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Abstract. Inspired by [2], we define a new sequence of q-analogues for the Bernoulli numbers

under the framework of Strodt operators. We show that they not only satisfy many identities
similar to those of the q-analogue proposed by Carlitz [3], but also interesting analytical properties

as functions of q. In particular, we give a simple analytic proof of a generalization of an explicit

formula for the Bernoulli numbers given by Woon [15]. We also define a set of q-analogues for the
Stirling numbers of the second kind within our framework and prove a q-extension of a related,

well-known closed form relating Bernoulli and Stirling numbers.
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1. Introduction

The Bernoulli numbers {Bn}n≥0 are rational numbers in a sequence defined by the binomial
recursion formula

m∑
k=0

(
m

k

)
Bk −Bm =

{
1, m = 1,
0, m > 1,(1.1)

or equivalently, the generating function
∞∑

m=0

Bm
tm

m!
=

t

et − 1
.(1.2)

This sequence appears in a multitude of diverse contexts, including number theory, combinatorics,
and finite approximations of integrals. A short list of applications can be found at [8].

q-analogues of the Bernoulli numbers were first studied by Carlitz [3, 4] in the middle of the last
century when he introduced a power of q to (1.1), giving a new sequence {βm, m ≥ 0}:

m∑
k=0

(
m

k

)
βkq

k+1 − βm =
{

1, m = 1,
0, m > 1.(1.3)

Here, and in the remainder of the paper, the parameter we make the assumption that |q| < 1.
Clearly we recover (1.1) if we let q → 1 in (1.3).

Since Carlitz, there have been many distinct q-analogues of Bernoulli numbers arising from varying
motivations. Tsumura’s [14] definition comes from a generalization of a Dirichlet’s series, while the
q-Bernoulli numbers due to Suslov [13] come from a generalized Fourier series. Improvements to
the latter work were proposed by Ismail and Rahman in [12], who produced a bivariate extension
of Bernoulli polynomials that comes from the inverse of an Askey-Wilson operator. Because of
their relation to Fourier series, these are also associated with a q-generalization of the Riemann zeta
function.

In this paper we propose a q-analogue of Bernoulli numbers which is different from those listed
above. Our definition is motivated by a development of Bernoulli numbers that appears in [2], which
unifies the definition of Bernoulli and Euler numbers under the theory of Strodt Operators. The
resulting sequence {β̃n}n≥0 has natural q-analogues of identities (1.1) and (1.2), which we construct
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in Section 3, along with a closed form in Section 4. We go on to prove a number of analytic properties
of the β̃n as rational functions of q, including information about its zeroes and poles. Next, we define
q-Bernoulli polynomials using a q-analogue of xn in Section 5, and use this to generalize the classical
identity relating Bernoulli polynomials to power sums. This culminates in another closed form which
relates our q-Bernoulli numbers to a q-analogue of Stirling numbers of the second kind, which we
discuss in Section 6.

Throughout our work we will compare the properties of our sequence β̃n to those of Carlitz
sequence βn. Because of the way it is defined, our sequence is primarily combinatorial in nature,
and so, of the generalizations listed above, it is most comparable to the βn. This not only provides a
point of reference to the suitability of β̃n as a “good” q-analogue, but also highlights the differences
between it and its closest relative among the myriad of q-analogues in existence.

Before we continue, let us introduce some notation that is used in the remainder of the paper.
The q-analogue of an integer is denoted using the q-bracket notation

[x]q :=
qx − 1
q − 1

,

for all x ∈ R and q > 0. We also define the q-rising factorial or theq-Pochhammer symbol in the
usual way:

(a; q)n :=
n−1∏
k=0

(1− aqk),

with

(a; q)∞ = lim
n→∞

(a; q)n

and (a; q)0 := 1. We will also make significant use of the well-known q-binomial theorem [1, p. 17,
Thm. 2.1]:

Theorem 1.1. For |q|, |z| < 1 and any complex a we have

(az; q)∞
(z; q)∞

=
∑
n≥0

(a; q)n

(q; q)n
zn,(1.4)

and the limiting case

(a; q)∞ =
∑
n≥0

(−1)nanqn(n−1)/2

(q; q)n
.(1.5)

We also define the q-binomial coefficients
[
n
k

]
q

by

[
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
.

In general, a q-binomial coefficient is a polynomial in q (also called a Gaussian polynomial) whose
qj-coefficient counts the number of partitions of j with at most k parts each less than or equal to
n− k [1, p. 33].

Finally, we introduce the following convenient shorthand analogue to the factorial:

[k]q! := [k]q[k − 1]q · · · [1]q =
(q; q)k

(1− q)k
.
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2. Basic Properties of the Carlitz q-analogue

We begin by collecting some basic facts about the Carlitz sequence βn. It is obvious from (1.3)
that the βn will always be rational in q, and we easily compute the first few values:

β0 = 1,

β1 = − 1
[2]q

,

β2 =
q

[3]q[2]q
,

β3 = −q(q − 1)
[4]q[3]q

β4 =
q(q4 − q3 − 2q2 − q + 1)

[5]q[4]q[3]q

β5 = −q(q − 1)(q4 − 2q3 − 3q2 − 2q + 1)
[6]q[5]q[4]q

.

An analogue of (1.2) also exists for the βn. Define

B(t) :=
∞∑

m=0

βm
tm

m!
.

Multiplying both sides of (1.3) by tm

m! and summing over m, we get

β0 + β1t+
∞∑

m=0

m∑
k=0

(
m

k

)
βqq

k+1 t
m

m!
=
∞∑

m=0

βm
tm

m!
+ β0q + β0qt+ β1q

2t

We observe that the double sum is a product of single sums and use this to rewrite this formula as

B(t) = 1− q − t+ qetB(qt).(2.1)

Iterating, we obtain

B(t) = (1− q)
∞∑

m=0

qme[m]qt − t
∞∑

m=0

q2me[m]qt

=
∞∑

m=0

(1− q − tqm)qme[m]qt,(2.2)

which converges as long as |q| < 1. It is clear that letting q → 1 recovers (1.2).

3. New q-Bernoulli numbers

In [2], the authors define the Strodt numbers corresponding to a certain probability distribution
{Pn}n≥0 via the exponential generating function

∞∑
n=0

Pn
tn

n!
=

1
Q(t)

,

where Q(t) is the moment generating function of the distribution. They showed that the Strodt
numbers of the uniform distribution on [0, 1], are actually Bernoulli numbers, while the average of
two Dirac delta functions at 0 and 1 yield the Euler numbers.
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We define our q-analogue using this framework, replacing the integral on [0, 1] with its corre-
sponding q-integral. The Jackson q-integral of a function f is defined by∫ a

0

f(x)dqx :=
∞∑

n=0

f(aqn)(aqn − aqn+1).

