RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

S. K. CHATTERJEA

On a generalization of Laguerre polynomials

Rendiconti del Seminario Matematico della Università di Padova, tome 34 (1964), p. 180-190.

http://www.numdam.org/item?id=RSMUP_1964__34__180_0

© Rendiconti del Seminario Matematico della Università di Padova, 1964, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NIMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON A GENERALIZATION OF LAGUERRE POLYNOMIALS

Nota *) di S. K. CHATTERJEA (a Calcutta)

1. – In a recent paper [1], the writer has defined the polynomials $T_{kn}^{(a)}(x)$ by the Rodrigues' formula

$$(1.1) T_{kn}^{(\alpha)}(x) = \frac{1}{n!} x^{-x} e^{x^k} D^n(x^{x+n} e^{-x^k}) ,$$

where k is a natural number. The polynomials $T_{kn}^{(\alpha)}(x)$ are of exactly degree kn (n=0,1,2,...). They satisfy the operational formula

(1.2)
$$\prod_{i=1}^{n} (xI) - kx^{k} + \alpha + j) = n! \sum_{r=0}^{n} \frac{x^{r}}{r!} T_{k(n-r)}^{(\alpha+r)}(x)D^{r}.$$

The following are the consequences of the operational formula (1.2):

$$nT_{kn}^{(\alpha)}(x) = (xD - kx^{k} + \alpha + n)T_{k(n-1)}^{(\alpha)}(x)$$

$$(1.4) \quad {m+n \choose m} \ T_{k(m+n)}^{(\alpha)}(x) = \sum_{r=0}^{\min(m,n)} \frac{x^r}{r!} \ T_{k(m-p)}^{(\alpha+n+r)}(x) D^r T_{kn}^{(\alpha)}(x) \ .$$

The polynomials $T_{kn}^{(\alpha)}(x)$ are generated by the function

$$(1.5) (1-t)^{-\alpha-1} \exp\left[x^k u(t)\right] = \sum_{n=0}^{\infty} T_{kn}^{(\alpha)}(x) t^n$$

^{*)} Pervenuta in redazione il 17 giugno 1963. Indirizzo dell'A.: Department of mathematics. Bangabasi College, Calcutta (India).

where

$$u(t) = 1 - (1 - t)^{-k}$$
.

In the same paper the writer has also proved the following properties

$$\sum_{r=0}^{k+1} (-1)^r \binom{k+1}{r} (n+1-r) T_{k(n+1-r)}^{(\alpha)}(x)$$

(1.6)
$$= (\alpha + 1) \sum_{r=0}^{k} (-1)^{r} {k \choose r} T_{k(n-r)}^{(\alpha)} (\dot{x}) - kx^{k} T_{kn}^{(\alpha)}(x)$$

$$(1.7) \sum_{r=0}^{k} (-1)^r \binom{k}{r} DT_{k(n-r)}^{(\alpha)}(x) = kx^{k-1} \sum_{r=1}^{k} (-1)^r \binom{k}{r} T_{k(n-r)}^{(\alpha)}(x)$$

(1.8)
$$T_{kn}^{(\alpha)}(x) = \sum_{r=0}^{n} \frac{(\alpha - \beta)_r}{r!} T_{k(n-r)}^{(\beta)}(x)$$

This work of the writer generalizes some properties of the Laguerre polynomials $L_n^{(\alpha)}(x)$. Indeed, when k=1, $T_{kn}^{(\alpha)}(x) \equiv L_n^{(\alpha)}(x)$. A similar generalization viz., $T_{kn}^{(0)}(x)$, has been previously studied by Palas [2]. The purpose of this paper is to discuss a more general class of Laguerre polynomials.

2. DEFINITION: We first make the definition

$$(2.1) T_{kn}^{(\alpha)}(x, p) = \frac{1}{n!} x^{-\alpha} e^{px^k} D^n(x^{\alpha+n} e^{-px^k})$$

where k is a natural number.

