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Usual Bernoulli numbers

The Bernoulli numbers are given by the generating series∑
n≥0

Bn
xn

n!
=

x

exp(x)− 1
.

This can be restated as

exp(x + Bx)− exp(Bx) = x

by using the umbral (symbolic) convention Bn = Bn.
By Taylor expansion, one finds

(B + 1)n − Bn =

{
1 if n = 1,

0 else.



Usual Bernoulli numbers

(B + 1)n − Bn =

{
1 if n = 1,

0 else.

One can use this equation to compute the Bernoulli numbers :

1,−1/2, 1/6, 0,−1/30, 0, 1/42, 0,−1/30, 0, 5/66, 0,−691/2730,

0, 7/6, 0,−3617/510, 0, 43867/798, 0,−174611/330, . . .

The numbers B2n+1 vanish when n ≥ 1.
Rational numbers, with important properties, well-known in
number theory.
Used in the Euler–Maclaurin summation formula.
Related to values of the Riemann zeta function at negative
integers.



Riemann ζ function

The Riemann ζ function is defined for s ∈ C with Re(s) > 1 by

ζ(s) =
∑
n≥1

1

ns
=
∏
p∈P

1

1− 1
ps
,

where the product runs over the set P of prime numbers.
It can be extended to a meromorphic function on C with unique
pole at s = 1.
Euler has computed the values at negative integers :

ζ(1− n) =
−Bn

n
,

for n ≥ 2.



Carlitz q-Bernoulli numbers

Leonard Carlitz has introduced (in 1948) q-analogues of Bernoulli
numbers defined by the initial value β0 = 1 and the formula

q(qβ + 1)n − βn =

{
1 if n = 1,

0 if n > 1.

with the convention that βn = βn. This gives the following
fractions

β0 = 1, β1 = − 1

Φ2
, β2 =

q

Φ2Φ3
,

β3 =
q(1− q)

Φ2Φ3Φ4
, β4 =

q(q4 − q3 − 2q2 − q + 1)

Φ2Φ3Φ4Φ5
,

where Φn are cyclotomic polynomials.



Carlitz q-Bernoulli numbers

B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, . . .

β0 = 1, β1 = − 1

Φ2
, β2 =

q

Φ2Φ3
, β3 =

q(1− q)

Φ2Φ3Φ4
,

β4 =
q(q4 − q3 − 2q2 − q + 1)

Φ2Φ3Φ4Φ5
, . . .

q-analogues : Bernoulli numbers are recovered by letting q = 1.
denominator : a product of cyclotomic polynomials of order
between 2 and n + 1, with multiplicity at most one. Multiplicity
can be zero (starting with Φ3 absent in β7).
numerator : a factor q for n ≥ 2, a factor 1−q when n ≥ 3 is odd,
and a big (irreducible ?) factor.



Zeroes and poles

Nice pattern, that needs to be explained : many zeros on the circle,
some on the positive real line, a few others
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Figure: Roots • and poles • of the Carlitz q-Bernoulli number β14



q-Bernoulli numbers are natural.

In the works of Carlitz, the q-Bernoulli numbers have been related
to the q-Eulerian numbers.
They appear more recently in a completely different setting,
involving Lie idempotents in the descent algebras of symmetric
groups, dendriform algebras, pre-Lie algebras, etc.



As coefficients in a sum over rooted trees

Ωq = 1 − 1

Φ2
+

1

Φ3
+

q

Φ2Φ3

1

2

− 1

Φ2Φ4
− q

2 Φ3Φ4
− q2

Φ2Φ3Φ4
−q(q − 1)

Φ2Φ3Φ4

1

6
+

1

Φ5
+
q(1 + q + q2)

2 Φ2Φ4Φ5
+

q2

Φ4Φ5
+
q(q3 + q2 − 1)

6 Φ3Φ4Φ5
+

q4

2 Φ3Φ4Φ5
+

q3

Φ2Φ4Φ5
+

q2(q3 + q2 − 1)

2 Φ2Φ3Φ4Φ5
+

q2(q3 − q − 1)

2 Φ2Φ3Φ4Φ5
+

q(q4 − q3 − 2q2 − q + 1)

Φ2Φ3Φ4Φ5

1

24
+ · · ·



CLAIM : The Carlitz q-Bernoulli numbers are natural objects !