Using this definition, the nth q-moment of the uniform distribution on [0, 1] is

µ̃n :=
∫ 1

0

xn dqx =
1

[n+ 1]q
.

Continuing with the moments µ̃n, we use a q-exponential generating function (with |t| < 1) to
obtain

∞∑
n=0

µ̃n
tn

(q; q)n
= (1− q)

∞∑
n=0

tn

(q; q)n+1
=

1− q
t

(
1

(t; q)∞
− 1
)
.

The second equality follows from (1.4), with z = t and a = 0.

As in [2], we now obtain the generating function for our q-analogue of the Bernoulli numbers β̃n

by inverting the moment generating function:

F (t, q) :=
∞∑

n=0

β̃n
tn

(q; q)n
:=

t

1− q

(
1

1
(t;q)∞

− 1

)
.(3.1)

Upon replacing t by t(1− q), and using (1.4) again, it is easy to see that we regain (1.2) as q tends
to 1.

It is also simple to see from here that an analogue of (1.1) holds.

Proposition 3.1. The q-Bernoulli numbers β̃n defined by (3.1) satisfy the q-binomial recurrence
m∑

k=0

[
m
k

]
q

β̃k − β̃m =
{

1, m = 1,
0, m > 1.(3.2)

Proof. We see that

F (t, q)
1

(t; q)∞
− F (t, q) =

t

1− q
,

and by multiplying power series on the left using (1.4), and matching tm-coefficients, the statement
follows.

�

It is in (3.2) where a major difference to Carlitz’s q-analogue is seen. Instead of a power of q
appearing in the binomial recursion, the binomial itself is replaced by its q-analogue. We use this
formula to calculate the first few β̃n, confirming that this sequence is in fact substantially different
from the βn.

β̃0 = 1,

β̃1 = − 1
[2]q

,

β̃2 =
q2

[2]q[3]q
,

β̃3 = −q
3(q − 1)
[2]q[4]q

β̃4 =
q4(q6 − q4 − 2q3 − q2 + 1)

[2]2q[3]q[5]q
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β̃5 = −q
5(q − 1)(q6 − q5 − q4 − q3 − q2 − q + 1)

[2]2q[6]q
.

4. Properties and Closed Formulas

In this section we collect some of the properties of the β̃n and derive a closed-form formula in
terms of q-multinomial coefficients, which gives us a new proof of the corresponding combinatorial
closed form for Bn. We begin by proving a structural property.

Proposition 4.1. For all n ≥ 0, the scaled q-Bernoulli numbers [n + 1]qβ̃n are integer linear
combinations of rational functions of q of the form

[n+ 1]q!
[k1]q![k2]q! · · · [km]q![n+ 1− κ]q!

,

where m ≥ 0 and the ki are positive integers such that

κ := k1 + k2 + · · · km −m ≤ n+ 1.

We briefly remark that the form of the terms in the previous proposition in q-Pochhammer
notation is

(qn+2+k1+···+km−m; q)k1+···+km−m(1− q)m

(q; q)k1 · · · (q; q)km

and the term is equal to 1 when m = 0.

Proof. We use strong induction on n. The claim is satisfied in the base case β̃0 = 1 using m = 0.
Now assume that the claim holds for all 0 ≤ k ≤ n− 1. From (3.2) we can see that

[n+ 1]qβ̃n = −
n−1∑
k=0

[
n+ 1
k

]
q

β̃k.

An arbitrary rational term from an arbitrary β̃k, where 0 ≤ k ≤ n−1, by assumption, can be written
as an integer times

1
[k + 1]q

· [k + 1]q!
[k1]q![k2]q! · · · [km]q![k + 1− κ]q!

.

This term is multiplied by
[
n+ 1
k

]
q

, leaving an integer times

[n+ 1]q!
[k]q![n− k + 1]q!

· [k]q!
[k1]q![k2]q! · · · [km]q![k + 1− κ]q!

=
[n+ 1]q!

[n− k + 1]q![k1]q![k2]q! · · · [km]q![n+ 1− κ′]q!
,

with κ′ = (n − k + 1) + k1 + · · · + km − (m + 1) = κ − (k + 1) + (n + 1) ≤ n + 1 by the inductive
hypothesis. Therefore, the structure of the term in the integer linear expansion of β̃n is as claimed.

�

Example 4.1. As illustrations of the previous proposition, we offer

[4]qβ̃3 = −1 + 2
[4]q!

[2]q![3]q!
− [4]q!

([2]q!)2[2]q!
and

[6]qβ̃5 = −1 + 2
[6]q!

[2]q[5]q!
− 3

[6]q!
([2]q!)2[4]q!

+ 4
[6]q

([2]q!)3[3]q!
− [6]q!

([2]!)4[2]q!
+ 2

[6]q!
[3]q![4]q!

− 3
[6]q!

[2]q![3]q![3]q!
.

The sign and value of the integer coefficient to which each term is multiplied have combinatorial
interpretations which are explained in Theorem 4.2.
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4.1. Closed form for β̃n. We now derive a closed form for the q-Bernoulli numbers β̃n in terms
of q-mulitnomial coefficients summed over partitions of n. Our theorem will imply the result of
Proposition 4.1, but first we need a few definitions.

Define the q-multinomial for positive integers n, and nonnegative integers k1, k2, . . . , km, where
m ≥ 2 and

∑
i ki = n, by the formula[

n
k1, k2, . . . , km

]
q

=
[n]q!

[k1]q![k2]q! · · · [km]q!
=
[
n
k1

]
q

·
[
k1

k2

]
q

· · ·
[
km−1

km

]
q

.

Note that:

• As q tends to 1 and we get lim
q→1

[
n

k1, k2, . . . , km

]
q

=
(

n
k1, k2, . . . , km

)
, the classical

multinomial coefficient.

• The q-multinomials also generalize q-binomial coefficients, since
[

n
k, n− k

]
q

=
[
n
k

]
q

.

We also have the following result due to P. A. MacMahon [1, p. 41, Thm. 3.6]:

Theorem 4.1. In a non-commutative zero character ring with indeterminates {xi}i≥0, and q, such
that xjxi = qxixj for all i < j, and qxi = xiq for all i,

(x1 + x2 + · · ·xk)n =
∑

i1+i2+···+ik=n

[
n

i1, i2, . . . , ik

]
q

xi1
1 x

i2
2 · · ·x

ik

k

for all integers k ≥ 1, i ≥ 0.

