RENDICONTI

SEMINARIO MATEMATICO della Università di Padova

S. K. Chatterjea
 On a generalization of Laguerre polynomials

Rendiconti del Seminario Matematico della Università di Padova, tome 34 (1964), p. 180-190.
http://www.numdam.org/item?id=RSMUP_1964_34__180_0
© Rendiconti del Seminario Matematico della Università di Padova, 1964, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova »(http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal. php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON A GENERALIZATION OF LAGUERRE POLYNOMIALS

Notı *) di S. K. Chatterjea (a Calcutta)

1. - In a recent paper [1], the writer has defined the polynomials $T_{k n}^{(\alpha)}(x)$ by the Rodrigues' formula

$$
\begin{equation*}
T_{k n}^{(\alpha)}(x)=\frac{1}{n!} x^{-x} e^{x^{k}} D^{n}\left(x^{x+n} e^{-x^{k}}\right), \tag{1.1}
\end{equation*}
$$

where k is a natural number. The polynomials $T_{k n}^{(\alpha)}(x)$ are of exactly degree $k n$ ($n=0,1,2, \ldots$). They satisfy the operational formula

$$
\begin{equation*}
\left.\prod_{j=1}^{n}(x I)-k x^{k}+\alpha+j\right)=n!\sum_{r=0}^{n} \frac{x^{r}}{r!} T_{k(n-r)}^{(\alpha+r)}(x) D^{r} . \tag{1.2}
\end{equation*}
$$

The following are the consequences of the operational formula (1.2):

$$
\begin{gather*}
n T_{k n}^{(\alpha)}(x)=\left(x D-k x^{k}+\alpha+n\right) T_{k(n-1)}^{(\alpha)}(x) \tag{1.3}\\
\binom{m+n}{m} T_{k(m+n)}^{(\alpha)}(x)=\sum_{r=0}^{\min (m, n)} \frac{x^{r}}{r!} T_{k(m-p)}^{(\alpha+n+r)}(x) D^{r} T_{k n}^{(\alpha)}(x) . \tag{1.4}
\end{gather*}
$$

The polynomials $T_{k n}^{(\alpha)}(x)$ are generated by the function

$$
\begin{equation*}
(1-t)^{-\alpha-1} \exp \left[x^{k} u(t)\right]=\sum_{n=0}^{\infty} T_{k n}^{(\alpha)}(x) t^{n} \tag{1.5}
\end{equation*}
$$

*) Pervenuta in redazione il 17 giugno 1963.
Indirizzo dell'A.: Department of mathematics. Bangabasi College. Calcutta (India).
where

$$
u(t)=1-(1-t)^{-k} .
$$

In the same paper the writer has also proved the following properties

$$
\bar{T}_{k n}^{(\alpha)}(x)=\sum_{r=0}^{n} \frac{(\alpha-\beta)_{r}}{r!} T_{k(n)-r)}^{(\beta)}(x)
$$

This work of the writer generalizes some properties of the Laguerre polynomials $L_{n}^{(\alpha)}(x)$. Indeed, when $k=1, T_{k n}^{(\alpha)}(x) \equiv$ $\equiv L_{n}^{(\alpha)}(x)$. A similar generalization viz., $T_{k m}^{(0)}(x)$, has been previously studied by Palas [2]. The purpose of this paper is to discuss a more general class of Laguerre polynomials.
2. Definition: We first make the definition

$$
\begin{equation*}
T_{k n}^{(\alpha)}(x, p)=\frac{1}{n!} x^{-\alpha} e^{p x^{k}} D^{n}\left(x^{\alpha+n} e^{-p x^{k}}\right) \tag{2.1}
\end{equation*}
$$

where k is a natural number.
We now show that the polynomial $T_{k n}^{(\alpha)}(x, p)$ is of exactly degree $k n \quad(n=0,1,2, \ldots)$. In this connection we know the result [3], for which I must thank Prof. H. W. Gould:

$$
\begin{equation*}
D_{x}^{\prime}(z)=\sum_{k=0}^{s} \frac{(-1)^{k}}{k!} D_{z}^{k} f(z) \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} z^{k-j} D_{z}^{\prime} z^{j} \tag{2.2}
\end{equation*}
$$