We now show that the polynomial $T_{kn}^{(a)}(x, p)$ is of exactly degree kn (n = 0, 1, 2, ...). In this connection we know the result [3], for which I must thank Prof. H. W. Gould:

$$(2.2) D_z^{\bullet}(z) = \sum_{k=0}^{s} \frac{(-1)^k}{k!} D_z^{\bullet}(z) \sum_{j=0}^{k} (-1)^j \binom{k}{j} z^{k-j} D_z^{\bullet} z^j$$

Thus we obtain from (2.1)

$$T^{(a)}_{sn}(x, p) =$$

$$= \frac{1}{n!} x^{-\alpha} e^{px^k} \sum_{s=0}^{n} \binom{n}{s} (D^{n-s} x^{\alpha+n}) (D^s e^{-px^k}) =$$

$$= \frac{1}{n!} e^{yx^k} \sum_{s=0}^{n} {n \choose s} {\alpha+n \choose n-s} (n-s)! x^s (D^s e^{-yx^k})$$

$$= \sum_{s=0}^{n} {\alpha+n \choose n-s} \sum_{i=0}^{s} \frac{p^i}{i!} x^{ki} \sum_{j=0}^{i} (-1)^j {i \choose j} {kj \choose s}$$

$$= \sum_{i=0}^{n} \frac{p^i}{i!} x^{ki} \sum_{j=0}^{i} (-1)^j {i \choose j} \sum_{s=i}^{n} {\alpha+n \choose n-s} {kj \choose s}$$

Now we know that

$$\sum_{j=0}^{i} (-1)^{j} \binom{i}{j} \sum_{s=0}^{i-1} \binom{\alpha+n}{n-s} \binom{kj}{s} = 0.$$

Thus we finally obtain

$$(2.3) T_{kn}^{(\alpha)}(x, p) = \sum_{i=0}^{n} \frac{p^{i}}{i!} x^{ki} \sum_{j=0}^{i} (-1)^{j} \binom{i}{j} \binom{\alpha + n + kj}{n},$$

which is the explicit formula for $T_{kn}^{(\alpha)}(x, p)$.

In particular, when k = 1, and p = 1, we derive

$$(2.4) T_n^{(\alpha)}(x,1) = \sum_{i=0}^n \frac{x^i}{i!} \sum_{j=0}^i (-1)^i \binom{i}{j} \binom{\alpha+n+j}{n} =$$

$$= \sum_{i=0}^n \frac{x^i}{i!} \cdot (-1)^i \binom{\alpha+n}{n-i}$$

which is the explicit formula for the general Laguerre polynomials $L_{\mathbf{a}}^{(a)}(x)$. Thus $T_{\mathbf{a}}^{(a)}(x, 1) \equiv L_{\mathbf{a}}^{(a)}(x)$.

3. - OPERATIONAL FORMULAE: Recently we [4] have derived the general operational formula

(3.1)
$$x^{-\alpha}D^{n}(x^{kn+\alpha}Y) = \prod_{j=1}^{n} \{x^{k-1}(\mathbf{z} + \alpha + kj)\}Y,$$
$$(k = 1, 2, 3, ...),$$

where $z \equiv x D$ and Y is any sufficiently differentiable function of x. The operators on the right of (3.1) commute only when k = 1.

Thus we derive

$$(3.2) \quad x^{-\alpha}e^{px^{k}}D^{n}(x^{\alpha+n}e^{-px^{k}}Y) = \prod_{j=1}^{n} (xD - pkx^{k} + \alpha + j)Y$$

Again we observe

$$D^{n}(x^{\alpha+n}e^{-\nu x^{k}}Y) = \sum_{r=0}^{n} \binom{n}{r} D^{n-r}(x^{\alpha+n}e^{-\nu x^{k}})D^{r}Y =$$

$$= n! x^{\alpha}e^{-\nu x^{k}} \sum_{r=0}^{n} \frac{x^{r}}{r!} T_{k(n-r)}^{(\alpha+r)}(x, p)D^{r}Y,$$

whence we obtain

(3.3)
$$\frac{1}{n!} x^{-\alpha} e^{px^k} D^n(x^{\alpha+n} e^{-px^k} Y) = \sum_{r=0}^n \frac{x^r}{r!} T_{k(n-r)}^{(\alpha+r)}(x, p) D^r Y$$

It therefore follows from (3.2) and (3.3) that

(3.4)
$$\prod_{j=1}^{n} (xD - pkx^{k} + \alpha + j) Y = n! \sum_{r=0}^{n} \frac{x^{r}}{r!} T_{k(n-r)}^{(\alpha+r)}(x, p) D^{r} Y$$

If we set Y = 1, we derive from (3.4)

(3.5)
$$n! T_{kn}^{(a)}(x, p) = \prod_{j=1}^{n} (xD - pkx^{k} + \alpha + j) \cdot 1$$

Further if k = 1, and p = 1, we obtain from (3.4)

(3.6)
$$\prod_{j=1}^{n} (xD - x + \alpha + j) Y = n! \sum_{r=0}^{n} \frac{x^{r}}{r!} T^{(\alpha+r)}(x, 1) D^{r} Y;$$

which may be compared with the operational formula for the general Laguerre polynomials, derived by Carlitz [5].