QUESTION

Are they related to some kind of q-analogue of Riemann ζ
function ?



Previous attempts of q-zeta function

One can find articles by many authors on various q-analogues of
the Riemann ζ-function :

Ivan Cherednik,

Taekyun Kim

Neal Koblitz,

M. Kaneko, N. Kurokawa and M. Wakayama,

Junya Satoh.

(not an exhaustive list)
They proposed many different functions as q-analogues of ζ.
BUT : They did not find any simple relationship with Carlitz
q-Bernoulli numbers.
These functions do not have an Eulerian product.



q-analogue is a linear operator

Main Idea

The correct q-analogue of the value ζq(s) is not a complex
number, but a linear operator on the vector space of formal power
series in q.

Consider the space C[[q]] of formal power series in q.
For every integer n ≥ 1, define a linear operator Fn by

Fn(f (q)) = f (qn).

This is some kind of “Frobenius operator”.



Key lemma

Now introduce the q-numbers :

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1.

Let s be any complex number.

CRUCIAL LEMMA

For every integers m and n, one has(
1

[m]sq
Fm

)(
1

[n]sq
Fn

)
=

1

[mn]sq
Fmn =

(
1

[n]sq
Fn

)(
1

[m]sq
Fm

)
.

This is a q-analogue of the obvious fact that

1

ms

1

ns
=

1

(mn)s
=

1

ns
1

ms
.



Definition of q-zeta operators

One can now introduce the linear operator ζq(s) :

ζq(s) =
∑
n≥1

1

[n]sq
Fn,

for every s ∈ C.
To ensure convergence, one has to restrict the domain to the space
qC[[q]] of formal power series without constant term.
This operator can be factorised (by using the key lemma) :

ζq(s) =
∏
p∈P

(Id− 1

[p]sq
Fp)−1,

which is the q-analogue of the Eulerian product for ζ(s).



Rationality at negative integers

For example, consider ζq(0) acting on q :

ζq(0)q =
∑
n≥1

1

[n]0q
Fnq =

∑
n≥1

qn = q/(1− q).

Proposition

For every integer j > 0, and every integer n ≥ 0, the formal power
series ζq(−n)qj is a rational fraction, i.e. belongs to Q(q).

This is obvious for n = 0, where one gets qj/(1− qj).



q-analogue of Euler result

Proposition

For every integer j > 0, and every integer n ≥ 0, the formal power
series ζq(−n)qi is a rational fraction with a pole at q = 1.

Theorem

For every every integer n ≥ 2, there holds

ζq(1− n)(q − (n + 1)q2) = β(n).

This formula is a q-analogue of the Euler formula

ζ(1− n)(−n) = Bn,

relating Bernoulli numbers and values of ζ at negative integers.



Higher q-analogues

Taekyun Kim has considered some other q-analogues of Bernoulli
numbers, similar to Carlitz q-Bernoulli numbers. Fix an integer
k ≥ 1. The kth higher q-analogue is defined by β0 = k

[k]q
and

qk(qβ + 1)n − βn =

{
1 if n = 1,

0 if n > 1.

For k = 1, they are Carlitz q-Bernoulli numbers.
One can show that they satisfy

ζq(1− n)(kqk − (n + k)qk+1) = β(n).



q-zeta functions from q-zeta operator

One can interpret the q-zeta functions considered by several
authors as

ζq(s)q, ζq(s)qt , ζq(s)qs , ζq(s)qs/2, ζq(s)qs−m, ζq(s)qs−1.

This does not quite fit in our framework of formal power series,
unless the power of q is an integer.



A second variable enters.

One can turn ζq(s) into an operator on formal power series in two
variables q and z by extending the “Frobenius operator” by

Fn(f (q, z)) = f (qn, zn).