That is, the coefficient of qm in
[

n
i1, i2, . . . , ik

]
q

counts the number of permutations ξ1 · · · ξn

of the n-element multiset {1i1 , . . . , kik} (where the multiplicity of j in the multiset is ij , with
i1 + · · ·+ ik = n) such that exactly m pairs of the ξi, ξj appear with i < j but ξi > ξj .

Let C(n) denote the set of integer compositions (ordered partitions) of n. Hence an element of
C(n) is an ordered m-tuple of integers p = (k1, k2, . . . , km), for some 1 ≤ m ≤ n, where each ki > 0
and

∑
i ki = n. We also define the length of the composition as the length of the tuple: `(p) = m.

We define almost similarly the elements of P(n), the set of (unordered) partitions of n, except that
the integers in each tuple are arranged in non-increasing order so that all partitions with the same
parts are equivalent. Thus the set C(n) is bigger than, and contains, the set P(n). Let NC(p) be
the number of compositions that correspond to the partition p. By conventional counting techniques,
it is clear that

NC(p) =
`(p)!

j1!j2! · · · jn!
,

where ji is the number of is in the partition p, for all 1 ≤ i ≤ n.

Example 4.2. Here is an enumeration of C(n) and P(n), including lengths and number of compo-
sitions for each partition, for n = 4.

C(4)

p `(p)
(4) 1
(3, 1) 2
(1, 3) 2
(2, 2) 2
(2, 1, 1) 3
(1, 2, 1) 3
(1, 1, 2) 3
(1, 1, 1, 1) 4

P(4)

p `(p) NC(p)
(4) 1 1
(3, 1) 2 2
(2, 2) 2 1
(2, 1, 1) 3 3
(1, 1, 1, 1) 4 1
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We are now ready to state the main theorem of this section.

Theorem 4.2. For all n ≥ 1,

β̃n =
[n]q!
[2n]q!

∑
p∈C(n)

(−1)`(p)

[
2n

k1 + 1, k2 + 1, . . . , k`(p) + 1, 1, . . . , 1

]
q

(4.1)

=
[n]q!
[2n]q!

∑
p∈P(n)

(−1)`(p)NC(p)
[

2n
k1 + 1, k2 + 1, . . . , k`(p) + 1, 1, . . . , 1

]
q

,(4.2)

where in the sum we have (k1, k2, . . . , k`(p)) = p in our multinomial, followed by (n− `(p)) 1s.

Proof. We prove the first of the two statements by strong induction on n. (The second follows from
the first by reindexing.) Begin by noticing that

β̃1 =
−1
[2]q

=
[1]q!
[2]q!

(−1)1
[

2
2

]
q

,

which proves the statement for n = 1 since (1) is the only integer composition of 1.
Now assume that the statement is true for all 1 ≤ n < k where k > 1. By the recursive definition

of β̃n,

β̃k = −
k−1∑
i=0

[
k
i

]
q

β̃i

[k − i+ 1]q
= − β̃0

[k + 1]q
−

k−1∑
i=1

[k]q!
[i]q![k − i]q![k − i+ 1]q

β̃i

= − 1
[k + 1]q

+
[k]q!
[2k]q!

k−1∑
i=1

(−1)[2k]q!
[i]q![k − i+ 1]q!

· [i]q!
[2i]q!

∑
p∈C(i)

(−1)`(p)

[
2i

i1 + 1, i2 + 1, . . . , i`(p) + 1, 1, . . . , 1

]
q

,

where the multinomial is (i1, i2, . . . , i`(p)) = p, followed by (i− `(p)) 1s, by the induction hypothesis.
Now rearrange factors to produce

β̃k = − 1
[k + 1]q

+
[k]q!
[2k]q!

k−1∑
i=1

∑
p∈C(i)

−(−1)`(p)

[
2k

k − i+ 1, i1 + 1, i2 + 1, . . . , i`(p) + 1, 1, . . . , 1

]
q

.

The q-multinomial coefficient within the sum is indeed well-defined since our hypothesis implies

(i1 + 1) + (i2 + 1) + · · ·+ (i`(p) + 1) + i− `(p) = 2i,

hence
(k − i+ 1) + (i1 + 1) + (i2 + 1) + · · ·+ (i`(p) + 1) + k − `(p) = 2k.

We rewrite the term that precedes the summation to obtain

− 1
[k + 1]q

=
[k]q!
[2k]q!

(−1)1
[2k]q!

[k + 1]q!
=

[k]q!
[2k]q!

(−1)1
[

2k
k + 1, 1, . . . , 1

]
q

,

where the string of ones in the multinomial is of length k − 1. Hence this term corresponds to the
exceptional singleton composition (k).

All other compositions of k have multiple terms, and thus can be written uniquely in the form
(k − i, i1, i2, . . . , im), where (i1, i2, . . . , im) is a composition of i and 1 ≤ i ≤ k − 1. We see that the
length of the composition of k is one more than the length of the corresponding composition of i.
The statement for k thus follows by reindexing the double sum as a single sum over compositions of
k.

�

Note 4.3. In Example 4.1 we noted the existence of certain integer coefficients multiplying the
rational functions. The second of these two formulas clearly shows that the values of these coefficients
are the NC(p)—they count the number of ordered compositions for each partition; and the signs of
these coefficients are (−1)`(p)—they express the parity of the length of each partition.



8 O-YEAT CHAN AND DANTE MANNA

The previous theorem has the following immediate consequence, from taking the limit as q → 1.

Corollary 4.1. For all n ≥ 1,

Bn =
n!

(2n)!

∑
p∈C(n)

(−1)`(p)

(
2n

k1 + 1, k2 + 1, . . . , k`(p) + 1, 1, . . . , 1

)
(4.3)

=
n!

(2n)!

∑
p∈P(n)

(−1)`(p)NC(p)
(

2n
k1 + 1, k2 + 1, . . . , k`(p) + 1, 1, . . . , 1

)
,(4.4)

where in the sum we have (k1, k2, . . . , k`(p)) = p in our multinomial, followed by (n− `(p)) 1s.

Remark 4.3. This kind of closed form for the Bernoulli numbers has been described in detail by
Woon [15], who carefully constructs a tree and then sums its nodes to get a similar expression.
However, no such result for the βn appears in the literature.

4.2. Properties of F (t, q). At this point we turn to the properties of the generating function
F (t, q), starting with a recursion. From the representation (3.1), we have that

F (t, q)
(t; q)∞

− F (t, q) =
t

1− q
.