In a recent paper [6], Gould and Hopper have generalized the Hermite polynomials by the definition

(3.7)
$$H_n^k(x, \alpha, p) = (-1)^n x^{-\alpha} e^{px^k} D^n(x^{\alpha} e^{-px^k})$$

We remark that $x^n H_n^k(x, \alpha, p)$ yeilds a generalized class of polynomials of exactly degree kn (n = 0, 1, 2, ...), provided k is a natural number. Consequently if we write

$$x^n H_n^k(x, \alpha, p) = H_{kn}^{(\alpha)}(x, p)$$

then

(3.8)
$$H_{kn}^{(\alpha)}(x, p) = (-1)^n x^{n-\alpha} e^{px^k} D^n(x^{\alpha} e^{-px^k})$$

Thus the polynomials $H_{kn}^{(\alpha)}(x, p)$ are related to our polynomials by

(3.9)
$$H_{kn}^{(\alpha)}(x, p) = (-1)^n n! T_{kn}^{(\alpha-n)}(x, p).$$

Now returning to the operational formula (3.5) we obtain

$$(3.10) (-1)^n H_{kn}^{(\alpha)}(x, p) = \prod_{j=1}^n (xD - pkx^k + \alpha - n + j) \cdot 1$$

More generally we have from (3.4)

(3.11)
$$\prod_{j=1}^{n} (xD - pkx^{*} + \alpha - n + j) Y =$$

$$= \sum_{r=0}^{n} (-1)^{n-r} {n \choose r} x^{r} H_{k(n-r)}^{(\alpha)}(x, p) D^{r} Y$$

This operational formula viz., (3.11) seems to be of particular interest. Indeed, using $k=2,\ p=1,$ and $\alpha=0,$ we have

$$\prod_{j=1}^{n} (xD - 2x^{2} - n + j)Y =
= \sum_{r=0}^{n} (-1)^{n-r} \binom{n}{r} x^{r} H_{2(n-r)}^{(0)}(x, 1) D^{r} Y$$

Now noticing that

$$H_{2(n-r)}^{(0)}(x, 1) = x^{n-r}H_{n-r}(x),$$

where $H_n(x)$ denotes the ordinary Hermite polynomials defined by

$$H_n(x) = (-1)^n e^{x^2} D^n e^{-x^2},$$

we obtain

$$\prod_{j=1}^{n} (xD - 2x^{2} - n + j) Y = x^{n} \sum_{r=0}^{n} (-1)^{n-r} \binom{n}{r} H_{n-r}(x) D^{r} Y$$

Now we note that

(3.12)
$$x^{-n} \prod_{i=1}^{n} (xD - 2x^2 - n + j) \equiv (D - 2x)^n.$$

For, (3.12) is evidently true for n = 1. Next assume that (3.12) is true for n = m. Then we have

$$x^{-(m+1)} \prod_{j=1}^{m+1} (xD - 2x^2 - m - 1 + j) =$$

$$= x^{-(m+1)} (xD - 2x^2 - m) \prod_{j=1}^{m} (xD - 2x^2 - m + j) =$$

$$= x^{-(m+1)} (xD - 2x^2 - m) x^m (D - 2x)^m =$$

$$= x^{-(m+1)} \cdot x^m (xD - 2x^2) (D - 2x)^m =$$

$$= (D - 2x)^{m+1}.$$

Hence by induction (3.12) is true for all positive integers n. Thus we finally derive

(3.13)
$$(D-2x)^n = \sum_{r=0}^n (-1)^{n-r} \binom{n}{r} H_{n-r}(x) D^r,$$

a formula which Burchnall [7] derived some years ago.

4. - SOME APPLICATIONS OF THE OPERATIONAL FORMULA: From (3.5) we note that

(4.1)
$$nT_{kn}^{(\alpha)}(x, p) = (xD - pkx^{k} + \alpha + n)T_{k(n-1)}^{(\alpha)}(x, p).$$

In particular, when k = 1, and p = 1, we derive

$$(4.2) nT_{n}^{(\alpha)}(x,1) = (xD-x+\alpha+n)T_{n-1}^{(\alpha)}(x,1)$$

which is well-known for the Laguerre polynomials $L_{\kappa}^{(\alpha)}(x)$.