Thus we obtain from (2.1)

$$
\begin{aligned}
& T_{k n}^{(\alpha)}(x, p)= \\
& \quad \therefore=\frac{1}{n!} x^{-\alpha} e^{p x^{k}} \sum_{s=0}^{n}\binom{n}{8}\left(D^{n-* x^{\alpha+n}}\right)\left(D^{\imath} e^{-p x^{k}}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n!} e^{p x^{k}} \sum_{s=0}^{n}\binom{n}{s}\binom{\alpha+n}{n-s}(n-s)!x^{s}\left(D^{s} e^{-p x^{k}}\right) \\
& =\sum_{s=0}^{n}\binom{\alpha+n}{n-s} \sum_{i=0}^{s} \frac{p^{i}}{i!} x^{k i} \sum_{j=0}^{i}(-1)^{s}\binom{i}{j}\binom{k j}{s} \\
& =\sum_{i=0}^{n} \frac{p^{i}}{i!} x^{k i} \sum_{j=0}^{i}(-1)^{s}\binom{i}{j} \sum_{s=i}^{n}\binom{\alpha+n}{n-s}\binom{k j}{s}
\end{aligned}
$$

Now we know that

$$
\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} \sum_{s=0}^{i-1}\binom{\alpha+n}{n-8}\binom{k j}{s}=0 .
$$

Thus we finally obtain

$$
\begin{equation*}
T_{k m}^{(\alpha)}(x, p)=\sum_{i=0}^{n} \frac{p^{i}}{i!} x^{k i} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\binom{\alpha+n+k j}{n} \tag{2.3}
\end{equation*}
$$

which is the explicit formula for $T_{k n}^{(\alpha)}(x, p)$.
In particular, when $k=1$, and $p=1$, we derive

$$
\begin{align*}
T_{n}^{(\alpha)}(x, 1) & =\sum_{i=0}^{n} \frac{x^{i}}{i!} \sum_{j=0}^{i}(-1)^{\cdot}\binom{i}{j}\binom{\alpha+n+j}{n}= \tag{2.4}\\
& =\sum_{i=0}^{n} \frac{x^{i}}{i!} \cdot(-1)^{i}\binom{\alpha+n}{n-i}
\end{align*}
$$

which is the explicit formula for the general Laguerre polynomials $L_{n}^{(\alpha)}(x)$. Thus $T_{n}^{(\alpha)}(x, 1) \equiv L_{n}^{(\alpha)}(x)$.
3. - Operational formulae: Recently we [4] have derived the general operational formula

$$
\begin{align*}
x^{-\alpha} D^{n}\left(x^{k n+\alpha} Y\right)= & \prod_{j=1}^{n}\left\{x^{k-1}(z+\alpha+k j)\right\}
\end{aligned} \quad \begin{aligned}
& Y \tag{3.1}\\
& \\
& \quad(k=1,2,3, \ldots)
\end{align*}
$$

where $z \equiv x D$ and Y is any sufficiently differentiable function of x. The operators on the right of (3.1) commute only when $k=1$.

Thus we derive

$$
\begin{equation*}
x^{-x} e^{p x^{k}} D^{n}\left(x^{\alpha+n} e^{-p x^{k}} Y\right)=\prod_{j=1}^{n}\left(x D-p k x^{k}+\alpha+j\right) Y \tag{3.2}
\end{equation*}
$$

Again we observe

$$
\begin{aligned}
D^{n}\left(x^{\alpha+n} e^{-p x^{k}} Y\right) & =\sum_{r=0}^{n}\binom{n}{r} D^{n-r}\left(x^{\alpha+n} e^{-p x^{k}}\right) D^{r} Y= \\
& =n!x^{\alpha} e^{-p x^{k}} \sum_{r=0}^{n} \frac{x^{r}}{r!} T_{k(n-r)}^{(\alpha+r)}(x, p) D^{r} Y
\end{aligned}
$$

whence we obtain

$$
\begin{equation*}
\frac{1}{n!} x^{-\alpha \rho^{p x^{k}}} D^{n}\left(x^{\alpha+n} e^{-p x^{k}} Y\right)=\sum_{r=0}^{n} \frac{x^{r}}{r!} T_{k(n-r)}^{(x+r)}(x, p) D^{r} Y \tag{3.3}
\end{equation*}
$$