After replacing t by tq, we have

F (tq, q)
1− t− (t; q)∞

1− (t; q)∞
=

tq

1− q
· (tq; q)∞(1− t− (t; q)∞)

(1− (tq; q)∞)(1− (t; q)∞)
= qF (t, q).

To obtain the last equality we use (1− t)(tq; q)∞ = (t; q)∞. But

1− t− (t; q)∞
1− (t; q)∞

= 1− t

1− (t; q)∞
= 1− ((1− q)F (t; q) + t) .

Therefore,
1− t
1− q

F (tq, q)− q

1− q
F (t, q) = F (tq, q)F (t, q).(4.5)

Equating coefficients of tn we get the following identity.

Proposition 4.2. For all n ≥ 1,

(4.6)
1

1− q

(
β̃nq

n

(q; q)n
− β̃n−1q

n−1

(q; q)n−1

)
− qβ̃n

(1− q)(q; q)n
=

n∑
k=0

β̃kq
kβ̃n−k

(q; q)k(q; q)n−k
.

Proposition 4.2 is a q-analogue of the quadratic recurrence [7, Eq. 24.14.2]
n∑

k=0

(
n

k

)
BkBn−k = (1− n)Bn − nBn−1.

It is worth noting that the recursion (4.5) does not lead to a continued fraction expansion for F .
Indeed, isolating F (t, q) gives

F (t, q) =

1− t
1− q

F (tq, q)

F (tq, q) +
q

1− q
=

1− t
1− q +

q

F (tq, q)

,

which, when iterated, recovers the definition of F .

We may also derive a differential equation for F (t, q). If we differentiate both sides of (3.1) with
respect to t, we find that

∂

∂t
F (t, q) =

F (t, q)
t
− t

1− q
· (t; q)∞

(1− (t; q)∞)2
∑
n≥0

qn

1− tqn
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=
F (t, q)
t

1− (1− q)F (t, q)
(t; q)∞

∑
n,k≥0

qn+kntk


=
F (t, q)
t

1− (1− q)F (t, q)
(t; q)∞

∑
k≥0

tk

1− qk+1

 .

Noting that
F (t, q)
(t; q)∞

= F (t, q)− t

1− q
,

we have

∂

∂t
F (t, q) = F (t, q)

1− F (t, q)
t

+
1

1− q
+ (t− (1− q)F (t, q))

∑
k≥1

tk−1

1− qk+1

 .

If we differentiate with respect to q, we instead obtain

∂

∂q
F (t, q) =

1
1− q

F (t, q)− t

1− q
(t; q)∞

(1− (t; q)∞)2
∑
n≥0

ntqn−1

1− tqn
.

Combining this with the t derivative we get the partial differential equation

Proposition 4.3.

(4.7)
∂F

∂t

∑
n≥0

ntqn−1

1− tqn
− ∂F

∂q

∑
n≥0

qn

1− tqn
= F (t, q)

∑
n≥0

nqn−1

1− tqn
− 1

1− q
∑
n≥0

qn

1− tqn

 .

4.3. Analytic Properties of β̃n and its Zeroes and Poles. We now turn our attention to the
study of β̃n as rational functions of q. The degree of a rational function r(x) = a(x)

b(x) is commonly
defined as the maximum of the polynomial degrees of numerator and denominator; that is, deg(r) :=
max{deg(a),deg(b)}. On the other hand, we define the total degree Tdeg(r) as the difference in
degrees: Tdeg(r) = deg(a)− deg(b). The total degree of a rational function gives an asymptotic as
x→∞, since r(x) ∼ xTdeg(r).

Proposition 4.4. (Properties of Tdeg(r).) For any rational functions r1, r2,
(a) Tdeg(r1r2) = Tdeg(r1) + Tdeg(r2),
(b) Tdeg(r1 + r2) = max{Tdeg(r1),Tdeg(r2)}, provided that Tdeg(r1) 6= Tdeg(r2),
(c) For all 0 ≤ k ≤ n, Tdeg([nk ]q) = k(n− k) (as rational functions in the variable q).

Proof. (a) and (b) are straightforward.
(c). Using (a), we see that

Tdeg([nk ]q) = Tdeg([n]q!)− Tdeg([k]q!)− Tdeg([n− k]q!)

(n+ 1)n
2

− (k + 1)k
2

− (n− k + 1)(n− k)
2

= k(n− k).

�

Proposition 4.5. For all n ≥ 0,

Tdeg(β̃n) =
n(n− 3)

2
as a rational function in the variable q.



10 O-YEAT CHAN AND DANTE MANNA

Proof. We use strong induction on n.

Since β̃0 = 1, Tdeg(β̃0) = 0, so the base case holds.

For the inductive step, suppose that Tdeg(β̃k) = k(k−3)
2 for all 0 ≤ k ≤ n − 1. Then by the

recurrence relation (3.2) we have

Tdeg(β̃n) = Tdeg([n+ 1]qβ̃n)− n = Tdeg

(
n−1∑
k=0

[
n+ 1
k

]
q

β̃k

)
− n.

By the inductive hypothesis,

Tdeg

([
n+ 1
k

]
q

β̃k

)
= k(n+ 1− k) +

k(k − 3)
2

= −1
2
k2 +

(
n− 1

2

)
k

which is an increasing function of k for 0 ≤ k ≤ n− 1. Thus Proposition 4.4(b) applies and we find
that

Tdeg(β̃n) = max
0≤k≤n−1

(
−1

2
k2 +

(
(n− 1

2

)
k

)
− n

= −1
2

(n− 1)2 +
(
n− 1

2

)
(n− 1)− n =

n(n− 3)
2

.

�

Since it is well-known that the odd indexed Bernoulli numbers B2n+1 = 0 for n ≥ 1, we expect
that β̃2n+1 has a zero at q = 1 for n ≥ 1. Looking at the list of the β̃n for n > 1, we observe that
the zero at q = 1 is simple, and that there is also a zero of order n at q = 0 for all n > 1. We now
prove these facts by taking limits with the generating function.

Theorem 4.4. The β̃n have a zero of order exactly n at q = 0 except at n = 1.

Proof. Recall the generating function

F (t, q) =
∑
n≥0

β̃n
tn

(q; q)n
=

t

1− q
(t; q)∞

1− (t; q)∞
.

Replacing t by t/q we find that

β̃0 + β̃1
t

q(1− q)
+
∑
n≥2

β̃n

qn

tn

(q; q)n
= 1− t

q(1− q2)
+
∑
n≥2

β̃n

qn

tn

(q; q)n

=
t

q(1− q)
(1− tq−1)(t; q)∞

1− (1− tq−1)(t; q)∞
.

