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the Stirling numbers of the second kind. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION, DEFINITIONS, AND 

The classical Jacobi polynomials PC”‘(z) of degree n in 5 (and 

and /3) are defined usually by 

PRELIMINARIES 

with parameters or indices a! 

ppqx:) : = 2 (-;) (“:“) (qy-* (zqqk 
k=O 

= (“;“)#I ( l-x 
-n,(Y+p+n+1;a+1;- 

> 2 ’ 

(1.1) 

The present investigation was completed during the third-named author’s visit to Tamkang University at Tamsui 
in April 2001. This work was supported, in part, by the Natural Sciences and Engineering Research Council of 
Canada under Grant 0GP0007353. 

0898-1221/02/$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. Typeset by -Q&W 
PII: SO898-1221(02)00277-S 



1540 W.-C. C. CHAN et al. 

where zF1 denotes the familiar (Gauss’s) hypergeometric function which corresponds to the spe 

cial case 

u-1=21=1, 

of the generalized hypergeometric function %F, with u numerator and w denominator parameters. 

These polynomials are orthogonal over the interval (-1,l) with respect to the weight function 

W(X) := (1 - z)Q(l +@; 

in fact, we have (cf., e.g., [l, p. 68, equation (4.3.3)]) 

I 
1 

(1 - z)“(l + z)~P~~~‘(z)P~~~‘(s) dx 
-1 

2a+P+lr(a + n -t l)r(p + n + 1) 

= n!(cu+p+2n+l)r(a+p+n+l) 

s 

m,n’ 
(1.2) 

(min{Na), WP)) > -1; m,n E No := NJ(O); N := {1,2,3,. . .}), 

where S,,, is the Kronecker delta. 

Many other members of the family.of classical orthogonal polynomials, including (for exam- 

ple) the Hermite polynomials H,(x), the Laguerre polynomials L?)(Z), the Bessel polynomi- 

als ~~(x;cu,p), the Gegenbauer (or ultraspherical) polynomials CL(x), the Legendre (or spheri- 

cal) polynomials P,(x), and the Chebyshev polynomials Tn(x) and Un(x) of the first and second 

kind, respectively, are special or limit cases of the Jacobi polynomials Pp"'(x). In particular, 

for the classical Laguerre polynomials L?)(x) defined by 

@(d:=~(;~;)~= (n;N)lFl(-n;~+l;x), 
k=O 

it is easily observed that [1, p. 103, equation (5.3.4)] 

L?)(Z) = lim ,ii,_,{PY(l-$)}, 

(1.3) 

(1.4) 

which can indeed be applied to deduce properties and characteristics of the Laguerre polynomials 

from those of the Jacobi polynomials. 

For the Jacobi polynomials PF") (x), it is known that (cf., e.g., [2, p. 170, equation 10.8(17)]) 

-$ { P$Q) (x + 2t)) 

= 

1 

( 
nfpin+k 

> 
Ic! P;:;k’0+k)(x+22t), (Ic=O,l,...,n), (1.5) 

0, (k = n -I- l,.n + 2,n + 3,. . . ). 

Thus, as an immediate consequence of the Taylor expansion of 

P$Q) (x + 29 

in powers oft, we obtain 

a+P+n+k 
k > 

P;:;k?o+k)(x)tk = ppqx + 2t). (1.6) 
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Other linear generating functions of the type (1.6), in which the summation index appears in the 
Jacobi polynomials’ parameters cr and /3, include the known results (cf., e.g., [3,4]) 

and 

which are, in fact, equivalent, since [l, p. 59, equation (4.1.3)] 

P?‘@‘(Z) = (-l)V$‘“‘(-2). 

As a matter of fact, by appealing to the known relationship [l, p. 64, equation (4.22.1)] 

which, in view of (1.9), can be rewritten in the form: 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

. 
each of the formulas (1.7) and (1.8) can be shown to be equivalent also to the generating func- 
tion (1.6). Moreover, upon reversing the order of the sum in (1.6)-(1.8), if we replace cy, p, 
and t (wherever necessary) by cx - n, ,B - n, and t-l, respectively, we obtain the following further 
equivalent forms of these generating functions: 

(1.12) 