It therefore follows from (3.2) and (3.3) that

$$
\begin{equation*}
\prod_{j=1}^{n}\left(x D-p k x^{k}+\alpha+j\right) Y=n!\sum_{r=0}^{n} \frac{x^{r}}{r!} T_{k(n-r)}^{(\alpha+r)}(x, p) D^{r} Y \tag{3.4}
\end{equation*}
$$

If we set $Y=1$, we derive from (3.4)

$$
\begin{equation*}
n!T_{k n}^{(\alpha)}(x, p)=\prod_{j=1}^{n}\left(x D-p k x^{k}+\alpha+j\right) \cdot 1 \tag{3.5}
\end{equation*}
$$

Further if $k=1$, and $p=1$, we obtain from (3.4)

$$
\begin{equation*}
\prod_{j=1}^{n}(x D-x+\alpha+j) Y=n!\sum_{r=0}^{n} \frac{x^{r}}{r!} T_{n=r}^{(\alpha+r)}(x, 1) D^{r} Y \tag{3.6}
\end{equation*}
$$

which may be compared with the operational formula for the general Laguerre polynomials, derived by Carlitz [5].

In a recent paper [6], Gould and Hopper have generalized the Hermite polynomials by the definition

$$
\begin{equation*}
H_{n}^{k}(x, \alpha, p)=(-1)^{n} x^{-\alpha} e^{p n^{k}} D^{n}\left(x^{\alpha} e^{-p x^{k}}\right) \tag{3.7}
\end{equation*}
$$

We remark that $x^{n} H_{n}^{k}(x, \alpha, p)$ yeilds a generalized class of polynomials of exactly degree $k n(n=0,1,2, \ldots)$, provided k is a natural number. Consequently if we write

$$
x^{n} H_{n}^{k}(x, \alpha, p)=H_{k n}^{(\alpha)}(x, p)
$$

then

$$
\begin{equation*}
H_{k=}^{(\alpha)}(x, p)=(-1)^{n} x^{n-\alpha} e^{p x^{k}} D^{n}\left(x^{\alpha} e^{-p x^{k}}\right) \tag{3.8}
\end{equation*}
$$

Thus the polynomials $\boldsymbol{H}_{\mathrm{kn}}^{(\alpha)}(x, p)$ are related to our polynomials by

$$
\begin{equation*}
H_{k n}^{(\alpha)}(x, p)=(-1)^{n} n!T_{k n}^{(\alpha-n)}(x, p) \tag{3.9}
\end{equation*}
$$

Now returning to the operational formula (3.5) we obtain

$$
\begin{equation*}
(-1)^{n} H_{k n}^{(\alpha)}(x, p)=\prod_{j=1}^{n}\left(x D-p k x^{k}+\alpha-n+j\right) \cdot 1 \tag{3.10}
\end{equation*}
$$

More generally we have from (3.4)

$$
\begin{align*}
\prod_{j=1}^{n}(x D & \left.-p k x^{k}+\alpha-n+j\right) Y= \tag{3.11}\\
& =\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} x^{r} H_{k(n-r)}^{(\alpha)}(x, p) D^{r} Y
\end{align*}
$$

This operational formula viz., (3.11) seems to be of particular interest. Indeed, using $k=2, p=1$, and $\alpha=0$, we have

$$
\begin{aligned}
\prod_{j=1}^{n}(x D & \left.-2 x^{2}-n+j\right) Y= \\
& =\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} x^{r} H_{2(n-r)}^{(0)}(x, 1) D^{r} Y
\end{aligned}
$$

Now noticing that

$$
H_{2(n-r)}^{(0)}(x, 1)=x^{n-r} H_{n-r}(x)
$$

where $H_{n}(x)$ denotes the ordinary Hermite polynomials defined by

$$
H_{n}(x)=(-1)^{n} e^{s^{2}} D^{n} e^{-s^{2}}
$$

we obtain

$$
\prod_{j=1}^{n}\left(x D-2 x^{2}-n+j\right) Y=x^{n} \sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} H_{n-r}(x) D^{r} Y
$$

