j+2 = bj .

Theorem 4.1. If the set E is chosen such that the vector KB̂ ∈ Zg, then E is the

inverse image of [−1, 1] under the mapping
PK(x)
∆K

.

Proof. Since KB̂ ∈ Zg, we have

iKΩ(βj) = iKΩ(αj) = mπ for some m ∈ Z,

and, from (10.13) in [9],
iKΩ(−1) = −Kπ

which also can be shown by a contour integral on the contour Λ in section 2. From
(4.2), we have

PK(x)

∆K

= cos iKΩ(x).

For x ∈ E, Ω(x) ∈ R so |PK(x)
∆K

| attains the value 1, K − 1 − g times on the interior
of E. Since there are g stationary points of the polynomial corresponding to one
in each gap, the polynomial has the mapping properties stated in the theorem. �

In figure 1 we show an example of a mapping polynomial for K = 3. We now
consider some examples of sequences of orthogonal polynomials generated via the
polynomial mappings PK(x). We choose small values of K and investigate. K = 1
corresponds to the Chebyshev polynomials as the recurrence coefficients are con-
stant. For K = 2, the mapping polynomial,

M2(x) =
1

∆2
P2(x) =

1

∆2
(x2 + ax + b2),

satisfies the following conditions:

1

∆2
P2(−1) =

1

∆2
P2(1) = 1,

1

∆2
P2(α) =

1

∆2
P2(β) = −1.

This implies that M2(x) has the following form:

M2(x) =
1

∆2
x2 +

(
1 − 1

∆2

)
,

with

α2 = β2,

∆2 =
1 − α2

2
=

1 − β2

2
.

Therefore,

M2(x) =
2

1 − α2
x2 +

(
1 − 2

1 − α2

)
,

with the condition on the branch points, α = −β. The condition above tells us
which sets E arise from a polynomial mapping of degree 2. These are the same
sets that give rise to periodic recurrence coefficients with period 2. To obtain the
recurrence coefficients for these polynomials, we can substitute β = −α into the
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-0.5

0.5

-1

1

-1.5

0

x

10.5-0.5 0-1

Figure 1. General form of M3(x) compared with the Chebyshev
polynomial of degree 3. The branch points are where the polyno-
mial crosses the lines y = −1 and y = 1.

general genus 1 recurrence coefficients. The general expressions for the recurrence
coefficients can be obtained in one of two ways. Appendix A shows how we can
manipulate the theta function expressions for the recurrence coefficients into ex-
pressions involving the Jacobian elliptic functions. We are then able to invert the
functions and in principle obtain the recurrence coefficients for any n in terms of the
branch points only. In this case we only need to find the first two since the others
repeat. The second way to find the recurrence coefficients is to use the non-linear
difference equations derived in section 2. Once we have the initial conditions we
can iterate the non-linear difference equations to find the remaining coefficients.
This method is more practical when we are considering higher periodicity. In any
case, the recurrence coefficients are found to be

bn = (−1)nα,

an =
1

4
(1 − α2), n ≥ 2.(4.10)

With these coefficients, our polynomials become

P2n(x) = (∆2)
nTn

(
P2(x)

∆2

)
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and

P2n+1(x) =
(x + α)

2
(∆2)

n

(
Tn

(
P2(x)

∆2

)
+

(x2 − 1)

∆2
Un

(
P2(x)

∆2

))
.

Also the auxiliary polynomials become

S1(x, n) = 2hn(x + (−1)n+1α),

G2(x, n) = hn−1(x + α)(x − α).

From (3.10) we have

f1(x; n) =
1

2

(
1

x + (−1)n+1α
− 1

x − α

)
.

To evaluate f2(x; n) we must know the c0(n) and γ(n). For genus 1 polynomials
we have from [9],

c0(n) = p1(n) + n
α + β

2
+

γ(n) − α

2
,

where p1(n) is the coefficient of xn−1 in Pn(x). In this case,

p1(2n) = 0,

p1(2n − 1) = α.

Therefore,

c0(n) = 0.

Since γ(n) is the zero of Sg(x, n),

γ(n) = (−1)nα,

and

f2(x; n) =
nx

x − α
.

For even n, the discriminant becomes (n = 2m)

D[P2m(x)] = (−1)m2−(2m−1)(2m−2)−m(2m)2m(1 − α2)m(2m−1)Tm

(
α2 + 1

α2 − 1

)

and for odd n (n = 2m + 1)

D[P2m+1(x)] = (−1)m2−4m2+m−1(2m + 1)2m(1 − α2)m(2m+1)

[
Tm

(
α2 + 1

α2 − 1

)
− 2

1 − α2
Um

(
α2 + 1

α2 − 1

)]
.