(1.13) 

c (;)(” ; “) -1p~-W4(z)t” = (” ; “> -‘p p,$-d-4 (x + 2t-1) , 

2 (3 (” ;k)-l$.“i’(z)tk = (“; n)-‘(1+ tpp-n) (Z) , 

and 

2 (3 (~~k)-‘p!,-k”)(z)t* =(-l)“(p;n)-l(I - t)“Pp-“>P’ (-E) ) (1.14) 

respectively. 
In view of several known hypergeometric representations for the classical Jacobi polynomials 

(cf., e.g., [5, p. 91, Problem IS]), it is not difficult to show that each of these last results (1.12)- 
(1.14) (and hence, also (1.6)-(1.8)) . 1s a special case of the familiar hypergeometric generating 
function (cf. [6, p. 62, equation (25)]; see also [5, p. 138, equation 2.6(8)]) 

u+d?,(-km,. . . ,a,; bl,. . . , b,; z)t” 

= (1+ t)X u+~Fv -&al ,..., a,;bl ,..., bv+- 
1+t 

(1.15) 

when 
?J=vtil and x = 71 (n E No). 
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More generally, for the hypergeometric polynomials 

q[%,...,GL;bl , . . . , b, : z] := m+uFu [A(m; -n), al,. . . , a,; bI,. . . , b,; X] , (1.16) 

where, for convenience, A(m; X) abbreviates the array of m parameters 

x x+1 X+m-1 
-, -, . . . ) 
m m m 

(m E N, 

it is known that (cf. [7, p. 187, equation (55)]; see also [5, p. 136, equation 2.6(2)]) 

B,m[al I..., u,;bl,..., b,:z]tk 

= (1 + tp A(m;-X),al,...,a,;bl,...,b,;x , 
(m E W; ItI < 1; X E @), 

which, for m = 1, reduces immediately to (1.15). 

For X = n (n E NO), the hypergeometric generating function (1.17) assumes the form: 

II co k=O 

l Br_k[al,..., u,;bl,..., b,: X]t” 

=(1+t)nt3; al ,..., u,;bl,..., b,:+], 

(1.17) 

(1.18) 

(m E N; n E NO), 

which obviously contains, as its special cases, numerous generating functions for the Jacobi, 

Laguerre, and many other hypergeometric polynomials. 

In this paper, we first make use of the general formula (1.18) with a view to deriving a class 

of bilinear, bilateral, and mixed multilateral generating functions for the hypergeometric poly- 

nomials defined by (1.16). We then apply these generating functions in order to deduce the 

corresponding results for the Jacobi and Laguerre polynomials. Several linear generating func- 

tions for these polynomials as well as for some multivariable extensions of the Jacobi and Laguerre 

polynomials, which were investigated in recent works, are also considered briefly. 

2. APPLICATIONS OF THE GENERAL FORMULA (1.18) 

Making use of the general formula (1.18), we first prove the following. 

THEOREM 1. Corresponding to an identically nonvanishing function a,( yr , . . . , ys) of s (real or 

complex) variables yi , . . . , ys (s E IV) and of (complex) order p, let 

In/s1 

A:;,,[X;Yl,... ,Ys;al:= &‘b fip+pk (Yl,...,Ys) 
k=O 

‘a,m_q, [al + PI,%.. . , &I + ,d; bl + elk,. . . , b, + a,k : x] zk, 

(Ak#O; n,IcENo; m,p,qEN), 

where ~1,. . . , pu and ui, . . . , uU are suitable complex parameters. Suppose also that 

Q$$%Y~,...,Y,;~) := c 4 flfi+p~(~~,...,~s) 

(2.1) 

P-2) 
‘a;-, [al + pli,. . .,u,+p,l;bl+olI ,..., b,+o,l:x]z’. 
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Then 

k=O 

yS;Z)tk=(l+t)nAgi,q ~'Yl'...'Ysir(~)q], (2.3) 

provided that each member of (2.3) exists. 

REMARK 1. In each of our definitions (2.1) and (2.2), as well as in similar situations elsewhere 
in this paper, the product of the essentially arbitrary coefficients Ak # 0 (k E NO) and the 

identically nonvanishing functions 

fl,+,k hl, . . . , Ys) (k E No; p, s E N; p E C) 

can indeed be notationally merged into one set of essentially arbitrary (and nonvanishing) co- 

efficients depending on the order I_L and one, two, or more variables. However, with a view to 
applying such results as (2.3) above to derive mu&linear and multilate.ral generating functions 

involving simpler special functions of one, two, or more variables, we find it to be convenient to 

specialize Al, and fi2, individually as well as separately (and in a manner dictated by the problem). 