Then ζq(s) makes sense as an operator on formal power series in q
and z without constant term.

Proposition

For every integer n ≥ 0, the formal power series ζq(−n)z is a
rational fraction of q and z , i.e. belongs to Q(q, z).

For example,

ζq(0)z = z/(1− z),

ζq(−1)z =
z

(1− z)(1− qz)
.



The proof is by induction on n using the difference operator

∆(f (q, z)) =
f (q, qz)− f (q, z)

q − 1
,

which satisfies
∆(zn) = [n]qz

n

and therefore sends

ζq(−n)z 7→ ζq(−n − 1)z .

As ∆ maps fractions to fractions, one gets that every ζq(−n)z is in
Q(z , q).



These fractions have been considered before in the study of the
symmetric groups. This is closely related to the original viewpoint
of Carlitz.

Proposition

One has

ζq(−n)z =

∑
σ∈Sn q

majσzdesσ∏n
i=0 1− qiz

where maj, des are the Major index and descent number of
permutations.
The fraction ζq(−n)z is therefore a generating function for two
parameters on the symmetric group Sn.



General Dirichlet series

The formalism above for the Riemann zeta function can be applied
to any Dirichlet series.

L(s) =
∑
n≥1

an
ns

←→ Lq(s) =
∑
n≥1

an
[n]sq

Fn.

If the Dirichlet series is multiplicative, Lq(s) will have a
factorisation, over the set P of prime numbers, as an operator.
This allows for example to define incomplete operators by
removing a finite number of primes.
Also, for any two Dirichlet series L and L′, the operators Lq(s) and
L′q(s) commute (by the key lemma).
But this is not true in general for Lq(s) and L′q(t) with s 6= t.



One can show for L-series associated with Dirichlet characters
that Lq(−n)z is a rational fraction of q and z for every n ≥ 0.

Generating series for these values Lq(−n)z for n ≥ 0 satisfy simple
functional equations.

In a few cases, one can describe the numerator in a combinatorial
way.
For example, in the case of the primitive Dirichlet character of
conductor 4, the fractions Lq(−n)z are related to the
hyperoctahedral groups (Coxeter groups of type B/C )



Eisenstein series

There is also another q-zeta function, considered by Rivoal,
Zudilin, Jouhet & Mosaki and others in transcendence theory :

ζq=1(−k + 1)
z

1− z
=
∑
n≥1

nk−1 zn

1− zn
,

where q is taken to be 1.
This is related to the classical Eisenstein series (modular form) Eik
whose associated Dirichlet series is

ζ(s − k + 1)ζ(s)

This may suggest to consider

ζq(−k + 1)ζq(0)z = ζq(−k + 1)
z

1− z

as a q-analogue of the Eisenstein series.



Relation with Lambert series

A Lambert series is a sum of the following shape∑
n≥1

an
qn

1− qn
.

This kind of series can be restated, using the associated operator

Lq(s) =
∑
n≥1

an
[n]sq

Fn,

as
Lq(0)

q

1− q
= Lq(0)ζq(0)q.



q-analogues of polylogarithms

The usual polylogarithm function is defined by

Lk(z) =
∑
n≥1

zn

nk

This can be written as
ζq=1(k)z

And therefore suggest the following (well-known) q-analogue

ζq(k)z =
∑
n≥1

zn

[n]kq

The q-analogue of L1 has a nice functional equation, analogue of

log(1− x − y + xy) = log(1− x) + log(1− y)



Missing points, open directions

1 : back to q=1

How to deduce the classical results by letting q tends to 1 ?

2 : other explicit values

Find some other examples of closed evaluation (outside Dirichlet
characters)

3 : functional equation, modularity, completed operator

the functional equation for the ζ operator
or the definition of a nice Archimedean factor
or some kind of q-analogue of modular forms

3 : zeta functions of orders

Understand the relation to genus zeta functions of orders (Louis
Solomon, Marleen Denert)