The discriminant for the case when n is odd cannot be obtained directly from
(3.15) since the P2n+1(x) have zeroes at x = −α. The problem is that of evaluating
P ′

2n+1(−α). In general evaluating the derivative at one of the branch points is not
straightforward. However, in this case it can be verified that

P ′
2n+1(−α) = 2f2(−α; 2n + 1)Q2n+1(−α),

whereas, for the zeroes that do not lie on the branch points we have

P ′
2n+1(xj,2n+1) = f2(xj,2n+1; 2n + 1)Q2n+1(xj,2n+1)

and the factor of 2 does not appear. It is for this reason that the expression given
in (3.15) remains valid in this case if we insert a factor of 2.
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The polynomials in this example can also be shown to satisfy the following
differential equation:

P ′′
n − x4 − α2

x(x2 − α2)(1 − x2)
P ′

n +
n2x2

(1 − x2)(x2 − α2)
Pn = 0 for even n,

and

P ′′
n − x4 − 2αx(1 − x2) + α2

x(x2 − α2)(1 − x2)
P ′

n +
n2x4 − 2xα + (n2 + 1)x3α − α2

x(1 − x2)(x − α)(x + α)2
Pn = 0 odd n.

For the next example we choose K = 3. Therefore our polynomials can be de-
scribed in terms of a polynomial mapping of degree 3. The highest genus permitted
in this case is 2. This corresponds to three disjoint intervals. Genus one cases arise
if we close one of the gaps. In the last example we saw that the only sets that
gave rise to a period of 2 were symmetric around the origin, that is, α = −β. The
aim of this example is to determine which sets give rise to recurrence coefficients
with period 3. We determine the recurrence coefficients, the γ points and under a
certain condition, the cj(n). We have a mapping polynomial M3(x) with leading
coefficient 1

∆3
that satisfies the following equations:

M3(±1) = ±1,

M3(α1) = M3(β1) = 1,

M3(α2) = M3(β2) = −1.

Solving these six equations we have

M3(x) =
x3

∆3
+ ax2 +

(
1 − 1

∆3

)
x − a,

with

(4.11) a =
−(β1 + α1 + 1)

(β1 + 1)(α1 + 1)
=

−(α2 + β2 − 1)

(β2 − 1)(α2 − 1)
,

and

(4.12) ∆3 = (β1 + 1)(α1 + 1) = (β2 − 1)(α2 − 1).

Since we can characterize the mapping polynomial in terms of two branch points,
we have a system with two unknowns. We describe the system in terms of α1 and
β1. The form of the mapping polynomial restricts α1 and β1 to certain intervals on
[−1, 1]. If we eliminate α2 from (4.11) and (4.12) we get

β2 =
α1 + β1 + 2 ±

√
(β1 − α1)2 − 4(α1 + β1 + 1)

2

hence,

(4.13) (α1 − β1)
2 − 4(α1 + β1 + 1) ≥ 0.

Therefore we have

α1 ≤ β1 + 2 − 4

√
β1 + 1

2
.

This inequality, coupled with the inequality

α1 ≤ β1,
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implies that α1 lies on the interval [−1,−1
2 ]. Therefore β1 lies on the interval

[α1, β1,max] where

β1,max = 2 + α1 − 4

√
α1 + 1

2
.

The value of β1,max follows from (4.13) with the equality sign. With these conditions
on α1 and β1 we have

(4.14) α2 = 1 +
α1 + β1

2
− 1

2

√
(β1 − α1)2 − 4(α1 + β1 + 1)

and

(4.15) β2 = 1 +
α1 + β1

2
+

1

2

√
(β1 − α1)2 − 4(α1 + β1 + 1).

For g = 2 we evaluate the first three recurrence coefficients in the most general case
in terms of α1, α2, β1 and β2, using (1.13) and (1.14). Then we substitute for α2

and β2 using (4.14) and (4.15) and find

a1 =
1

2
(1 + α1)

(
2 − α1 + β1 +

√
(β1 − α1)2 − 4(1 + α1 + β1)

)

a2 =
1

16

(
α1 − β1 − 2 +

√
(β1 − α1)2 − 4(1 + α1 + β1)

)2

a3 =
1

4
(1 + α1)

(
2 − α1 + β1 +

√
(β1 − α1)2 − 4(1 + α1 + β1)

)
,(4.16)

and

b1 =
1

2

(
β1 − α1 +

√
(β1 − α1)2 − 4(1 + α1 + β1)

)

b2 =
1

4

(
2 + 3α1 + β1 −

√
(β1 − α1)2 − 4(1 + α1 + β1)

)

b3 =
1

4

(
2 + 3α1 + β1 −

√
(β1 − α1)2 − 4(1 + α1 + β1)

)
.(4.17)

We also find that, for n ≥ 2,

γ1,2(n) =
1

2

(

1 + α1 + β1 − bn+1

∓

√
1 − 2(α1 + β1) + (α1 − β1)2 − 4(an + an+1) + 2bn+1(1 + α1 + β1 −

3

2
bn+1)

)
.