REMARK 2. The additional hypothesis surrounding assertion (2.3) of Theorem 1, as also such 

hypotheses occurring in conjunction with other assertions made in this paper, is meant to guaran- 

tee that exceptional parameter (and variable) values which would render either or both members 
of (2.3) invalid or undefined are tacitly excluded. 

PROOF OF THEOREM 1. For convenience, let S(x,t) denote the first member of assertion (2.3). 
Then, upon substituting for the polynomials 

q$%Yl,...,YS;z) 

from definition (2.2) into the left-hand side of (2.3), we obtain 

’ ap-k [al + Pll,. . . , au + pd; bl -k 011,. . . , b, + U,l : X] t”, 

which reahily yields 

I”/41 

S(x, 4 = 1 Al Q,+,l (~1,. . . , ys) (ztqf 
l=O 

(2.4) 

B~-k-ql [al f pll,. . . , au + ,d; bl + 011,. . . , b, -b O,l : X] tk. 

Now, by appealing to the general formula (1.18) with 

n - n - ql, aj+-+aj+pjl (j=l,...,u), and b, - bj +a$ (j = l,...,~), 

we find from (2.4) that 

b/q1 
S(x,t)=(l+t)"CAl~,+,1(~1,...,~,) 

l=O 

. Kql al+pll, . . . . a,+p,l;bl+all ,..., b,+a,l:- 
(1 +“t)- ’ 1 

which leads us at once to assertion (2.3) by means of definition (2.1). 

For the classical Jacobi polynomials, by suitably specializing Theorem 1 vith 

u=zl=l, 

we obtain Corollaries 1 and 2 below. 
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COROLLARY 1. Under the hypotheses of Theorem 1, let 

In/q1 

A$?,q Ix; Y11 . . . , y,g; Z] := c A,+ p~~~,psk’8+‘u+1’qk’(1)~/l+pk (yl, . . . , ys) Zk, 

k=O (2.5) 

(Ak # 6; n,k E No;P,q E N) 

and 

(2.6) 

where p and u are suitable complex parameters. 

Then 

(2.7) 

provided that each member of (2.7) exists. 

COROLLARY 2. Under the hypotheses of Theorem 1, let 

(2.8) 

(Alif 0; n,kENo; P,qEN) 

and 

q:;:“, (5; Yl, * . . 1 

ys; z) := ‘F ( Ic - p ;““h; n - ‘) Al 

I=0 

.p;~;“+pq’,P-4) (“P/L+,1 (Yl, ‘. .7 Ys) & 
where p and e are suitable complex parameters. 

Then 

(2.9) 

q;:;; (2; Yl, . . ,519; 2) tk = (1 + v-q;,, G; Yl, ‘. . , ys; .% (&)‘I 1 (2.10) 
k=O 

provided that each member of (2.10) exists. 

Corollaries 1 and 2 can indeed be proven directly by making use of (1.7) and (1.8), respectively, 

each of which is a special case of the general formula (1.18). If, instead of (1.7) and (1.8), we 

apply the equivalent result (1.6), we similarly obtain the following. 

THEOREM 2. Under the hypotheses of Theorem 1, let 

[n/n1 
A$, q b; YI 

3 I 
,...,Y&%] := c Al, prt~~~+l)sk,B+(o+l)qk) 

@&+pk (Yl, . . . , ?A) Zk, 
k=O (2.11) 

and 

q;:“, (2; y1, . . . ) 

ys; z) := ‘g (” + p + (\y;lql + n + “> Al 

(2.12) 

where p and g are suitable complex parameters. 
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Then 

%:Z:“, (2; Yl, . . . , ys; 2) t” = A;t;,q [X + 2t; yi, . . . ) ys; ztq] ) (2.13) 
k=O 

provided that each member of (2.13) exists. 

Next, we turn to the classical Laguerre polynomials L?)(z) defined by (1.3). As a matter of 
fact, in view of the limit relationship (1.4), if we first replace 2 and t in (1.6) or (1.8) by 

l-2” t 
P 

and -, 
P 

respectively, and then let ]P] -+ 00, we get the known result (cf., e.g., [8, p. 348, equation (27)], 
[9, p. 142, equation (18)], and [lo, p. 319, Entry (48.19.2)]) 

(2.14) 

which is precisely the Taylor expansion of &)(a: - t) in powers of t, since (cf. equation (1.5) 
above) 

L(a+k)(z -t), 
& {L$)(r-t)} = on-k 

i. 