Again in terms of the polynomials of Gould and Hopper, (4.1) stands thus

$$(4.3) H_{kn}^{(a)}(x, p) + (xD - pkx^{k} + \alpha)H_{k(n-1)}^{(\alpha-1)}(x, p) = 0.$$

Next we consider

$$\begin{split} (m+n)! \ T_{k(m+n)}^{(\alpha)}(x, p) &= \\ &= \prod_{j=1}^{m} (xD - pkx^{k} + \alpha + n + j) \prod_{i=1}^{n} (xD - pkx^{k} + \alpha + i) \cdot 1 \\ &= n! \prod_{j=1}^{m} (xD - pkx^{k} + \alpha + n + j) \cdot T_{kn}^{(\alpha)}(x, p) \\ &= m! \ n! \sum_{r=0}^{m} \frac{x^{r}}{r!} T_{k(m-r)}^{(\alpha+n+r)}(x, p) D^{r} T_{kn}^{(\alpha)}(x, p); \end{split}$$

which implies that

(4.4)
$${m+n \choose m} T_{k(m+n)}^{(\alpha)}(x, p) =$$

$$= \sum_{r=0}^{\min(m,n)} \frac{x^r}{r!} T_{k(m-r)}^{(\alpha+n+r)}(x, p) D^r T_{kn}^{(\alpha)}(x, p).$$

The formula (4.4) readily yields the corresponding formula for the polynomials of Gould and Hopper:

$$(4.5) \ H_{k(m+n)}^{(\alpha+m+n)}(x, p) = \sum_{r=0}^{\min(m,n)} (-1)^r {m \choose r} x^r H_{k(m-r)}^{(\alpha+m+n)}(x, p) D^r H_{kn}^{(\alpha+n)}(x, p).$$

5. - GENERATING FUNCTION: We shall now show that the polynomials $T_{in}^{(a)}(x, p)$ are generated by

(5.1)
$$g(x, t) = (1 - t)^{-\alpha - 1} \exp \left[p x^{k} u(t) \right] = \sum_{n=0}^{\infty} T_{kn}^{(\alpha)}(x, p) t^{n},$$

where

$$u(t) = 1 - (1 - t)^{-k}.$$

From the definition (2.1) we observe

$$T_{kn}^{(\alpha)}(x, p) = e^{g\pi^k} \sum_{r=0}^{\infty} \frac{(-p)^r}{r!} {kr + \alpha + n \choose n} x^{kr}.$$

It may be noted that (2.3) is a consequence of (5.2). Now we notice that

(5.3)
$$T_{kn}^{(\alpha)}(x, p) = \frac{1}{n!} \left[\frac{\partial^n}{\partial t^n} g(x, 0) \right]$$

Also

$$(5.4) \left[\frac{\partial^{n}}{\partial t^{n}} \left\{ (1-t)^{-\alpha-1} \exp\left(px^{k}u(t)\right) \right\} \right]_{t=0}$$

$$= e^{px^{k}} \left[\frac{\partial^{n}}{\partial t^{n}} \left\{ (1-t)^{-\alpha-1} \exp\left(-p\left(\frac{x}{1-t}\right)^{k}\right) \right\} \right]_{t=0}$$

$$= n! e^{px^{k}} \sum_{r=0}^{\infty} \frac{(-p)^{r}}{r!} \binom{kr+\alpha+n}{n} x^{kr}$$

Thus a comparison of (5.3) and (5.4) with (5.2) confirms (5.1). Now from the generating function (5.1) we easily derive the following multiplication formula:

(5.5)
$$T_{hn}^{(\alpha)}(xm^{1/k}, p) = T_{hn}^{(\alpha)}(x, mp),$$

which, in terms of the polynomials of Gould and Hopper, shapes into

(5.6)
$$H_{kn}^{(\alpha)}(xm^{1/k}, p) = H_{kn}^{(\alpha)}(x, mp),$$

which may well be compared with (3.9) of [6, p. 54].

It is also interesting to note from (5.5) that

(5.7)
$$T_{n}^{(a)}(x, m) = L_{n}^{(a)}(mx).$$

Again we observe

$$(1-t)^{-x-1} \exp \left[px^{k}\{1-(1-t)^{-k}\}\right]$$

$$= (1-t)^{-(x-\beta)}(1-t)^{-\beta-1} \exp \left[px^{k}\{1-(1-t)^{-k}\}\right]$$

whence we obtain

$$\sum_{n=0}^{\infty} T_{kn}^{(\alpha)}(x, p) t^n = (1 - t)^{-(\alpha - \beta)} \sum_{n=0}^{\infty} T_{kn}^{(\beta)}(x, p) t^n.$$

Now comparing the coefficients of to on both sides we get

(5.8)
$$T_{kn}^{(\alpha)}(x, p) = \sum_{r=0}^{n} \frac{(\alpha - \beta)_r}{r!} T_{k(n-r)}^{(\beta)}(x, p) ,$$

where α and β are arbitrary real numbers.