Expressions for the polynomials are easily obtained from our equations in the
previous sections. Expressions for the discriminant and the differential equation can
in principle be obtained using the constants that we have derived in this section.

A highly symmetric case corresponding to g = 2 arises when β1+α1 = −1. With
this, the a defined by (4.11) is 0, which implies that

α2 + β2 = 1.

Substituting these into (4.12), gives

β2 = 1 + β1.

This case corresponds to the first gap being symmetric about the point −1
2 and

the second gap being symmetric about the point 1
2 . In this case the square roots
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appearing in the recurrence coefficients vanish leaving (with α = α1)

a1 = −2α(1 + α),

a2 =
1

4
,

a3 = −α(1 + α)

and

b1 = −(1 + 2α),

b2 =
1

2
+ α,

b3 =
1

2
+ α.

Also,
G3(x, n) = hn−1(x

3 + (2an − 1 − α − α2)x + 2an(bn + bn+1))

and
S2(x, n) = 2hn(x2 + bn+1x + an + an+1 + b2

n+1 − 1 − α − α2).

This gives

γ1,2(n) =
−bn+1 ∓

√
b2
n+1 − 4(an + an+1 + b2

n+1 − 1 − α − α2)

2
.

The first three polynomials are

P1(x) = x + 2α + 1,

P2(x) = x2 + (α +
1

2
)x − 1

2
,

P3(x) = x3 − (1 + α + α2)x.

From (3.9), (3.10) and (3.12) we can calculate f1(x; n) and f2(x; n).
Returning to the previous non-symmetric genus 2 example, we add the restriction

that one of the gaps is closed. We take the case where α2 = β2. In this situation
(4.11) and (4.12) simplify to

a =
−(β1 + α1 + 1)

(β1 + 1)(α1 + 1)
=

−(2α2 − 1)

(α2 − 1)2
,

and
∆3 = (β1 + 1)(α1 + 1) = (α2 − 1)2.

Therefore, eliminating α2 from the above we obtain

(β1 + 1)(α1 + 1) =

(
β1 + α1

2

)2

,

with the solutions

β1 = α1 + 2 ± 4

√
α1 + 1

2
.

Since α1 ≤ β1 we must have

(4.18) β1 = α1 + 2 − 4

√
α1 + 1

2
.

This relation governs the variation of β1 as α1 varies over the interval [−1,−1
2 ]. It

describes a contour in the (α1, β1) plane. Figure 2 shows a graphical representation
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of this contour with similar curves for higher values of K. Had we chosen the
condition α1 = β1 for the other g = 1 case we would have obtained

(4.19) β2 = −2 + α2 + 4

√
1 − α2

2
,

where α2 varies over [−1, 1
2 ]. Using the method outlined in the Appendix we are

able to compute the recurrence coefficients for g = 1 explicitly. From now on we
refer to α1 and β1 as just α and β respectively. Upon substituting for β given by
(4.18) into the general recurrence coefficients we obtain the following:

a1 = 2(α + 1)

(
1 −

√
1 + α

2

)
,

a2 =
α + 3

2
− 2

√
α + 1

2
,

a3 = (α + 1)

(
1 −

√
1 + α

2

)

and

b1 = 1 − 2

√
1 + α

2
,

b2 = (α + 1) −
√

1 + α

2
,

b3 = (α + 1) −
√

1 + α

2
.

The recurrence coefficients repeat in blocks of three, however we must remember
that a3n+1 = a1

2 , n ≥ 1. Furthermore,

c0(3n) = n

(
α − 2

√
1 + α

2

)
,

c0(3n + 1) =
1

2

(
(1 + 2n)α − (1 + 4n)

√
1 + α

2

)
,

c0(3n + 2) =
1

2

(
(1 + 2n)α − (3 + 4n)

√
1 + α

2

)
,

and

γ(3n) = α,

γ(3n + 1) = −
√

1 + α

2
,

γ(3n + 2) = −
√

1 + α

2
.

These constants, listed above, allow one to calculate the differential equations and
the discriminant given in the previous section.
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General K. For notational convenience we now label as EK the sets E that give
rise to period K recurrence coefficients. Equivalently these are the sets for which
the minimum degree of polynomial mapping from EK onto [−1, 1] is K. From our
earlier examples,

E1 = [−1, 1],

E2 = [−1, α] ∪ [−α, 1], α ∈ [−1, 0],

E3 = [−1, α] ∪ [β, u(α, β)] ∪ [v(α, β), 1], α ∈ [−1,−1

2
], β ∈ [α, βmax],

where

u(α, β) = 1 +
α + β

2
− 1

2

√
(β − α)2 − 4(α + β + 1),

v(α, β) = 1 +
α + β

2
+

1

2

√
(β − α)2 − 4(α + β + 1).