Now we note that

$$
x^{-n} \prod_{j=1}^{n}\left(x D-2 x^{2}-n+j\right) \equiv(D-2 x)^{n}
$$

For, (3.12) is evidently true for $n=1$. Next assume that (3.12) is true for $n=m$. Then we have

$$
\begin{aligned}
x^{-(m+1)} \prod_{j-1}^{m+1}(x D & \left.-2 x^{2}-m-1+j\right)= \\
& =x^{-(m+1)}\left(x D-2 x^{2}-m\right) \prod_{j=1}^{m}\left(x D-2 x^{2}-m+j\right)= \\
& =x^{-(m+1)}\left(x D-2 x^{2}-m\right) x^{m}(D-2 x)^{m}= \\
& =x^{-(m+1)} \cdot x^{m}\left(x D-2 x^{2}\right)(D-2 x)^{m}= \\
& =(D-2 x)^{m+1} .
\end{aligned}
$$

Hence by induction (3.12) is true for all positive integers n. Thus we finally derive

$$
\begin{equation*}
(D-2 x)^{n}=\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} H_{n-r}(. r) I^{r}, \tag{3.13}
\end{equation*}
$$

a formula which Burchnall [7] derived some years ago.
4. - Some applications of the operational formula: From (3.5) we note that

$$
\begin{equation*}
n T_{k n}^{(\alpha)}(x, p)=\left(x D-p k \cdot x^{k}+\alpha+n\right) T_{k(n-1)}^{(\alpha)}(x, p) \tag{4.1}
\end{equation*}
$$

In particular, when $k=1$, and $p=1$, we derive

$$
\begin{equation*}
n T_{n}^{(\alpha)}(x, 1)=(x D-x+\alpha+n) T_{n-1}^{(\alpha)}(x, 1) \tag{4.2}
\end{equation*}
$$

which is well-known for the Laguerre polynomials $L_{n}^{(x)}(x)$.

Again in terms of the polynomials of Gould and Hopper, (4.1) stands thus

$$
\begin{equation*}
H_{k n}^{(\alpha)}(x, p)+\left(x D-p k x^{k}+\alpha\right) H_{k(n-1)}^{(\alpha-1)}(x, p)=0 . \tag{4.3}
\end{equation*}
$$

Next we consider

$$
\begin{aligned}
&(m+n)!T_{k(m+n)}^{(\alpha)}(x, p)= \\
&=\prod_{j=1}^{n}\left(x D-p k x^{k}+\alpha+n+j\right) \prod_{i=1}^{n}\left(x D-p k x^{k}+\alpha+i\right) \cdot 1 \\
& \quad=n!\prod_{i=1}^{m}\left(x D-p k x^{k}+\alpha+n+j\right) \cdot T_{k n}^{(\alpha)}(x, p) \\
& \quad=m!n!\sum_{r=0}^{m} \frac{x^{r}}{r!} T_{k(m-r)}^{(\alpha+n+r)}(x, p) D^{r} T_{k n}^{(\alpha)}(x, p)
\end{aligned}
$$

which implies that

$$
\begin{align*}
& \binom{m+n}{m} T_{k(m+n)}^{(\alpha)}(x, p)= \tag{4.4}\\
& \quad=\sum_{r=0}^{\min (m, n)} \frac{x^{r}}{r!} T_{k(m-n)}^{(\alpha+n+r)}(x, p) D^{r} T_{k n}^{(\alpha)}(x, p)
\end{align*}
$$

The formula (4.4) readily yields the corresponding formula for the polynomials of Gould and Hopper:

$$
\begin{align*}
& H_{k(m+n)}^{(\alpha+m+n)}(x, p) \tag{4.5}\\
& \quad=\sum_{r=0}^{\min (m, n)}(-1)^{r}\binom{m}{r} x^{r} H_{k(m-r)}^{(\alpha+m+n)}(x, p) D^{r} H_{k m}^{(\alpha+n)}(x, p) .
\end{align*}
$$