(k = O,l,. . . ) n), 

(k=n+l,n+2,n+3 ,... ). 
(2.15) 

In case we replace 5 in (1.7) instead by 
I 

&2” 
P 

and let I/3] --+ 03, we similarly obtain another known result for the classical Laguerre polynomials 
(cf. [ll, p. 85, equation (9)] and [12, p. 35, equation (l)]): 

(2.16) 

which, in view of the hypergeometric representation in (1.3), is an immediate special case of the 
general formula (1.18) when 

m=l and u+l=v=l. 

Thus, by suitably applying Theorem 1, Corollary 1, and Corollary 2, or by appealing directly to 
the known results (2.14) and (2.16), we can deduce the following families of bilinear, bilateral, 
and mixed multilateral generating functions for the classical Laguerre polynomials. 

COROLLARY 3. Under the hypotheses of Theorem 1 (or Corollary 2), let 

In/91 
At;,9 [x; 91,. . . , Ys; Z] := c Ak L:$f+l)qk)(+fi+pk (?A,. . . 19s) zk, 

k=O 
(2.17) 

and 

(2.18) 

where p is a suitable complex parameter. 
Then 71 

(2.19) 

provided that each member of (2.19) exists. 
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COROLLARY 4. Under the hypotheses of Theorem 1 (or Corollary l), let 