Each set EK is parametrized in terms of K − 1 variables. As K increases it be-
comes intractable to solve explicitly the relationships between the branch points.
However, the branch points are constrained on certain curves in [−1, 1]2g where the
co-ordinate axes of the 2g cube label the position of the branch points.

In what follows, we describe the constraints on the mapping polynomial. This
will provide a set of equations that define the curves of constant periodicity in the
2g cube. We also show how to determine the smallest K for a given configuration
of the branch points.

For general K, the 2K conditions imposed on the mapping polynomial,

MK(x) = aKxK + aK−1x
K−1 + ... + a1x + a0,

are

MK(−1) = (−1)K,

MK(1) = 1,

MK(αj) = MK(βj) = (−1)K+j , j = 1, ...,K − 1.(4.20)

Therefore K + 1 of these will determine the coefficients in terms of K + 1 branch
points. Using the first two equations of (4.20) and any K−1 of the remaining ones we
can solve for the coefficients of the mapping polynomial in terms of 1, −1 and K−1
free parameters. The other K − 1 branch points are related to the free parameters
by the remaining equations of (4.20). These equations determine a surface in the
2g cube. The surface obtained in this way will correspond to maximum g = K− 1.
Closing one of the gaps, that is, setting αj = βj for some j ≤ K− 1, will determine
surfaces corresponding to that value of K for smaller values of g.

If we close all of the gaps by setting αj = βj for all j = 1, ...,K − 1, then the
mapping polynomial becomes

MK(x) = 2K−1TK(x).

If we denote by x̃j the point where αj = βj , then we must have

2K−1TK(x̃j) = ±1

from the properties of the mapping polynomial. Since Tn(x) = 21−n cos(nθ), x =

cos(θ) we see that the set of points {x̃j}K−1
j=1 are the K − 1 stationary points of the

Chebyshev polynomial of degree K. Therefore, each gap i.e. (αi, βi)
K−1
i=1 can be said
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to be ‘centred’ (not necessarily symmetrically) around one of the stationary points
of the Chebyshev polynomial of degree K. The most simple example of this is the
K = 2 case where the gap is centred around the point x = 0. In the K = 3, g = 2
case, the two gaps are centred around x = 1

2 and x = −1
2 . The stationary points of

T4(x) are x = − 1√
2
, x = 0, and x = 1√

2
. So for a polynomial mapping of degree 4

we have three distinct g = 1 cases corresponding to one gap which is opened around
one of the stationary points.

Consider now the K = 2 mapping polynomial, P2(x)
∆2

, which maps [−1, α]∪ [−α, 1]

to [−1, 1]. From (4.5),

P4(x) = ∆2
2T2

(
P2(x)

∆2

)
.

Since, ∆2
2 = 2∆4, and from the fact that the classical Chebyshev polynomials map

[−1, 1] to [−1, 1], we see that P4(x)
∆4

also maps [−1, α]∪ [−α, 1] to [−1, 1]. Therefore,
it is this configuration of the branch points which corresponds to the K = 4, g = 1
case where the gap is centered around x = 0. Indeed for any mapping polynomial
of even degree, one of the g = 1 cases corresponds to this configuration, since a
Chebyshev polynomial of even degree has a stationary point at zero.

The same reasoning as above applies for general K. That is, if PK(x)
∆K

is a map-
ping polynomial for a certain configuration of the branch points, then so are the

polynomials PnK(x)
∆nK

. Therefore amongst all of the configurations that correspond
to a mapping of degree nK, there can be found those that correspond to degree jK,

where j divides n. If x̃l is a stationary point of T̂K(x) := 2K−1TK(x), then

|T̂K(x̃l)| = 1

and

|T̂jK(x̃l)| = 1,

which indicates that x̃l is also a stationary point of T̂jK(x). For example T̂12(x)

has amongst its stationary points, the stationary points of T̂6(x), T̂4(x), T̂3(x) and

T̂2(x).
So as an example, a mapping polynomial of degree 12 will give rise to eleven

g = 1, single parameter cases of the generalized Chebyshev polynomials. Six of
these will already be the same as those that arise from a mapping of degree 6
and four will be the same as those that arise from a mapping of degree 4. All of
these cases cover those that arise from mappings of degree 2 and 3. Therefore a
mapping of degree 12 will give rise to two g = 1 cases that cannot be generated
from polynomial mappings of lower degree.

The upshot of the above discussion is that we can uniquely label each surface
in the 2g cube by a set of points corresponding to the stationary points of the
Chebyshev polynomials of any degree. We do this in the following way.

