q-analogues of Bernoulli numbers

\& zeta operators at negative integers

Frédéric Chapoton

CNRS \& Université Claude Bernard Lyon 1

Octobre 2011

Usual Bernoulli numbers

The Bernoulli numbers are given by the generating series

$$
\sum_{n \geq 0} B_{n} \frac{x^{n}}{n!}=\frac{x}{\exp (x)-1}
$$

This can be restated as

$$
\exp (x+B x)-\exp (B x)=x
$$

by using the umbral (symbolic) convention $B^{n}=B_{n}$.
By Taylor expansion, one finds

$$
(B+1)^{n}-B^{n}= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { else }\end{cases}
$$

Usual Bernoulli numbers

$$
(B+1)^{n}-B^{n}= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { else }\end{cases}
$$

One can use this equation to compute the Bernoulli numbers :

$$
\begin{gathered}
1,-1 / 2,1 / 6,0,-1 / 30,0,1 / 42,0,-1 / 30,0,5 / 66,0,-691 / 2730 \\
0,7 / 6,0,-3617 / 510,0,43867 / 798,0,-174611 / 330, \ldots
\end{gathered}
$$

The numbers $B_{2 n+1}$ vanish when $n \geq 1$.
Rational numbers, with important properties, well-known in number theory.
Used in the Euler-Maclaurin summation formula.
Related to values of the Riemann zeta function at negative integers.

Riemann ζ function

The Riemann ζ function is defined for $s \in \mathbb{C}$ with $\mathfrak{R e}(s)>1$ by

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \in P} \frac{1}{1-\frac{1}{p^{s}}}
$$

where the product runs over the set P of prime numbers.
It can be extended to a meromorphic function on \mathbb{C} with unique pole at $s=1$.
Euler has computed the values at negative integers:

$$
\zeta(1-n)=\frac{-B_{n}}{n}
$$

for $n \geq 2$.

Carlitz q-Bernoulli numbers

Leonard Carlitz has introduced (in 1948) q-analogues of Bernoulli numbers defined by the initial value $\beta_{0}=1$ and the formula

$$
q(q \beta+1)^{n}-\beta^{n}=\left\{\begin{array}{lll}
1 & \text { if } & n=1 \\
0 & \text { if } & n>1
\end{array}\right.
$$

with the convention that $\beta^{n}=\beta_{n}$. This gives the following fractions

$$
\begin{array}{r}
\beta_{0}=1, \quad \beta_{1}=-\frac{1}{\Phi_{2}}, \quad \beta_{2}=\frac{q}{\Phi_{2} \Phi_{3}} \\
\beta_{3}=\frac{q(1-q)}{\Phi_{2} \Phi_{3} \Phi_{4}}, \quad \beta_{4}=\frac{q\left(q^{4}-q^{3}-2 q^{2}-q+1\right)}{\Phi_{2} \Phi_{3} \Phi_{4} \Phi_{5}}
\end{array}
$$

where Φ_{n} are cyclotomic polynomials.

Carlitz q-Bernoulli numbers

$$
\begin{aligned}
& B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30, \ldots \\
& \beta_{0}=1, \quad \beta_{1}=-\frac{1}{\Phi_{2}}, \quad \beta_{2}=\frac{q}{\Phi_{2} \Phi_{3}}, \quad \beta_{3}=\frac{q(1-q)}{\Phi_{2} \Phi_{3} \Phi_{4}} \\
& \beta_{4}=\frac{q\left(q^{4}-q^{3}-2 q^{2}-q+1\right)}{\Phi_{2} \Phi_{3} \Phi_{4} \Phi_{5}}, \ldots
\end{aligned}
$$

q-analogues: Bernoulli numbers are recovered by letting $q=1$. denominator : a product of cyclotomic polynomials of order between 2 and $n+1$, with multiplicity at most one. Multiplicity can be zero (starting with Φ_{3} absent in β_{7}).
numerator : a factor q for $n \geq 2$, a factor $1-q$ when $n \geq 3$ is odd, and a big (irreducible?) factor.

Zeroes and poles

Nice pattern, that needs to be explained : many zeros on the circle, some on the positive real line, a few others

Figure: Roots • and poles • of the Carlitz q-Bernoulli number β_{14}

q-Bernoulli numbers are natural.