5. - Generating function: We shall now show that the polynomials $T_{k n}^{(\alpha)}(x, p)$ are generated by

$$
\begin{equation*}
g(x, t)=(1-t)^{-\alpha-1} \exp \left[p x^{k} u(t)\right]=\sum_{n=0}^{\infty} T_{k n}^{(\alpha)}(x, p) t^{n} \tag{5.1}
\end{equation*}
$$

where

$$
u(t)=1-(1-t)^{-\kappa} .
$$

From the definition (2.1) we observe

$$
\begin{equation*}
T_{k n}^{(\alpha)}(x, p)=e^{y^{k} \alpha^{k}} \sum_{r=0}^{\infty} \frac{(-p)^{r}}{r!}\binom{k r+\alpha+n}{n} x^{k r} \tag{5.2}
\end{equation*}
$$

It may be noted that (2.3) is a consequence of (5.2).
Now we notice that

$$
\begin{equation*}
T_{k n}^{(\alpha)}(x, p)=\frac{1}{n!}\left[\frac{\partial^{n}}{\partial t^{n}} g(x, 0)\right] \tag{5.3}
\end{equation*}
$$

Also

$$
\begin{align*}
& {\left[\frac{\partial^{n}}{\partial t^{n}}\left\{(1-t)^{-\alpha-1} \exp \left(p x^{k} u(t)\right)\right\}\right]_{t=0}} \tag{5.4}\\
& \quad=e^{p x^{k}}\left[\frac{\partial^{n}}{\partial t^{n}}\left\{(1-t)^{-\alpha-1} \exp \left(-p\left(\frac{x}{1-t}\right)^{k}\right)\right\}\right]_{t=0} \\
& \quad=n!e^{\operatorname{sen}^{k}} \sum_{r=0}^{\infty} \frac{(-p)^{r}}{r!}\binom{k r+\alpha+n}{n} x^{k r}
\end{align*}
$$

Thus a comparison of (5.3) and (5.4) with (5.2) confirms (5.1). Now from the generating function (5.1) we easily derive the following multiplication formula:

$$
\begin{equation*}
T_{m=}^{(\alpha)}\left(x m^{1 / k}, p\right)=T_{m}^{(\alpha)}(x, m p), \tag{5.5}
\end{equation*}
$$

which, in terms of the polynomials of Gould and Hopper, shapes into

$$
\begin{equation*}
H_{k m}^{(\alpha)}\left(x m^{1 / k}, p\right)=H_{m m}^{(\alpha)}(x, m p), \tag{5.6}
\end{equation*}
$$

which may well be compared with (3.9) of [6, p. 54].
It is also interesting to note from (5.5) that

$$
\begin{equation*}
T_{n}^{(\alpha)}(x, m)=I_{n}^{\left(\alpha_{1}^{\prime}\right.}(m \cdot r) . \tag{5.7}
\end{equation*}
$$

Again we observe

$$
\begin{gathered}
(1-t)^{-x-1} \exp \left[p^{2 k}\left\{1-(1-t)^{-k}\right\}\right] \\
=(1-t)^{(x-\beta}(1-t)^{-k-1} \operatorname{axp}\left[p^{k}\left\{1-(1-t)^{-k}\right\}\right]
\end{gathered}
$$

whence we obtain

$$
\sum_{n=0}^{\infty} T_{k=n}^{(\alpha)}(x, p) t^{n}=(1-t)^{-(\alpha-\beta)} \sum_{n=0}^{\infty} T_{k n}^{(\beta)}(x, p) t^{n} .
$$

Now comparing the coefficients of t^{n} on both sides we get

$$
\begin{equation*}
T_{k n}^{(\alpha)}(x, p)=\sum_{r=0}^{n} \frac{(\alpha-\beta)_{r}}{r!} T_{k(n-r)}^{(\beta)}(x, p), \tag{5.8}
\end{equation*}
$$

where α and β are arbitrary real numbers.
Next we notice that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} T_{k m}^{(\alpha+\beta+1)}(x, p+q) t^{n} \\
&=(1-t)^{-\alpha-1} e^{p x^{k}\left\{1-(1-t)^{-k}\right\}} \cdot(1-t)^{-\beta-1} e^{a k^{k}\left\{1-(1-t)^{-k}\right\}} \\
& \quad=\sum_{m=0}^{\infty} T_{k m}^{(\alpha)}(x, p) t^{m} \cdot \sum_{n=0}^{\infty} T_{k m}^{(\beta)}(x, q) t^{n} \\
& \quad=\sum_{n=0}^{\infty} \sum_{m=0}^{n} T_{k m}^{(\alpha)}(x, p) T_{k(n-m)}^{(\beta)}(x, q) t^{n} .
\end{aligned}
$$