If we denote by sl the ordered set of all stationary points of the Chebyshev
polynomial of degree l, then we can label a surface by taking any subset of the sl.
The number of elements in a subset is the number of gaps g in the interval [−1, 1].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4818 YANG CHEN, JAMES GRIFFIN, AND MOURAD E.H. ISMAIL

For example,

s2 = {0} ,

s3 =

{
−1

2
,
1

2

}
,

s4 =

{
− 1√

2
, 0,

1√
2

}
,

s5 =

{
−1

4
(
√

5 + 1),−1

4
(
√

5 − 1),
1

4
(
√

5 − 1),
1

4
(
√

5 + 1)

}
.

Therefore, the set {
− 1√

2
,

1√
2

}

corresponds to the K = 4 g = 2 surface where both gaps are centred around the
two points − 1√

2
and 1√

2
. This is a two parameter curve. Those curves shown in

figure 2 can be labelled by one number which is a stationary point of a Chebyshev
polynomial. It is clear from the discussion so far that the number N given by

N =

(
K − 1

g

)
,

is the number of surfaces in the 2g cube associated with the integer K. So far, we
have discussed in general terms how to describe the surfaces corresponding to a
particular value of K. On the other hand, the problem of finding K from a given
set E appears to be a very difficult numerical one. The condition for periodicity of
the recurrence coefficients is

(4.21) KB̂ ∈ Z
g \ {0g},

where

B̂j =
1

2πi

∫

bj

dΩ, j = 1, ..., g.

If −B̂j are rational, then K is the least common multiple of the denominators of
these national numbers. For example, if

B̂ =

⎛

⎝
− 1

3
−1

5
−1

6

⎞

⎠ ,

then K = 30. However, if at least one of the components of the vector B̂ is an
irrational number, then it is impossible to find an integer K that satisfies condition
(4.21). These correspond to the cases where the recurrence coefficients never repeat
themselves or equivalently, the sets for which there is no polynomial mapping from
this set onto [−1, 1].

Note that in general the values of B̂j are subject to certain conditions. In [9],

section 10, a physical interpretation was given; the values −B̂j were seen to be the
proportion of the overall charge lying on the interval [βj−1, αj ], where β0 := −1, in
the equilibrium charge density for the set E, when the total charge was normalized
to 1, that is, ∫

E

σ(x)dx = 1.
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Since the total charge on all of the intervals must add up to 1 the following inequality
is satisfied by the components of B̂:

0 <

g∑

j=1

−B̂j < 1.

To finish this section we refer to figure 2. Recall that each point in the plane

1

k=5

k=4

k=3

k=5

k=5

k=4

k=5

k=3

k=2

−d

−c

−b

−a

dcba

1

Figure 2. Contours of constant periodicity in the (α, β) plane

for genus 1. Here a = (−1 +
√

5)/4, b = 1/2, c = 1/
√

2 and

d = (1 +
√

5)/4. This is not a precise plot, it is representative of
the relative position of the contours.

represents a configuration of the branch points for g = 1 and therefore a sequence
of orthogonal polynomials. Using our notation, if {x̃l} represents a curve in this
plane with integer K, then {−xi} represents a different curve but with the same
integer K. We ask the question “Is there a relationship between the polynomials
associated with the curves {xi} and {−xi}?” A similar question can also be asked
for g > 1. The relation between these cases is given in the most general form by
theorem 1.2. However, since the recurrence coefficients are periodic, the elements
appearing in the determinant simplify:

PnK+j(βl) =
1

2
PnK(βl)Pj(βl), 1 ≤ j ≤ K − 1,

and

QnK+j(αl) =
1

2
PnK(αl)Qj(αl), 1 ≤ j ≤ K − 1,

where

PnK(αl) = PnK(βl) =
∆n

K(−1)n(l+K)

2n−1
.
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As an example we show the relation between the polynomials associated with the
curves {−1

2} and { 1
2} which are the two K = 3 g = 1 curves. Using the notation

of theorem 1.2, we denote the polynomials associated with the set
{
−1

2

}
as Pn(x),

the polynomials associated with the set
{

1
2

}
as P̃n(x), and the respective mapping

polynomials as M3(x) and M̃3(x). It is easy to verify that

M3(x) = (−1)M̃3(−x).

Consequently,

P̃3n(x) = (−1)3nP3n(−x).

However, for the intermediate polynomials we must use the expressions given in
theorem 1.2, which give

P̃3n+1(x) =
(−1)3n

(
x + α + 2 − 4

√
α+1

2

)

[
P3n+2(−x) −

(√
α + 1

2
− 1

)
P3n+1(−x)

+

(
(α + 3)

√
α + 1

2
− 2(α + 1)

)
P3n(−x)

]
,

and

P̃3n+2(x) =
(−1)3n+1

(
x + α + 2 − 4

√
α+1

2

)

[
P3(n+1)(−x) +

(√
α + 1

2

)
P3n+2(−x)

− 1

2

(
1 + α − 2

√
1 + α

2

)
P3n+1(−x)

]
.