Thus ∑
n≥2

β̃n

qn

tn

(q; q)n

=
t

q(1− q)
(1− tq−1)(t; q)∞

1− (1− tq−1)(t; q)∞
− 1 +

t

q(1− q2)

=
t

1− q2

(
(tq−1; q)∞(1 + q)− t−1q(1− q2)(1− (tq−1; q)∞) + (1− (tq−1; q)∞)

q − (q − t)(tq; q)∞

)
=

t

1− q2

(
(tq−1; q)∞

(
q + t−1q(1− q2)

)
+ 1− t−1q(1− q2)

q − (q − t)(t; q)∞

)
.(4.8)
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To prove that the order is exactly n, use the fact that

lim
q→0+

q(tq−1; q)∞ = −t(1− t)

to obtain

lim
q→0−

∑
n≥2

β̃n

qn

tn

(q; q)n
= t

(
−t(1− t) + t−1(−t)(1− t) + 1

t(1− t)

)
= −1− t+

1
1− t

.

We have thus proven a slightly stronger statement than required, that is, limq→0 β̃n/q
n = 1, for

all n ≥ 2. �

To prove that the β̃2n+1 have a simple zero at q = 1, we will also prove a stronger statement than
required. In fact, the statement we will prove will provide a connection to even Bernoulli numbers.
To isolate the β̃2n+1 in the generating function, we write

∞∑
n=1

β̃2n+1
tn

(q; q)n
=

1
2

[F (t, q)− F (−t, q)]− β̃1
t

1− q

=
1
2
· t

1− q

((
1

(t; q)∞
− 1
)−1

+
(

1
(−t; q)∞

− 1
)−1

+
2

1 + q

)
.

Therefore,
∞∑

n=1

lim
q→1−

(
β̃2n+1

1− q

)
t2n+1

(2n+ 1)!
= lim

q→1−

(
t

2(1− q)
·N(q)

)
,(4.9)

with

N(q) :=
(

1
(t(1− q); q)∞

− 1
)−1

+
(

1
(−t(1− q); q)∞

− 1
)−1

+
2

1 + q
.(4.10)

Note that
lim

q→1−
N(q) =

1
et − 1

+
1

e−t − 1
+ 1 = 0,

and so by l’Hôpital’s Rule

lim
q→1−

(
t

2(1− q)
·N(q)

)
= − t

2
N ′(1),(4.11)

provided N ′(1) exists and is finite (as a left-sided derivative).
In evaluating N ′(1), it is convenient to separately evaluate the derivative of a related object as a

lemma.

Lemma 4.1.

1
(t(1− q); q)∞

· d
dq

((t(1− q); q)∞) =
∞∑

n=1

(1− q)n(1− qn)
(1− qn+1)2

tn+1(4.12)

Proof. The left-hand side is the logarithmic derivative

d

dq
(log(t(1− q); q)∞) =

∞∑
k=0

d
dq (1− qk(1− q)t)

1− qk(1− q)t

=
∞∑

k=1

−kqk−1t

1− qk(1− q)t
+
∞∑

k=0

(k + 1)qkt

1− qk(1− q)t

=
∞∑

k=1

kqk−1t

(
−1

1− qk(1− q)t
+

1
1− qk−1(1− q)t

)
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=
∞∑

k=1

kqk−1t

∞∑
n=1

(qnk−n − q(nk−n)+n))(1− q)ntn

=
∞∑

n=1

(1− q)n(1− qn)tn+1
∞∑

k=1

k(qn+1)k−1

=
∞∑

n=1

(1− q)n(1− qn)
(1− qn+1)2

tn+1.

�

Now we state and prove the theorem on zeroes at q = 1.

Theorem 4.5. For all n ≥ 1,

lim
q→1−

(
β̃2n+1

1− q

)
=
(
n2 − 1

4

)
B2n.

Proof. Using (4.10) and (4.12),

lim
q→1−

N ′(q) = lim
q→1−

[
((t(1− q); q)∞)−1

(((t(1− q); q)∞)−1 − 1)2
·
∞∑

n=1

(1− q)n(1− qn)
(1− qn+1)2

tn+1

+
((−t(1− q); q)∞)−1

(((−t(1− q); q)∞)−1 − 1)2
·
∞∑

n=1

(1− q)n(1− qn)
(1− qn+1)2

(−t)n+1 − 2
(1 + q)2

]
.

In each of the infinite sums above, because of the factor of (1 − q)n in the numerator, all but the
n = 1 terms will vanish in the limit. Therefore, our one-sided derivative exists:

N ′(1) =
et

(et − 1)2
· t

2

4
+

e−t

(e−t − 1)2
· t

2

4
− 1

2
=
t2

4

(
2et

(et − 1)2

)
− 1

2
.(4.13)

Using (4.13), along with (4.9) and (4.11), we get:
∞∑

n=1

lim
q→1−

(
β̃2n+1

1− q

)
t2n+1

(2n+ 1)!
= − t

4

(
t2et

(et − 1)2
− 1
)

=
t3

4

(
1
t2
− et(et − 1)− et(et + 1)

2(et − 1)2

)
=
t3

4
· d
dt

(
−1
t

+
1

et − 1
+

1
2

)
=
t3

4
· d
dt

(
1
t

∞∑
n=1

B2n
t2n

(2n)!

)

=
∞∑

n=1

B2n(2n− 1)(2n+ 1)
4

t2n+1

(2n+ 1)!
.

In the step where we expand in a series, we appeal to fact that the expanded function is even.
�

Aside from being interesting in its own right, because B2n 6= 0 for all n ≥ 1, this theorem has our
desired result as an immediate corollary.

Corollary 4.2. For all n ≥ 1, β̃2n+1 has a zero of order 1 at q = 1.

This also constitutes a point of similarity with Carlitz’s q-Bernoulli numbers. Both the previous
theorem and its corollary are similar to properties of the βn [3, Sec. 7, Thm. (iii)].

We close this section with a theorem on the poles of β̃n.
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Theorem 4.6. For all n ≥ 1, β̃n has simple poles at the primitive n+ 1st roots of unity.

Proof. Fix n ≥ 1. We apply the explicit formula (4.2) to find that the term corresponding to the
singleton partition (n) gives rise to a term −1/[n + 1]q in the sum. In the remaining partitions all
the parts are less than n and so ki + 1 ≤ n in the rest of the summands. Thus, cancelling the [2n]q!
we see that the summands are all of the form

(−1)`(p)NC(p)
[n]q!