[n/91 

~~~,[~C;Yr,~~~,Ys;~] := c Al, L~~k’(X)n~+~k(~l,...,Ys)Zk, 1 2 
k=O 

(Ak#o; n,kENo; P,qEN) 

(2.20) 

and 

where p is a suitable complex parameter. 
Then 

q;:;,” (2; Yl,. . . ) ys; z) t” = (1 + t,“Ag~,, (2.22) 
k=O 

provided that each member of (2.22) exists. 

For several families of linear and bilinear generating functions for the Laguerre and related 
polynomials, including (for example) the probabilistic derivations of some of these generating 

functions, see the recent works by Lee et al. [13,14] and Pittaluga et al. [15]. 
Finally, for the classical Hermite polynomials defined by (cf. equation (1.16)) 

= (2~)~ 2F0 A(2; -n);--; $1 , 

it is easily seen from the general result (1.18) with 

m = 2, u=v=o, and 
1 

2--- 
22 

that 

ffn-k(X)tk = ff, 

Thus, by applying Theorem 1 once again, we obtain the following. 

COROLLARY 5. Under the hypotheses of Theorem 1, let 

Wnl 
Ac;,q [x; Yl, . . . I Ys; Z] := c AI, -%z-qk(X)$+,k (Y/1,. . . , Ys) Zk, 

k=O 

(Ak#o; %kENo; P,4EN) 

and 

Al Hn-k(X&+pl (!/I, . . . , YS) 2’. 

-&q~;(z;Yl,~~~, ys;z)tk=h&, [z++;y1,..., y,;ztq], 

k=O 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

provided that each member of (2.27) exists. 
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3. GENERATING FUNCTIONS ASSOCIATED WITH 
THE STIRLING NUMBERS OF THE SECOND KIND 

For each of the polynomials considered in the preceding section, we now derive several (pre- 
sumably new) generating functions associated with the Stirling numbers S(n, k) of the second 

kind, which are defined by (cf., e.g., [16, p. 90 et seq.]) 

S(n, k) := ; f-(-p (;)y, 
j=o 

(3.1) 

so that 

S(n,O) = &L,o (n E No), S(n, 1) = S(n, n) = 1, and S(n, k) = 0 (Ic > n), (3.2) 

s m,n being the Kronecker delta involved also in the orthogonality property (1.2). 

By applying the method of proof of Srivastava’s result [17, p. 754, Theorem l] mutatis mutandis, 

we can easily obtain the following general family of generating functions involving the Stirling 

numbers S(n, k) defined by (3.1). . 

THEOREM 3. Let the polynomial sequence {7~(x)}~io be generated by 

kI,_k(~) $ = f(x,t){g(x,t)}n’T,(h(x,t)), (n E NO), 
k=O 

where f, g, and h are suitable functions of x and t. 

Then, in terms of the Stirling numbers S(n, k) defined by (3.1), the following family of gener- 

ating functions holds true: 

c ; 7,-k(h(x, -z)) (e)l = {f(X:, -~)~-‘{!h -Z))- , 
min(m,n) 

' 1 S(nyk)'ir,-k(X)zk7 (m,n E NO), 

k=O 

provided that each member of (3.4) exists. 

REMARK 3. The functions f(x, t), g(x, t), and h(x, t) in (3.3) are suitably chosen such that the 

generating function (3.3) exists for a given polynomial sequence {‘&(z)}~~~. Thus, for example, 

for the generating function (1.8), we have 

f(x,t) = 1, g(x, t) = 1 - t, h(x,t) = 5, 

and 

In(x) - P; n ( > 
-1 

P?-“,@(x) (n E NO), 

in terms of the Jacobi polynomials I??“’ (x) defined by (1.1). Furthermore, with a view to 

avoiding any ambiguity, the nth power of the function g(x, t) has been denoted consistently by 

{g(x, y)}” instead of gn(x, y) or (9(x, Y))” (n E NO>. 

PROOF OF THEOREM 3. Denote, for convenience, the left-hand side of assertion (3.4) of Theo- 
rem 3 by CI(x,z). Then, since hypothesis (3.3) implies that 

I,(h(x, -z)) = {f(x, -z))-‘{g(x, -z)}-” &iv&, 9, 

l=O 

(n E NO) 1 
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by applying definition (3.1) as well, we readily have 

a(z ,  z): = -K.' Tm_k(h(z, -z))  
k=O 

= { f ( x , - - Z ) } - I { B ( X , - - Z ) } - m  = -~" l-~O " 

min(rn,n) 

= {f(x,-z)}-l{g(x,-z)} -m E 
/=0 

min(ra,n) 

= (f(x,--Z)}--I{g(X,--Z)} -m E 
/=0 

which evidently completes the proof of Theorem 3. 

:r,~_~(~) ~. ~ ( _ l ) ~ - k  k~ 
k=O 

S(n,l)Tm-l(x)z l, (m,n E No), 

Theorem 3, when applied appropriately to the generating functions (1.6)-(1.8), (1.18), (2.14), 
(2.16), and (2.24), would yield the following generating functions associated with the Stirling 