4b. General form of the polynomials. In this section we show some plots
of the polynomials for small K and prove a theorem regarding the zeroes. The

Chebyshev polynomials T̂n(x) is bounded between 1 and −1. These are the mapping

polynomials from [−1, 1] to [−1, 1]. As a consequence of (4.5) we see that |P̂nK(x)| ≤
1 for x ∈ E, where

P̂nK(x) =
2n−1

(∆K)n
PnK(x).

Outside of the set we no longer have this bound. Therefore we would expect the
polynomials to appear graphically as in figure 3. In figures 4, 5 and 6 we plot some

of the intermediate polynomials P̂nK+j(x) for various values of j and K, where

P̂nK+j(x) =
2n

(∆K)n
√

2hj

PnK+j(x).

In E they are bounded above and below by some function. It is clear from the
representation (1.18) that the form of the envelope is ±ρ̂nK+j(x), for x ∈ E, where

ρ̂nK+j(x) =
2n

(∆K)n
√

2hj

√
Sg(x, nK + j)∏g

l=1(x − αl)

=

√∏g
j=1(x − γj(nK + j))
∏g

j=1(x − αj)
.

Note that the quantity under the square root is strictly positive for x ∈ E.
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4

Figure 3. K = 2, j = 0, n = 1...8, α = −0.5

-1 -0.5 0.5 1

-4

-2

2

4

Figure 4. K = 2, j = 1, n = 65, α = −0.2

We already know something about the zeros of the generalized chebyshev poly-
nomials in the most general case from [9]. In the polynomial mapping case we can
say a little more about the zeros.

Theorem 4.2. All of the zeros of PnK(x) lie inside E, and in each of the K sub-

intervals that make up E lie n zeros.

Proof. All of the zeros of the Chebyshev polynomials are contained in (−1, 1). From

(4.5), and since PK(x)
∆K

∈ [−1, 1] if and only if x ∈ E, we see that all of the zeros of

PnK(x) lie inside E and each subinterval Ei contains n zeros. �

The zeros of QnK(x) behave similarly except in this case there are n− 1 zeros in
each interval Ei and there are also zeros at every αj , j = 1, ...,K− 1. This is easily
verified by checking the form of (4.6). From (4.6) the n − 1 zeros in each Ei come
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Figure 5. The symmetric case for K = 3, j = 0, n = 17, α = −0.7
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6

Figure 6. The symmetric case for K = 3, j = 1, n = 25, α = −0.7

for the zeros of Un

(
PK

∆K

)
. In each interval Ei, these zeros interlace with the zeros

of PnK(x).

Theorem 4.3. Let {xi,n} denote the zeros of Pn(x) and {yi,n} denote the zeros of

Qn(x). Consider the following two sets:

A := {{xi,nK}, {xi,j}},
B := {−1, 1, β1....βK−1, {yi,j}, {yi,nK}} \ {α1...αK−1}.

The following three statements are true:

Between, any zero of Pj(x), and any element of B which is larger than this zero,

there lies at least one zero of PnK+j(x).
Between any zero of Qj(x), and any element of A which is larger than this zero

there lies at least one zero of PnK+j(x).
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If Pj(x) has a zero at any of the points in B, then PnK+j(x) has a zero at the

same point.

Proof. From (4.7), xi,nK+j solves the following equation:

(4.22) PnK(x)Pj(x) = − 1

ψ2(x)
QnK(x)Qj(x).

Using (4.5) and (4.6), we see that this is equivalent to

(4.23) ∆KTn

(
PK(x)

∆K

)
Pj(x) = Un

(
PK(x)

∆K

)
Qj(x)(1 − x2)

K−1∏

i=1

(x − βi).

For clarity, we illustrate a proof of the case of K = 3 and n = 2. The zeroes of C(x)
and D(x), where

C(x) := ∆KTn

(
PK(x)

∆K

)

and

D(x) := (1 − x2)Un

(
PK(x)

∆K

) K−1∏

i=1

(x − βi),

are indicated in figure 7. The crosses denote the zeros of C(x) and the dots denote
the zeros of D(x). We see that they interlace. In order to plot the remaining

x xxx x x

Figure 7. The zeroes of C(x) and D(x) for K = 3 and n = 2.
The three line segments are the disjoint intervals that make up E.
The crosses denote the zeroes of C(x) and the dots, the zeroes of
D(x).

zeros of (4.23) we must add j crosses and j − 1 dots, corresponding to the zeros
of Pj(x) and Qj(x) respectively. We can distribute these without any restriction
other than they must also interlace with each other. The result is a sequence of
crosses and dots that alternate except for j occurrences of two adjacent crosses and
j − 1 occurrences of two adjacent dots. Where we see two adjacent crosses, one of
them is a zero of Pj(x). Similarly with two dots, one of them is a zero of Qj(x).
As an example we plot where the zeroes of both sides of (4.23) might lie, for K = 3,
n = 2 and j = 2 in figure 8.

x xx xxx x x

Figure 8.