[k1 + 1]q! · · · [k`(p) + 1]q!

which are analytic at primitive n + 1st roots of unity. Thus we have simple poles at ζn+1 arising
from the −1/[n+ 1]q term. �

5. q-powers and q-Bernoulli polynomials

One of the most important classical applications of the Bernoulli numbers is the power sum
formula, which involves the Bernoulli polynomials Bn(x) given by

Bn(x) =
n∑

k=0

(
n

k

)
Bk x

n−k,(5.1)

and satisfying the generating function∑
n≥0

Bn(x)
tn

n!
=

text

et − 1
.(5.2)

The power sum formula can then be expressed as [5, Eq. 24.4.7]

Sn(m) =
1

n+ 1
(Bn+1(m)−Bn+1), where Sn(m) :=

m−1∑
k=1

kn,(5.3)

valid for all positive integers m and n. In this section we show that our sequence β̃n satisfy an
analogue of (5.3), with an appropriate q-analogue of the Bernoulli polynomials as well as that of an
nth power. Let us first state the result.

Theorem 5.1. For all integers n, x ≥ 1, we have

σ̃n(x) =
1

[n+ 1]q
(β̃n+1(x)− β̃n+1),

where

σ̃n(x) :=
x−1∑
k=1

k(n)
q ,

β̃n(x) :=
n∑

k=0

[
n
k

]
q

β̃kx
(n−k)
q ,

and

k(n)
q :=

∑
i1,...,ik≥0

i1+i2+···+ik=n

[
n

i1, i2, . . . , ik

]
q

.

Remark 5.2. It is clear from the multinomial theorem that limq→1 k
(n)
q = kn for all positive integers

k, and therefore Theorem 5.1 indeed specializes to (5.3) in the limit.

Before we prove Theorem 5.1, we need to first derive the generating functions for k(n)
q and β̃n(x).
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Proposition 5.1. For all integers k ≥ 1,

(5.4)
∑
n≥0

k(n)
q

tn

(q; q)n
=
(

1
(t; q)∞

)k

.

Proof. Expanding the right-hand side by the q-binomial theorem (1.4) we find that(
1

(t; q)∞

)k

=

∑
i1≥0

ti1

(q; q)i1

 · · ·
∑

ik≥0

tik

(q; q)ik


=
∑
n≥0

∑
i1,...,ik≥0

i1+···+ik=n

(q; q)n

(q; q)i1 · · · (q; q)ik

· tn

(q; q)n

=
∑
n≥0

k(n)
q

tn

(q; q)n
.

�

Using (5.4) we may in fact extend the definition of k(n)
q to all real numbers k. This observation

justifies the name q-Bernoulli polynomial for β̃n(x). The next proposition gives us the generating
function for β̃n(x).

Proposition 5.2. For x ∈ R we have

(5.5)
∑
n≥0

β̃n(x)
tn

(q; q)n
=

t

1− q
·

( 1
(t;q)∞

)x

1
(t;q)∞

− 1
.

Proof. We apply the definition of β̃n(x) to the generating function and reindex (replace n by n+ k)
to find ∑

n≥0

β̃n(x)
tn

(q; q)n
=
∑
n≥0

tn

(q; q)n

n∑
k=0

[
n
k

]
q

β̃kx
(n−k)
q ,

=
∑
n≥0

x(n)
q

tn

(q; q)n

∑
k≥0

β̃k
tk

(q; q)k

=
(

1
(t; q)∞

)x

· t

1− q

(
1

1
(t;q)∞

− 1

)
,

as desired. �

We note that, as usual, upon replacing t by t(1 − q) and taking the limit as q tends to 1, we
recover the classical generating function (5.2). We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let x ∈ N. We construct the generating function for the right-hand side
(recall n ≥ 1) and simplify∑

n≥1

1
[n+ 1]q

(
β̃n+1(x)− β̃n+1

) tn

(q; q)n
=

1− q
t

∑
n≥1

(
β̃n+1(x)− β̃n+1

) tn+1

(q; q)n+1

=
1− q
t

∑
n≥0

(
β̃n(x)− β̃n

) tn

(q; q)n
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where we used the fact that β̃0(x) = β̃0 = 1 in the last equality. Applying (5.5), (3.1), and (5.4) we
obtain

∑
n≥1

1
[n+ 1]q

(
β̃n+1(x)− β̃n+1

) tn

(q; q)n
=

(
1

(t;q)∞

)x

− 1
1

(t;q)∞
− 1

=
x−1∑
k=0

(
1

(t; q)∞

)k

=
x−1∑
k=0

∑
n≥0

k(n)
q

tn

(q; q)n
=
∑
n≥0

σ̃n(x)
tn

(q; q)n
,

as required. �

6. q-Stirling numbers

The q-analogue of nth powers k(n)
q defined in the previous section opens the door to many ex-

tensions of classical identities to our world of β̃n. In this section, we prove a generalization of [6,
Eq. 24.6.9]:

(6.1) Bn =
n∑

j=0

(−1)jj!
j + 1

S(n, j) =
n∑

j=0

1
j + 1

j∑
k=0

(−1)k

(
j

k

)
kn,

where S(n, j) are the Stirling numbers of the second kind. They satisfy the generating function

xn =
n∑

k=0

x(x− 1) · · · (x− k + 1)S(n, k),(6.2)

and closed form

S(n, k) =
1
k!

k∑
j=0

(−1)k−j

(
k

j

)
jn.

To prove our generalization of (6.1), we define S̃(n, k), a q-analogue of S(n, k), based on x
(n)
q via

the explicit formula above. Let

(6.3) S̃(n, k) :=
1
k!

k∑
j=0

(−1)k−j

(
k

j

)
j(n)
q ,

and S̃(0, 0) := 1.

(6.3) may be compared with the natural analogue within the Carlitz framework in [3], given by

an,k :=
q−(k

2)

[k]q!

k∑
j=0

(−1)jq(
i
2)
[
k
j

]
q

([k − j]q)n.

The an,j appear in a closed form for the βn, replacing S(n, j) in Carlitz’s extension of (6.1). They
were further generalized by Gould [10]. An overview is presented in [9], where identities concerning
q-extensions of both Bernoulli and Stirling numbers are generated via q-difference equations.