Next we notice that

$$\begin{split} \sum_{n=0}^{\infty} T_{km}^{(\alpha+\beta+1)}(x, p+q)t^n \\ &= (1-t)^{-\alpha-1}e^{px^k\{1-(1-t)^{-k}\}} \cdot (1-t)^{-\beta-1}e^{qx^k\{1-(1-t)^{-k}\}} \\ &= \sum_{m=0}^{\infty} T_{km}^{(\alpha)}(x, p)t^m \cdot \sum_{n=0}^{\infty} T_{kn}^{(\beta)}(x, q)t^n \\ &= \sum_{n=0}^{\infty} \sum_{m=0}^{n} T_{km}^{(\alpha)}(x, p)T_{k(n-m)}^{(\beta)}(x, q)t^n \;. \end{split}$$

Thus we obtain the following 'doubly-additive' addition formula

(5.9)
$$T_{kn}^{(\alpha+\beta+1)}(x, p+q) = \sum_{m=0}^{n} T_{km}^{(\alpha)}(x, p) T_{k(m-m)}^{(\beta)}(x, q).$$

In particular, when p = q = 1, and k = 1, we derive

(5.10)
$$T_{n}^{(\alpha+\beta+1)}(x,2) = \sum_{m=0}^{n} L_{m}^{(\alpha)}(x) L_{n-m}^{(\beta)}(x) .$$

It follows therefore from (5.7) and (5.10) that

(5.11)
$$L_n^{(\alpha+\beta+1)}(2x) = \sum_{m=0}^n L_m^{(\alpha)}(x) L_{n-m}^{(\beta)}(x) ,$$

which is implied by the well-known formula of the Laguerre polynomials

(5.12)
$$L_{n}^{(\alpha+\beta+1)}(x+y) = \sum_{m=0}^{n} L_{m}^{(\alpha)}(x) L_{n-m}^{(\beta)}(y).$$

Again returning to (5.1) we obtain

$$(1-t)^{k+1}\frac{\partial g(x,t)}{\partial t}=[(\alpha+1)(1-t)^k-pkx^k]g(x,t)$$

whence we notice

$$(1-t)^{k+1} \sum_{n=1}^{\infty} nt^{n-1} T_{kn}^{(\alpha)}(x,p) = [(\alpha+1)(1-t)^k - pkx^k] \cdot \sum_{n=0}^{\infty} T_{kn}^{(\alpha)}(x,p)t^n.$$

Performing the indicated multiplication on both sides and comparing coefficients of t^n on both sides, we derive

$$(5.13) \qquad \sum_{r=0}^{k+1} (-1)^r \binom{k+1}{r} (n+1-r) T_{k(n+1-r)}^{(\alpha)}(x,p) .$$

$$= (\alpha+1) \sum_{r=0}^{k} (-1)^r \binom{k}{r} T_{k(n-r)}^{(\alpha)}(x,p) - pkx^k T_{kn}^{(\alpha)}(x,p) .$$

Lastly we observe

$$(1-t)^{k} \frac{\partial g(x,t)}{\partial x} = pkx^{k-1} \{(1-t)^{k} - 1\} g(x,t),$$

whence we obtain in like manner

(5.14)
$$\sum_{r=0}^{k} (-1)^{r} {k \choose r} DT_{(n-r)}^{(\alpha)}(x, p)$$

$$= pkx^{k-1} \sum_{r=1}^{k} (-1)^{r} {k \choose r} T_{(n-r)}^{(\alpha)}(x, p) .$$

REFERENCES

- [1] S. K. CHATTERJEA: A generalization of Laguerre polynomials, Communicated to the Canad. Jour. Math.
- [2] FRANCK J. PALAS: A Rodrigues' formula, Amer. Math. Monthly, Vol. 66 (1959), pp. 402-404.
- [3] I. J. Schwatt: An introduction to the operations with series, Philadelphia, 1924.
- [4] S. K. CHATTERJEA: Operational formulae for certain classical polynomials, I, to appear in the Quart. Jour. Math. (Oxford).
- [5] L. CARLITZ: A note on Laguerre polynomials, Michigan Math. Jour. Vol. 7 (1960), pp. 219-223.
- [6] H. W. GOULD, and A. T. HOPPER: Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. Jour. Vol. 29 (1962), pp. 51-64.
- [7] J. L. Burchnall: A note on the polynomials of Hermite, Quart. Jour. Math. (Oxford), Vol. 12 (1941), pp. 9-11.