In order to graph the polynomials that pass through the zeros we need an initial
condition. The condition is that both sides of (4.23) have the same sign at x = −1+ǫ
where ǫ is a small positive constant. This is true because close to x = −1, Pj(x)

and Qj(x) must have the opposite sign. Similarly, Tn

(
PK(x)
∆K

)
and Un

(
PK(x)
∆K

)

have the same sign if K is even and have the opposite sign if K is odd. The product∏K−1
j=1 (x − βi), for x = −1 + ǫ is negative if K is even and positive if K is odd. ∆K
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is a positive constant, and (1 − x2) is also positive. Therefore both sides of (4.23)
have the same sign at x = −1 + ǫ.

Therefore if we draw lines connecting the dots and the crosses that represent the
tonicity of the polynomials we will see the pattern shown in figure 9.

x xx xxx x x

Figure 9. The intersections of the two lines represent qualita-
tively where the zeroes of PnK+j(x) will lie relative to the zeroes
of both sides of (4.23)

We are interested in where these polynomials intersect, as these points represent
the zeros of PnK+j(x). Starting from the point x = −1 and moving along the
interval [−1, 1], the following behaviour is observed. Before the first occurrence of
two adjacent crosses the polynomials intersect between every dot-cross pair. After
the appearance of the two adjacent crosses, the polynomials intersect between every
cross-dot pair. This continues until we reach the first occurrence of two adjacent
dots, and then the intersection of the polynomials appears again in between every
dot-cross pair. So every appearance of two crosses or two dots swaps the position
of the intersection points between dot-cross pairs and cross-dot pairs. Since the
appearance of two dots and two crosses alternate, after every appearance of two
crosses there must be a point of intersection before the next dot. This corresponds
to the statement in the theorem that between every zero of Pj(x) and the next
element from the set B lies a zero of PnK+j(x). Similarly, after the appearance
of two dots there must be an intersection point before the next cross. This is
equivalent to saying that between every zero of Qj(x) and the next element from
set A there also lies a zero of PnK+j(x). �

Corollary. If Pj(x) has a zero in Ēi, then so does PnK+j(x) (Ēi := (αi, βi)).

Proof. Referring to figure 9 we see that there is always a dot at the beta points. If
there is a zero of Pj(x) in Ēi, then the previous theorem tells us that there must
be a zero of PnK+j between this zero and the next β point. Since Ēi ends at the
next β point the zero of PnK+j is also contained in Ēi. �

Appendix A. Genus one recurrence coefficients

Here we show one method of determining the recurrence coefficients for the genus
1 case explicitly in terms of the branch points α and β. It involves manipulating
the theta function expressions given in (1.8) and (1.9). We see explicitly how the
Jacobian elliptic functions define the form of the coefficients. For g = 1 we have

bn =
β − α

2
+

1

A

[
ϑ′

3(3u+)

ϑ3(3u+)
− ϑ′

3(u
+)

ϑ3(u+)
+

ϑ′
3((2n − 1)u+)

ϑ3((2n − 1)u+)
− ϑ′

3((2n + 1)u+)

ϑ3((2n + 1)u+)

]
,
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where

A =
4K√

(1 − α)(1 + β)

and

u+ =
1

2K

∫ √
β+1
2

0

dt√
(1 − t2)(1 − k2t2)

with

k2 =
2(β − α)

(1 − α)(1 + β)
.

Using

ϑ3(v) = ϑ0(v ± 1

2
)

and

θj(v) = ϑj

( v

2K

)

we write

bn =
β − α

2
+

2K

A

[
θ′0(6Ku+ + K)

θ0(6Ku+ + K)
− θ′0(2Ku+ − K)

θ0(2Ku+ − K)

+
θ′0((2n − 1)2Ku+ − K)

θ0((2n − 1)2Ku+ − K)
− θ′0((2n + 1)2Ku+ + K)

θ0((2n + 1)2Ku+ + K)

]
.

The Jacobi function is defined to be

Z(w) =
θ′0(w)

θ0(w)
,

and it satisfies the following formula:

Z(u + v) − Z(u − v) − 2Z(v) =
−2k2sn2(u)sn(v)cn(v)dn(v)

1 − k2sn2usn2v
.