Our q-Stirling numbers S̃(n, k) satisfy an analogue of (6.2):

Proposition 6.1. For all nonnegative integers n and fixed real x,

x(n)
q =

n∑
k=0

(x)(x− 1) · · · (x− k + 1) S̃(n, k).(6.4)
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Proof. By (5.4) and the binomial expansion

yx = ((y − 1) + 1)x =
∑
k≥0

(
x

k

)
(y − 1)k,(6.5)

with y =
1

(t; q)∞
, we have

∑
n≥0

x(n)
q

tn

(q; q)n
=
(

1
(t; q)∞

)x

=
∑
k≥0

(
x

k

)(
1

(t; q)∞
− 1
)k

,

valid on sufficiently small discs 0 < |q|, |t| < ε for any real x. Now we expand the kth power and
applying (5.4) again, we obtain

∑
n≥0

x(n)
q

tn

(q; q)n
=
∑
k≥0

(
x

k

) k∑
j=0

(−1)k−j

(
k

j

)(
1

(t; q)∞

)j

=
∑
k≥0

(
x

k

) k∑
j=0

(−1)k−j

(
k

j

)∑
n≥0

j(n)
q

tn

(q; q)n
.

However, the innermost sum actually begins at n = k since the lowest power of t in the expansion
of
(
(t; q)−1

∞ − 1
)k is tk. Therefore,

∑
n≥0

x(n)
q

tn

(q; q)n
=
∑
k≥0

(
x

k

) k∑
j=0

(−1)k−j

(
k

j

)∑
n≥k

j(n)
q

tn

(q; q)n

=
∑
n≥0

 n∑
k=0

(
x

k

) k∑
j=0

(−1)k−j

(
k

j

)
j(n)
q

 tn

(q; q)n

=
∑
n≥0

(
n∑

k=0

(x)(x− 1) · · · (x− k + 1) S̃(n, k)

)
tn

(q; q)n
.

The result follows by equating coefficients of tn/(q; q)n and analytically continuing the identity to
the entire unit circle |q| < 1. �

Hidden in the above proof is the fact that for fixed k the generating function for S̃(n, k) may be
expressed as

∑
n≥0

S̃(n, k)
tn

(q; q)n
=

1
k!

k∑
j=0

(−1)k−j

(
k

j

)(
1

(t; q)∞

)k

=
1
k!

(
1

(t; q)∞
− 1
)k

.

Since the power series expansion of this function begins at tk, we have the following result.

Proposition 6.2. For all integers n ≥ 0, if k > n then S̃(n, k) = 0.

Since S(n, k) = 0 for k > n, we would at least expect our q-analogue to vanish under the limit
q → 1. It is somewhat surprising that as functions of q they are identically zero. However, Carlitz’s
q-Stirling numbers an,k also vanish for k > n [3].

To obtain the desired generalization of (6.1), we first prove an evaluation of the q-analogue of the
middle expression in (6.1) in terms of a sum involving β̃n. This will eventually lead to the closed
form for β̃n we are after.
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Lemma 6.1. For all n ∈ N, we have
n∑

j=0

(−1)jj!
j + 1

S̃(n, j) =
n∑

k=0

[
n
k

]
q

β̃n−k
(q; q)k

[k + 1]q(k + 1)
.(6.6)

Proof. We begin with the generating function

T (x, t, q) :=
∞∑

n=0

 n∑
j=0

S̃(n, j)
j + 1

x(x− 1) · · · (x− j)

 tn

(q; q)n
.(6.7)

By Proposition 6.2, the inner sum can be extended to infinity. Applying (6.3) and exchanging the
order of summation, we have

T (x, t, q) =
∞∑

n=0

∞∑
j=0

1
(j + 1)j!

j∑
m=0

(−1)j−m

(
j

m

)
m(n)

q x(x− 1) · · · (x− j) tn

(q; q)n

=
∞∑

j=0

j∑
m=0

(−1)j−m

(
j

m

)(
x

j + 1

) ∞∑
n=0

m
(n)
q tn

(q; q)n

=
∞∑

j=0

(
x

j + 1

) j∑
m=0

(−1)j−m

(
j

m

)(
1

(t; q)∞

)m

=
∞∑

j=0

(
x

j + 1

)(
1

(t; q)∞
− 1
)j

=
1

1
(t;q)∞

− 1

∞∑
j=1

(
x

j

)(
1

(t; q)∞
− 1
)j

.

Add and subtract the j = 0 term for this sum, and then use the binomial expansion (6.5) again to
obtain

T (x, t, q) =
( 1
(t;q)∞

)x − 1
1

(t;q)∞
− 1

.

Next we divide by x and take the limit x→ 0. By l’Hôpital’s Rule,

lim
x→0

T (x, t, q)
x

=
ln( 1

(t;q)∞
)

1
(t;q)∞

− 1
.(6.8)

Expanding the numerator in a series, we get

ln
(

1
(t; q)∞

)
= −

∞∑
k=0

ln
(
1− qkt

)
=

∞∑
k=0

∞∑
j=1

(qkt)j

j
=

∞∑
j=1

tj

j

∞∑
k=0

(qj)k

=
∞∑

j=1

tj

j(1− qj)
=

t

(1− q)
·
∞∑

j=0

tj

(j + 1)[j + 1]q
.

Combine this with (6.8) and (3.1) to get

lim
x→0

T (x, t, q)
x

=
∞∑

j=0

tj

(j + 1)[j + 1]q
· F (t, q).

Then, we multiply power series on the right, and combine the result with (6.7) and (3.1), to get the
desired formula. �

We now systematically solve (6.6) for β̃n. The first step is to get rid of β̃n−1. Isolating β̃n and
separating the β̃n−1 term from the sum gives

(6.9) β̃n =
n∑

j=0

(−1)jj!
j + 1

S̃(n, j)−
[
n
1

]
q

β̃n−1
(q; q)1
[2]q(2)

−
n∑

k=2

[
n
k

]
q

β̃n−k
(q; q)k

[k + 1]q(k + 1)
.
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Substitute β̃n−1 by using (6.9), with n replaced by n− 1, to get

β̃n =
n∑

j=0

(−1)jj!
j + 1

S̃(n, j)−
[
n
1

]
q

(q; q)1
[2]q(2)

n−1∑
j=0

(−1)jj!
j + 1

S̃(n− 1, j)−
n∑

k=2

[
n
k

]
q

β̃n−k
(q; q)k

[k + 1]q(k + 1)

+
[
n
1

]
q

(q; q)1
[2]q(2)

n−1∑
k=1

[
n− 1
k

]
q

β̃n−1−k
(q; q)k

[k + 1]q(k + 1)
.