numbers S(n, k) defined by (3.1). 

I. GENERALIZED HYPERGEOMETRIC POLYNOMIALS. 

E kn m x z 
BN-k (1 --- 

k=0 
min(n,N) (3.5) 

: (1--z)-N E (Nk)k'S(n,k)B~v_k(x)zk , 
k=O 

(m ~ N; n, N ~ No), 

which, for 

assumes the form: 

Z X 
z ~ - -  and x ~ - -  

l + z  ( l + z )  m' 

N min(n,N) 

E (N)  kn B'~-k(x)zk : (l +z)N E (Nk )k[ S(n'k) 
k=O k=O 

"Brng-k ( l + z )  m , ( m e N ;  n, N e N o ) .  

II. JACOBI POLYNOMIALS. 

~-~(a+fl+m+k)knp(,~+k,Z+k), , k 
k=O k m-k (X)Z 

min(rn,n) 
E ( a + f l + m + k )  k ' k  . . . . .  (~+k,fl+k), oln, ~)rm_ k ix + 2z)z k, 
k=O 

(m, n e No). 

(3.6) 

(3.7) 

} - ~ ( k - ~ - ' ~ - l )  a ~ ' ( " ' ~ + k ) ~ ' k k  -m-k , - , -  

k=O 
min(m,n) ( ) ( ) ( Z )  k 

= ( l - z )  m E k - o ~ - m - 1  k'Sin,~'~P('~'~+k) x - z  
k=o k - '-~ m-k ~ ~ , 

(m, n ~ No). 

(3.8) 
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(m,nENo). 

III. LAGUERRE POLYNOMIALS. 

k;O ‘! 

min(m,n) 

c ’ L::;)(z)zk = c S(n, k),$+;‘(z - ,+Ic, (mnEN0). (3.10) 
k=O 

f’~;m)k”L~~k(,,,.=(~+z)~mi~~(U:lii),!,cn,k) 

k=O 

.Lglk (&) (&)‘? (mTnENO). 

(3.11) 

IV. HERMITE POLYNOMIALS. 

2 (;) kn &+&)fk = “‘nE’“’ (;)k! S(n, k)&_k (x + ;z) , 
k=O k=O 

(m, n E NO). (3.12) 

Numerous fitiher applications of Theorem 3, involving (for example) some of the aforemen- 
tioned and other relatives of the classical Jacobi, Laguerre, and Hermite polynomials, can be 
presented in an analogous manner. 

In view of the following recurrence relation for the Stirling numbers S(n, k) defined by (3.1): 

S(n + 1, k) = k S(n, k) + S(n, k - l), (n 1 k 1 l), (3.13) 

it is readily seen by the principle of mathematical induction on n E No that (cf., e.g., [16, p. 218, 
equation (34)]) 

(zDz), = 2 S(n, k)z” D,k, 
k=O 

(Dz := -$; n E w,) . (3.14) 

By means of the operator identity (3.14), many of the particular cases (listed under I-IV above) 
can alternatively be obtained by applying the differential operator (zD~)~ to both sides of the 
corresponding generating functions. For the sake of illustration, we first rewrite the generating 
function (2.14) in the form (cf. Definition (1.3)) 

(3.15) 

Then, operating upon both sides of (3.15) by (zDz), (n E NO) and making use of (3.14) on the 
right-hand side, we find that 
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= c S(n, k)Ly;)(x - Z)Zk, 
k=O 

by means of definition (1.3). This evidently completes the alternative (operational) derivation of 

the particular case (3.10) involving the Laguerre polynomials. 

Such alternative (operational) derivations of the other particular cases (listed under I-IV above) 

can also be detailed similarly. 

4. JACOBI AND LAGUERRE 
POLYNOMIALS IN SEVERAL VARIABLES 

Motivated essentially by the works of Erdelyi [18] and Chak [19], Carlitz and Srivastava [20] 

considered two classes of multivariable hypergeometric polynomials associated with a particularly 

simple form of the (Srivastava-Daoust) generalized Lauricella function (cf. [21-231; see also [24, 

p. 37 et seq.]). Th e work of Carlitz and Srivastava [20] is described fairly adequately in Section 9.4 

of the monograph by Srivastava and Manocha [5, p. 462 et seq.]. 

A very specialized class of multivariable hypergeometric polynomials was investigated recently 

by Shrivastava [25] who considered the Jacobi polynomials in several variables, defined by (cf. 

[25, p. 65, equation (15)]) 

a1 +1,... ) a, + 1; ; (1 - 21) ) . . . ) ; (l-41 , 

where Fy) denotes one of Lauricella’s hypergeometric functions of r variables [26, p. 1131: 

Fy)[a,bl b ‘cl ,..., c,;zlr z] I”‘, T, ..., T 

(a)kl+-+k,. @dkl . . . (br)k,. zfl z: 

kl,..., k,.=O h)kl . . . b-I,,. kl! “‘k,!’ 

(4.1) 

(4.2) 

bll f... + lZTl < 1)) 

(X)k := I’(X + k)/?(X) being the Pochhammer symbol (or the &fled factorial, since (I)k = k! 

for k E No). 

Just as in the limit relationship (1.4), it is easily observed that 

lim 