If we make the choice

u1 = 4nKu+,

u2 = 4Ku+,

v = 2Ku+ + K,

then we have

bn =
β − α

2
+

2K

A
[Z(u2 + v) − Z(u2 − v) + Z(u1 − v) − Z(u1 + v)] .

After using the addition formula for Z(v) and applying some basic identities

(k′ =
√

1 − k2),

sn(w + K) =
cn(w)

dn(w)
,

cn(w + K) = −k′ sn(w)

dn(w)
,

dn(w + K) =
−k′

dn(w)
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and

sn2w + cn2w = 1,

k2sn2w + dn2w = 1,

we can write,

bn =
β − α

2
+(β−α)(1+α)

[
sn2(4nKu+)

(1 + β) − (β − α)sn2(4nKu+)
− 4(1 − α)

(β + α)2 + 4(1 − α2)

]

since

sn(2Ku+) =

√
β + 1

2
.

We have the following addition formula for sn(u) valid for any u and v:

sn(u + v) =
sn(u)cn(v)dn(v) + sn(v)cn(u)dn(u)

1 − k2sn2(u)sn2(v)
.

We can iterate this to obtain sn(4nKu+) in terms of k and sn(2Ku+). This gives
us in principle, a method for evaluating the recurrence coefficients in terms of α
and β. Owing to the nature of the addition formula, after just a few iterations the
expressions for the coefficients become very large.

The an are given as

an =

[
ϑ′

1(0)

Aϑ1(2u+)

]2
ϑ2

3((2n − 1)u+)

ϑ3((2n + 1)u+)ϑ3((2n − 3)u+)
, n ≥ 2.

Using the following identity:

1 − k2sn2(u)sn2(v) = θ0(0)2
θ0(u + v)θ0(u − v)

θ2
0(u)θ2

0(v)
,

with

u = (2n − 1)2Ku+ + K,

v = 4Ku+,

we have

an = c
1

(1 − k2sn2((2n − 1)2Ku+ + K)sn2(4Ku+))
, n ≥ 2

= c
1(

1 − 8(β−α)
(2−α+β)2 sn2((2n − 1)2Ku+ + K)

) .

Here c is a constant independent of n,

c =

(
ϑ′

1(0)ϑ0(0)

Aϑ0(2u+)ϑ1(2u+)

)2

.

To determine c explicitly, we evaluate a2 by comparing coefficients of (1.13) for
n = 2 and then compare this with a2 given above. In which case we find

c =

[
(β + α)2 + 4(1 − α2)

]2

16(2 − α + β)2
.

Note that in the higher genus cases, the non-linear difference equations derived in
section 2 can be used to evaluate the recurrence coefficients.
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Appendix B. Genus two auxiliary polynomials

Using the method outlined in section 2 for g = 2 we find

G3(x, n)

hn−1
= x3 − 1

2
(α1 + α2 + β1 + β2)x

2

−
(

1

2
+

(α2
1 + α2

2 + β2
1 + β2

2)

8

− 1

4
(β1β2 + α2β1 + α2β2 + α1α2 + α1β1 + α1β2) − 2an

)
x

+
1

16

(
− (α3

1 + α3
2 + β3

1 + β3
2) + 4(α1 + α2 + β1 + β2)

+ β1β2(β1 + β2) + α2β1(α2 + β1) + α2β2(α2 + β2) + α1α2(α1 + α2)

+ α1β1(α1 + β1) + α1β2(α1 + β2)

− 2(α2β1β2 + α1β1β2 + α1α2β1 + α1α2β2)

− 16an(α1 + α2 + β1 + β2 − 2(bn + bn+1))
)
, n ≥ 2,

and

S2(x, n)

hn
= 2x2 − [(α1 + α2 + β1 + β2) − 2bn+1] x

− 1

4

(
4 + α2

1+β2
1 +α2

2+β2
2−2(α1α2+α1β1 + α2β1 + α1β2 + α2β2 + β1β2)

− 8(an+1 + an) + 4bn+1(α1 + α2 + β1 + β2) − 8b2
n+1

)
, n ≥ 1,

G3(x; 1) = (x − b1)(x − α1)(x − α2)

and

S2(x; 0) = (x − α1)(x − α2).

Incidentally, this gives us the γ1,2(n) coefficients for the genus 2 case as

γ1,2(n) =
1

4
(α1 + α2 + β1 + β2) − 2bn+1

∓
(

8 + 3(α2
1+α2

2+β2
1 +β2

2)−2(α1α2+α1β1+α2β1+α1β2+α2β2+β1β2)

− 16(an + an+1) + 4bn+1(α1 + α2 + β1 + β2) − 12b2
n+1

) 1
2

, n ≥ 1.
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