Reindex the sum on the second line and combine it with the other sum over k, completing the first
step of the manipulation:

β̃n =
n∑

j=0

(−1)jj!
j + 1

S̃(n, j) +

(
−
[
n
1

]
q

(q; q)1
[2]q(2)

)
n−1∑
j=0

(−1)jj!
j + 1

S̃(n− 1, j)

+
n∑

k=2

β̃n−k

(
−
[
n
k

]
q

(q; q)k

[k + 1]q(k + 1)
+
[

n
1, k − 1, n− k

]
q

(q; q)1
[2]q(2)

(q; q)k−1

[k]q(k)

)
.

Next, we remove βn−2 from the formula, by using (6.9) again, this time with n replaced by n− 2.
The result of this step is

β̃n =
n∑

j=0

(−1)jj!
j + 1

S̃(n, j) +

(
−
[
n
1

]
q

(q; q)1
[2]q(2)

)
n−1∑
j=0

(−1)jj!
j + 1

S̃(n− 1, j)

+

(
−
[
n
2

]
q

(q; q)2
[3]q(3)

+
[

n
1, 1, n− 2

]
q

(q; q)1
[2]q(2)

(q; q)1
[2]q(2)

)
n−2∑
j=0

(−1)jj!
j + 1

S̃(n− 2, j)

+
n∑

k=3

β̃n−k

(
−
[
n
k

]
q

(q; q)k

[k + 1]q(k + 1)
+
[

n
1, k − 1, n− k

]
q

(q; q)1
[2]q(2)

(q; q)k−1

[k]q(k)

+
[

n
2, k − 2, n− k

]
q

(q; q)2
[3]q(3)

(q; q)k−2

[k − 1]q(k − 1)
−
[

n
1, 1, k − 1, n− k

]
q

(
(q; q)1
[2]q(2)

)2 (q; q)k−1

[k]q(k)

)
.

Continuing in this way, we eliminate the sum indexed by k, which leaves

β̃n =
n∑

m=0

Cm,n

n−m∑
j=0

(−1)jj!
j + 1

S̃(n−m, j)

where

Cm,n :=
∑

p=(i1,i2,··· ,is)∈C(m)

(−1)s

[
n

i1, i2, . . . , is, n−m

]
q

·
s∏

`=1

(q; q)i`

[i` + 1]q(i` + 1)
.

The q-multinomial in the coefficients Cm,n can be cancelled with part of the product, giving us

Cm,n =
∑

p=(i1,i2,··· ,is)∈C(m)

(−1)s (q; q)n

(q; q)n−m
·

s∏
`=1

1
[i` + 1]q(i` + 1)

.

Notice that one factor inside the sum does not depend on p, and so can be factored outside the sum.
The remaining part is independent of n. Thus we obtain the following theorem.

Theorem 6.1. (Closed form for β̃n) For all n ∈ N,

β̃n =
n∑

m=0

(qn−m+1; q)m cm

n−m∑
j=0

(−1)jj!
j + 1

S̃(n−m, j)
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=
n∑

m=0

(qn−m+1; q)m cm

n−m∑
j=0

1
j + 1

j∑
k=0

(−1)k

(
j

k

)
k(n−m)

q ,

where

cm :=
∑

p=(i1,i2,··· ,is)∈C(m)

s∏
`=1

−1
[i` + 1]q(i` + 1)

for m ≥ 0.

Remark 6.2. We remark that the factor (qn−m+1; q)m → 0 as q → 1, except when m = 0. Hence, this
closed form is indeed a q-analogue (6.1). This is another point of similarity to Carlitz’s q-analogue;
the βn also admit a formula relating them to the an,k, leading to closed form which is a double
sum [3, (6.3)]. Even though our closed form is a triple sum, the “additional” sum (cm) reveals yet
another combinatorial connection to integer compositions distinct from that in (4.1), our analogue
of Woon’s Theorem.

7. Concluding Remarks

Our motivation here was to apply the unified framework of Strodt operators from [2] to develop
a natural set of q-analogues to the Bernoulli numbers. More generally, we may define the q-moment
generating function of a distribution function g(x) will be given as

Q(t) :=
∞∑

n=0

µn
tn

(q; q)n
=
∫ ∞
−∞

g(x)
(xt; q)∞

dqx

The integral is a definite integral over the entire real line, where the bounds on the interval of
integration may be effectively limited by the support of the distribution function.

Under this framework, the generating function for the closely related q-Euler numbers would thus
be

E(t) :=
∞∑

n=0

En
tn

(q; q)n
=

1
Q(t)

,

where Q(t) is the q-moment generating function for the distribution corresponding to the Euler
numbers: the average of a pair of Dirac delta functions at −1 and 1 (n. b.: In [2], the authors used 0
and 1. However, this generated scaled Euler numbers, whereas using the values −1 and 1 produces
the numbers themselves.).

Q(t) =
∫ ∞
−∞

δ−1(x) + δ1(x)
2(xt, q)∞

dqx =
1

2(−t; q)∞
+

1
2(t; q)∞

so that

E(t) =
1

∞∑
n=0

1 + (−1)n

2
tn

(q; q)n

=
2(t2; q2)∞

(−t; q)∞ + (t; q)∞
.

This definition for q-Euler numbers is similar to that used in [11], where the authors provide a
combinatorial interpretation for their Taylor coefficients as power series in q, in terms of alternating
permutations. It would be interesting to provide a similar interpretation for the coefficients of β̃n

as Taylor series in the variable q.

We have also shown that the β̃n admit similar properties and closed forms to the major properties
and closed forms of the Carlitz sequence βn. The only major property of the βn that appears in
[3] which we have yet to prove is a (weaker) q-version of the von Staudt-Clausen Theorem. It is
possible that, using one of our closed forms, a similar theorem can be proven for the β̃n.
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We have provided only a very brief investigation into the analytic properties of β̃n. Below is a
plot of the zeros of β̃20/q

20 on the complex plane, whose shape is typical of general plots for the
zeroes of β̃n.
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From this plot and others, as well as explicit expressions for β̃n, we see there is a lot of structure
still to be proven. For example, the complex zeroes seem to cluster around the unit circle, with gaps
(repulsion) near the n + 1st roots of unity. We close with a collection of our observations in the
following conjecture.

Conjecture 7.1. For all n ≥ 1 we have

(a) β̃n has no zeroes on the negative real line.
(b) β̃n/q

n is self-reciprocal for n ≥ 2. That is, qn(n−1)/2β̃n(1/q) = β̃n(q). This means that for every
zero inside the unit circle there is a corresponding zero with the same multiplicity outside.

(c) The zeroes of β̃n/q
n of largest and smallest modulus are real.

(d) There is some small, positive function f(n) such that the complex zeroes |z| of β̃n satisfy 1 −
f(n) < |z|.
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