min(lLV,...,lL%l)--+~ { 

p~l,Pl;...;~,,W.) 

( 
l-221 . 

Pl 
1. .7 &22, 

PT >> (4.3) 
= &+‘“l.) (Xi,. . ,2,) 

in terms of the Laguerre polynomials in r variables, defined by (cf., e.g., [27, p. 163, equa- 

tion (7.3)]; see also [28, p. 113, equation (l.l)]) 

L(“‘V@‘.) (x1,. . . )X,) := 
n 

(a1;n) . . . (“y) 
(4.4) 

.sp [-n; a1 + 1 ,..‘I Qr+l;xl,...,xr], 
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where Qr’ denotes Humbert’s confluent hypergeometric function of r 

see also [30, p. 134, equation (34)] and [24, p. 35, equation 1.4 (ll)]): 
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variables (cf. [29, p. 4291; 

(4.5) 

For the multivariable Jacobi polynomials defined by (4.1), it is not difficult to derive the 

following family of linear generating functions: 

(xl’l,.“,l),..‘,(~,:l,...,l), = 
(111 : 1,. . . , 

((Yl+p1+1:2,1,..., 1) )...) (cr,+~r+l:l,...) 1,2,1): 

(01 + Pl + 1 : 1,. . . , 1) ) . . . ) (a, + a + 1 : 1,. . . ) 1) : 

(4.6) 

i”’ ; 
;----; ; (Xi-1)t ,...,; (+,-1)t,t], 

(a1 + 1 : 1) ; . . . ; (a, + 1 : 1) ;_; 

where we have made use of a special case of the aforementioned (Srivsstava-Dsoust) generalized 

Lauricella function (cf. [21, p. 4541; see also [22,23], and [24, p. 37 et seq.]). 

In its special case when 

p=r, q=l, Xj=oj+@j+l (j=l,...,r), and Pl = CL, 

the generating function (4.6) reduces immediately to the form: 

FT,:q;...;o;o (or + pr + 1 : 2,1,. . . ) 1)). . . ) (a, + a + 1 : 1,. . . ) 1,2,1) : 
= 

l.l,...;l;O (p: l,...,l): 
(4.7) 

;...; 
;-; f (Z1-l)t ,...,; (x,--l)t,t], 

(crr+1:1);...;(cu,+1:1);-; 

which provides the corrected version of a known result [25, p. 66, equation (19)]. 

Next, by appealing to the limit relationship (4.3), we find from (4.6) with 

(j = l,...,r) and min (K&l,. . . , IA4 - 00 

that 

=Fp:q;..:;O;O (X1:1 ,..., 11, . . . . (X,:1 ,.“, 1): 
q.l,...,l;O 

[ (p1 : 1,. . . ,l)). . . , (pq : 1,. . . ,l) : 

;...; ;-_; - 
(cQ+l:l);...;((Y,+l:l);-; 

Xl&. . . ,-x&, t 1 ) 

(4.6) 
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which, for 

p-l=q=l, xr = x, Xz =p, and CL1 = v, 

yields the generating function 

(4.9) 

; . . . ; ; (v-p : 1); zrt z,t t -- 
(a1 + 1 : 1) ; . . . ; (a, + 1 : 1) ; -- -- 1 . 1-t’“” 1-t’ 1-t ’ (ItI < I), 

where we have made use of the Pfaff-Kummer transformation (cf., e.g., [5, p. 33, equation 1.2 

PQ)l). 
An obvious further special case of (4.9) when p = v happens to be another known result [27, 

p. 164, equation (7.6)]: 

g (a1 .‘n’y ;;+ 1) 
W-+-) (x1,. . . )XT) tn 

n 

=(l-t)-W) [ X;ar+l,..., o?.+l;_~ ,..., _s ) 1 
(4.10) 

(ItI < I), 

which is actually a very specialized case of some general multivariable generating functions con- 

sidered, over three decades ago, by Srivastava (cf., e.g., [5, p. 455, Theorem 11; see also [5, p. 489, 

Problem 11). The generating function (4.10) and its limit case when 

t 
t++- x and 1x1 - cc 

are stated also in (28, p. 114, Section 21 indicating their derivation from one of the much more 

general known results referred to above [5, p. 490, Problem 1 (iii)]. 

Some further properties of the multivariable Jacobi polynomials are worthy of note here. First 

of all, it readily follows from definition (4.1) that 

(4.11) 

.p~~~Pl+k;...;a,.-l,~~-l+k) 
(Xl,...,X,-l), 

which provides the corrected version of a known formula [25, p. 66, equation (17)]. Secondly, by 

making use of some familiar linear transformations of Lauricella’s multivariable function Ff) (cf. 

[26, p. 1481; see also [30, p. 116]), we obtain an analogue of the relationship (1.11) in the form: 

pp,Bl;...;mL) (x1,. . . )x:T) = 

.p(al,-al-~l-2n-l:orz,Pz;...;a,.,P~) 3 - Zr Xl + 222 - 1 
(4.12) 

II. 1’ 1+x1 ‘.‘.’ 

with similar results involving one, two, or all of the parameters PI,. . . , PT. 
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Next, for nonpositive integer values of the parameter A, we find from the generating func- 