In the works of Carlitz, the q-Bernoulli numbers have been related to the q-Eulerian numbers.
They appear more recently in a completely different setting, involving Lie idempotents in the descent algebras of symmetric groups, dendriform algebras, pre-Lie algebras, etc.

As coefficients in a sum over rooted trees

$$
\begin{aligned}
& \Omega_{q}=1 \bullet-\frac{1}{\Phi_{2}} \varrho+\frac{1}{\Phi_{3}} \%+\frac{q}{\Phi_{2} \Phi_{3}} \frac{1}{2} \varrho \\
& -\frac{1}{\Phi_{2} \Phi_{4}}{ }^{\circ}-\frac{q}{2 \Phi_{3} \Phi_{4}}{ }^{\circ}-\frac{q^{2}}{\Phi_{2} \Phi_{3} \Phi_{4}}{ }^{\circ}-\frac{q(q-1)}{\Phi_{2} \Phi_{3} \Phi_{4}} \frac{1}{6}{ }^{\circ}+ \\
& \frac{1}{\Phi_{5}}+\frac{q\left(1+q+q^{2}\right)}{2 \Phi_{2} \Phi_{4} \Phi_{5}} \%+\frac{q^{2}}{\Phi_{4} \Phi_{5}} \%+\frac{q\left(q^{3}+q^{2}-1\right)}{6 \Phi_{3} \Phi_{4} \Phi_{5}} \%+\frac{q^{4}}{2 \Phi_{3} \Phi_{4} \Phi_{5}} \%+ \\
& \frac{q^{3}}{\Phi_{2} \Phi_{4} \Phi_{5}} \%^{\circ}+\frac{q^{2}\left(q^{3}+q^{2}-1\right)}{2 \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{5}} \%^{\circ}+\frac{q^{2}\left(q^{3}-q-1\right)}{2 \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{5}} \\
& \frac{q\left(q^{4}-q^{3}-2 q^{2}-q+1\right)}{\Phi_{2} \Phi_{3} \Phi_{4} \Phi_{5}} \frac{1}{24} \circlearrowleft^{\circ}+\cdots
\end{aligned}
$$

CLAIM : The Carlitz q-Bernoulli numbers are natural objects !

QUESTION

Are they related to some kind of q-analogue of Riemann ζ function?

Previous attempts of q-zeta function

One can find articles by many authors on various q-analogues of the Riemann ζ-function :

- Ivan Cherednik,
- Taekyun Kim
- Neal Koblitz,

■ M. Kaneko, N. Kurokawa and M. Wakayama,

- Junya Satoh.
(not an exhaustive list)
They proposed many different functions as q-analogues of ζ.
BUT : They did not find any simple relationship with Carlitz q-Bernoulli numbers.
These functions do not have an Eulerian product.

q-analogue is a linear operator

Main Idea

The correct q-analogue of the value $\zeta_{q}(s)$ is not a complex number, but a linear operator on the vector space of formal power series in q.

Consider the space $\mathbb{C}[[q]]$ of formal power series in q. For every integer $n \geq 1$, define a linear operator F_{n} by

$$
F_{n}(f(q))=f\left(q^{n}\right) .
$$

This is some kind of "Frobenius operator".

Key lemma

Now introduce the q-numbers :

$$
[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+\cdots+q^{n-1}
$$

Let s be any complex number.

CRUCIAL LEMMA

For every integers m and n, one has

$$
\left(\frac{1}{[m]_{q}^{s}} F_{m}\right)\left(\frac{1}{[n]_{q}^{s}} F_{n}\right)=\frac{1}{[m n]_{q}^{s}} F_{m n}=\left(\frac{1}{[n]_{q}^{s}} F_{n}\right)\left(\frac{1}{[m]_{q}^{s}} F_{m}\right) .
$$

This is a q-analogue of the obvious fact that

$$
\frac{1}{m^{s}} \frac{1}{n^{s}}=\frac{1}{(m n)^{s}}=\frac{1}{n^{s}} \frac{1}{m^{s}}
$$