Thus we obtain the following 'doubly-additive' addition formula

$$
\begin{equation*}
T_{k m}^{(\alpha+\beta+1}(x, p+q)=\sum_{m=0}^{n} T_{k m}^{(\alpha)}(x, p) T_{k(n-m)}^{(\beta)}(x, q) \tag{5.9}
\end{equation*}
$$

In particular, when $p=q=1$, and $k=1$, we derive

$$
\begin{equation*}
T_{n}^{(\alpha+\beta+1)}(x, 2)=\sum_{m=0}^{n} L_{m}^{(\alpha)}(x) L_{n-m}^{(\beta)}(x) \tag{5.10}
\end{equation*}
$$

It follows therefore from (5.7) and (5.10) that

$$
\begin{equation*}
L_{n}^{(\alpha+\beta+1)}(2 x)=\sum_{m=0}^{n} L_{m}^{(\alpha)}(x) L_{n-m}^{(\beta)}(x), \tag{5.11}
\end{equation*}
$$

which is implied by the well-known formula of the Laguerre polynomials

$$
\begin{equation*}
L_{n}^{(\alpha+\beta+1)}(x+y)=\sum_{m=0}^{n} L_{m}^{(\alpha)}(x) L_{n-m}^{(\beta)}(y) \tag{5.12}
\end{equation*}
$$

Again returning to (5.1) we obtain

$$
(1-t)^{k+1} \frac{\partial g(x, t)}{\partial t}=\left[(\alpha+1)(1-t)^{k}-p k x^{k}\right] g(x, t)
$$

whence we notice
$(1-t)^{k+1} \sum_{n=1}^{\infty} n t^{n-1} T_{k n}^{(\alpha)}(x, p)=\left[(\alpha+1)(1-t)^{k}-p k x^{k}\right] \cdot \sum_{n=0}^{\infty} T_{k=1}^{(\alpha)}(x, p) t^{n}$.
Performing the indicated multiplication on both sides and comparing coefficients of t^{n} on both sides, we derive

$$
\begin{gather*}
\quad \sum_{r=0}^{k+1}(-1)^{r}\binom{k+1}{r}(n+1-r) T_{k(n+1-r)}^{(\alpha)}(x, p) \tag{5.13}\\
=(\alpha+1) \sum_{r=0}^{k}(-1)^{r}\binom{k}{r} T_{k(n-r)}^{(\alpha)}(x, p)-p k x^{k} T_{k n}^{(\alpha)}(x, p) .
\end{gather*}
$$

Lastly we observe

$$
(1-t)^{k} \frac{\partial g(x, t)}{\partial x}=p k x^{k-1}\left\{(1-t)^{k}-1\right\} g(x, t),
$$

whence we obtain in like manner

$$
\begin{gather*}
\sum_{r=0}^{k}(-1)^{r}\binom{k}{r} D T_{(n-r)}^{(\alpha)}(x, p) \tag{5.14}\\
=p k x^{k-1} \sum_{r=1}^{k}(-1)^{r}\binom{k}{r} T_{(n-r)}^{(\alpha)}(x, p) .
\end{gather*}
$$

REFERENOES

[1] S. K. Chatterjea: A generalization of Laguerre polynomials, Communicated to the Canad. Jour. Math.
[2] Franck J. Palas: A Rodrigues' formula, Amer. Math. Monthly, Vol. 66 (1959), pp. 402-404.
[3] I. J. Schwatt: An introduction to the operations with series, Philadelphia, 1924.
[4] S. K. Chatterdea: Operational formulae for certain classical polynomials, I, to appear in the Quart. Jour. Math. (Oxford).
[5] L. Carlitz: A note on Laguerre polynomials, Michigan Math. Jour. Vol. 7 (1960), pp. 219-223.
[6] H. W. Gould, and A. T. Hopper: Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. Jour. Vol. 29 (1962), pp. 51-64.
[7] J. L. Burchnall: A note on the polynomials of Hermite. Quart. Jour. Math. (Oxford), Vol. 12 (1941), pp. 9-11.