tion (4.10) and definition (4.4) that 

g;)” ${ (a,:n)}~lp_‘;-a)(rl....,x~)tk 

( 
(4.13) 

= (1 + t)nQ’?...,“‘.) 5,. . ) & 
> 

, 

which obviously provides a multivariable extension of the known result (2.16). By suitably 

applying Theorem 3 to the generating function (4.13), we obtain 

knfi{ (“j:m)}L~?~+.) (&..,$-) (&)” 

-Z)_” mig’(;)l-r ${(“j:ln)}k!S(n,k) 

.&&..‘O’) (XI 
,..*> 5,) zk, (m, n E W), 

Z 

t- 1+z 
x:j - and xj--, 

1+z 
(j = l,...,T), 

* 

(4.14) 

1-T 

= (1 

which, for 

assumes the form 

= (1+ Z)m mign’(;)l-r k{(“lrn)}k!S(n,k) 

>( > 

k 
Z 

G' 
(m,nEY 

(4.15) 

involving the Stirling numbers S(n, k) defined by (3.1). 

Finally, we recall another very specialized case of the aforementioned multivariable generating 

functions which, just as we remarked with (4.10), were considered by Srivastava over three decades 
ago (cf. [5, p. 455, Theorem 11; see also [5, p. 490, Problem 1 (iii)]) 

(4.16) 

where 

Ff-‘---) (xl,. . . ,&-) := 2 (-~)mlkl+...+m,.k,.c (kl, . . , k,) X:2‘l . . .X;“, 
k I,..., k,.=O 

(mj EN; j = l,...,r; X E C) 

(4.17) 

in terms of a bounded multiple sequence {C(lcr, . . . , k,)} of complex numbers. 
The multivariable generating function (4.16) is itself a generalization of (4.10) as well as (1.17). 

Furthermore, for nonnegative integer values of the parameter A, (4.16) yields the following gen- 

eralization of (1.18): 

(mj EN; j=l,...,T; nEN0). 
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In terms of the Stirling numbers S(n, Ic) defined by (3.1), we find from (4.18) that 

H-> 
k 

z 

1-z 

which, for 

(mj E N; j = 1, . . . , r; n, N E No) , 

(j = l,...,r), 

assumes the form: 

N > 

k 
z 

iTi ’ 

(mj EN; j=l,..., r; ~,NEW~). 

Upon setting T = 1, if we also let [cf. equation (4.17)] 

qk) = (‘1)k ’ ’ ’ (dk 

(h)k . . ’ &)k 
7 (k E No), 

(4.19) 

(4.20) 

(4.21) 

these last results (4.19) and (4.20) would reduce to the generating functions (3.5) and (3.6), 

respectively. 

We conclude this paper by remarking that, by making use of the generating function (4.18) di- 

rectly (or, alternatively, by appropriately specializing a general result due to Chen and Srivastava 

[3, p. 183, Theorem 3 with X = -N (N E NO)]), we can deduce a multivariable generalization 
of Theorem 1 above, which would apply relatively more easily to derive bilinear, bilateral, and 

mixed multilateral generating functions for numerous multivariable polynomials including (for 

example) the Laguerre polynomials L?l”“‘a”)(xl,. . . ,xr) defined by (4.4). For the sake of com- 
pleteness, however, we choose to state these interesting consequences of the general result of Chen 

and Srivastava [3, p. 183, Theorem 3] as Theorem 4 and Corollary 6 below. 

THEOREM 4. Under the applicable hypotheses of Theorem 1, let 

[n/cl1 

A$,q [n, . . . ,G-;&,...,Ys;z] := c Ak~~~~~“‘““‘.‘(~l,...,~,)~r+pk(Ylr...rY~)~k, 

k=O 
(4.22) 

(Ak # 0; n, k E No; mj E Pi (j = 1,. . . ,T); p,q E w) 

Then 

-&):;:(Xl,..., x?-;y1 ,...I ys;z)tk 
kc0 

= (1 +t)“hi:b,q 

(4.24) 

provided that each member of (4.24) exists. 
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COROLLARY 6. Under the applicable hypotheses of Theorem 1, let 

and 

& ;;;;‘, (x 1, . . .,G-;y1,..., ys; z) := ‘2 (1 1;;) l-r Al ,+;;p’1-Q7-+p’I) @., . . . , q 

?- 

-n{( 

+ (& - 1) ql + n 

>> 

(4.26) 
cz’j 

k - ql 
%+,1 (Yl, . . . I Ys) k 

j=l 

wherepl,... , pr are suitable complex parameters. 

k=O (4.27) 

provided that each member of (4.27) exists. 

Evidently, Corollary 6 provides a multivariable extension of Corollary 4 involving the classical 

Laguerre polynomials L?)(X) defined by (1.3). On the other hand, in the definitions (4.22) 
and (4.23) of Theorem 4, the coefficients of the multivariable F-polynomials are tacitly assumed 

to depend suitably upon the summation indices k and 1, respectively. 
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