Definition of q-zeta operators

One can now introduce the linear operator $\zeta_{q}(s)$:

$$
\zeta_{q}(s)=\sum_{n \geq 1} \frac{1}{[n]_{q}^{s}} F_{n}
$$

for every $s \in \mathbb{C}$.
To ensure convergence, one has to restrict the domain to the space $q \mathbb{C}[[q]]$ of formal power series without constant term.
This operator can be factorised (by using the key lemma) :

$$
\zeta_{q}(s)=\prod_{p \in P}\left(\operatorname{ld}-\frac{1}{[p]_{q}^{s}} F_{p}\right)^{-1}
$$

which is the q-analogue of the Eulerian product for $\zeta(s)$.

Rationality at negative integers

For example, consider $\zeta_{q}(0)$ acting on q :

$$
\zeta_{q}(0) q=\sum_{n \geq 1} \frac{1}{[n]_{q}^{0}} F_{n} q=\sum_{n \geq 1} q^{n}=q /(1-q)
$$

Proposition

For every integer $j>0$, and every integer $n \geq 0$, the formal power series $\zeta_{q}(-n) q^{j}$ is a rational fraction, i.e. belongs to $\mathbb{Q}(q)$.

This is obvious for $n=0$, where one gets $q^{j} /\left(1-q^{j}\right)$.

q-analogue of Euler result

Proposition

For every integer $j>0$, and every integer $n \geq 0$, the formal power series $\zeta_{q}(-n) q^{i}$ is a rational fraction with a pole at $q=1$.

Theorem

For every every integer $n \geq 2$, there holds

$$
\zeta_{q}(1-n)\left(q-(n+1) q^{2}\right)=\beta(n) .
$$

This formula is a q-analogue of the Euler formula

$$
\zeta(1-n)(-n)=B_{n},
$$

relating Bernoulli numbers and values of ζ at negative integers.

Higher q-analogues

Taekyun Kim has considered some other q-analogues of Bernoulli numbers, similar to Carlitz q-Bernoulli numbers. Fix an integer $k \geq 1$. The $k^{t h}$ higher q-analogue is defined by $\beta_{0}=\frac{k}{[k]_{q}}$ and

$$
q^{k}(q \beta+1)^{n}-\beta^{n}=\left\{\begin{array}{lll}
1 & \text { if } & n=1 \\
0 & \text { if } & n>1
\end{array}\right.
$$

For $k=1$, they are Carlitz q-Bernoulli numbers.
One can show that they satisfy

$$
\zeta_{q}(1-n)\left(k q^{k}-(n+k) q^{k+1}\right)=\beta(n)
$$

q-zeta functions from q-zeta operator

One can interpret the q-zeta functions considered by several authors as
$\zeta_{q}(s) q, \quad \zeta_{q}(s) q^{t}, \quad \zeta_{q}(s) q^{s}, \quad \zeta_{q}(s) q^{s / 2}, \quad \zeta_{q}(s) q^{s-m}, \quad \zeta_{q}(s) q^{s-1}$.
This does not quite fit in our framework of formal power series, unless the power of q is an integer.

A second variable enters.

One can turn $\zeta_{q}(s)$ into an operator on formal power series in two variables q and z by extending the "Frobenius operator" by

$$
F_{n}(f(q, z))=f\left(q^{n}, z^{n}\right)
$$

Then $\zeta_{q}(s)$ makes sense as an operator on formal power series in q and z without constant term.

Proposition

For every integer $n \geq 0$, the formal power series $\zeta_{q}(-n) z$ is a rational fraction of q and z, i.e. belongs to $\mathbb{Q}(q, z)$.

For example,

$$
\begin{aligned}
\zeta_{q}(0) z & =z /(1-z) \\
\zeta_{q}(-1) z & =\frac{z}{(1-z)(1-q z)}
\end{aligned}
$$

The proof is by induction on n using the difference operator

$$
\Delta(f(q, z))=\frac{f(q, q z)-f(q, z)}{q-1}
$$

which satisfies

$$
\Delta\left(z^{n}\right)=[n]_{q} z^{n}
$$

and therefore sends

$$
\zeta_{q}(-n) z \mapsto \zeta_{q}(-n-1) z
$$

As Δ maps fractions to fractions, one gets that every $\zeta_{q}(-n) z$ is in $\mathbb{Q}(z, q)$.

These fractions have been considered before in the study of the symmetric groups. This is closely related to the original viewpoint of Carlitz.

Proposition

One has

$$
\zeta_{q}(-n) z=\frac{\sum_{\sigma \in S_{n}} q^{\operatorname{maj} \sigma} z^{\operatorname{des} \sigma}}{\prod_{i=0}^{n} 1-q^{i} z}
$$

where maj, des are the Major index and descent number of permutations.
The fraction $\zeta_{q}(-n) z$ is therefore a generating function for two parameters on the symmetric group S_{n}.

General Dirichlet series

The formalism above for the Riemann zeta function can be applied to any Dirichlet series.

$$
L(s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}} \longleftrightarrow \quad L_{q}(s)=\sum_{n \geq 1} \frac{a_{n}}{[n]_{q}^{s}} F_{n}
$$

If the Dirichlet series is multiplicative, $L_{q}(s)$ will have a factorisation, over the set P of prime numbers, as an operator. This allows for example to define incomplete operators by removing a finite number of primes. Also, for any two Dirichlet series L and L^{\prime}, the operators $L_{q}(s)$ and $L_{q}^{\prime}(s)$ commute (by the key lemma). But this is not true in general for $L_{q}(s)$ and $L_{q}^{\prime}(t)$ with $s \neq t$.

One can show for L-series associated with Dirichlet characters that $L_{q}(-n) z$ is a rational fraction of q and z for every $n \geq 0$.

Generating series for these values $L_{q}(-n) z$ for $n \geq 0$ satisfy simple functional equations.

In a few cases, one can describe the numerator in a combinatorial way.
For example, in the case of the primitive Dirichlet character of conductor 4, the fractions $L_{q}(-n) z$ are related to the hyperoctahedral groups (Coxeter groups of type B / C)

Eisenstein series

There is also another q-zeta function, considered by Rivoal, Zudilin, Jouhet \& Mosaki and others in transcendence theory :

$$
\zeta_{q=1}(-k+1) \frac{z}{1-z}=\sum_{n \geq 1} n^{k-1} \frac{z^{n}}{1-z^{n}}
$$

where q is taken to be 1 .
This is related to the classical Eisenstein series (modular form) Ei_{k} whose associated Dirichlet series is

$$
\zeta(s-k+1) \zeta(s)
$$

This may suggest to consider

$$
\zeta_{q}(-k+1) \zeta_{q}(0) z=\zeta_{q}(-k+1) \frac{z}{1-z}
$$

as a q-analogue of the Eisenstein series.

Relation with Lambert series

A Lambert series is a sum of the following shape

$$
\sum_{n \geq 1} a_{n} \frac{q^{n}}{1-q^{n}}
$$

This kind of series can be restated, using the associated operator

$$
L_{q}(s)=\sum_{n \geq 1} \frac{a_{n}}{[n]_{q}^{s}} F_{n}
$$

as

$$
L_{q}(0) \frac{q}{1-q}=L_{q}(0) \zeta_{q}(0) q
$$

q-analogues of polylogarithms

The usual polylogarithm function is defined by

$$
\mathcal{L}_{k}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{k}}
$$

This can be written as

$$
\zeta_{q=1}(k) z
$$

And therefore suggest the following (well-known) q-analogue

$$
\zeta_{q}(k) z=\sum_{n \geq 1} \frac{z^{n}}{[n]_{q}^{k}}
$$

The q-analogue of \mathcal{L}_{1} has a nice functional equation, analogue of

$$
\log (1-x-y+x y)=\log (1-x)+\log (1-y)
$$

Missing points, open directions

1 : back to $q=1$
How to deduce the classical results by letting q tends to 1 ?
2 : other explicit values
Find some other examples of closed evaluation (outside Dirichlet characters)

3 : functional equation, modularity, completed operator the functional equation for the ζ operator or the definition of a nice Archimedean factor or some kind of q-analogue of modular forms

3 : zeta functions of orders
Understand the relation to genus zeta functions of orders (Louis Solomon, Marleen Denert)

