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SUMS OF PRODUCTS OF GENERALIZED
FIBONACCI AND LUCAS NUMBERS

Abstract. In this paper we obtain explicit formulae for sums of products of a fixed
number of consecutive generalized Fibonacci and Lucas numbers. These formulae are
related to the recent work of Belbachir and Bencherif. We eliminate all restrictions about
the initial values and the form of the recurrence relation. In fact, we consider six different
groups of three sums that include alternating sums and sums in which terms are multiplied
by binomial coefficients and by natural numbers. The proofs are direct and use the formula
for the sum of the geometric series.

1. Introduction
Let p and q 6= 0 be complex numbers. The generalized Fibonacci and

Lucas sequences {Un} = {Un(p, q)} and {Vn} = {Vn(p, q)} are defined by

U0 = 0, U1 = 1, Un = pUn−1 − q Un−2 (n ≥ 2),

and

V0 = 2, V1 = p, Vn = pVn−1 − q Vn−2 (n ≥ 2).

The numbers Un and Vn have been studied by Lucas [3] (see also [2]).

2. Sums of products of Fibonacci and Lucas numbers
We first want to find the formulae for the sums

Ψ1 =
n∑

j=0

Ua+b j(p, q) Uc+d j(p, q),

Ψ2 =
n∑

j=0

Ua+b j(p, q) Vc+d j(p, q),
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Ψ3 =
n∑

j=0

Va+b j(p, q) Vc+d j(p, q),

when n ≥ 0, a ≥ 0, c ≥ 0, b > 0 and d > 0 are integers.

In [1] Belbachir and Bencherif have found explicit expressions for these
sums (and for the related alternating sums) only in the special case when
q = ±1 and b = d = 2. The main goal in this paper is to completely eliminate
these assumptions and to treat some other similar sums. In the end, we
consider altogether eighteen sums that are grouped by three in six classes.
Once we discovered the formulae for the sums Ψ1, Ψ2 and Ψ3 (the first class)
and much simpler sums Ψ4, Ψ5 and Ψ6 (the second class in which the terms
are multiplied by binomial coefficients

(
n
j

)
), the remarkable feature is that

in other classes of sums essentially the same formulae hold.

Since this paper contains more than two hundred claims we can only
prove a few that can serve the reader as examples in checking the truth of
the others. We thank the referee for useful comments that improved our
results and their presentation.

Let α and β be the roots of x2 − p x + q = 0. Then α = p+∆
2 and β = p−∆

2 ,

where ∆ =
√

p2 − 4 q. Moreover, α − β = ∆, α + β = p, α β = q and the Bi-
net forms of Un and Vn are

Un =
αn − βn

α − β
, Vn = αn + βn,

if α 6= β, and

Ũn = nαn−1, Ṽn = 2αn,

if α = β.

Let E = αb+d, F = αb βd, G = αd βb and H = βb+d. Let e = αa+c,
f = αa βc, g = αc βa and h = βa+c. When E 6= 1, for any integer n ≥ 0,
let En = En+1

−1
E−1 . We similarly define Fn, Gn and Hn. On the other

hand, when αb 6= βb, for any integer n ≥ 0, let bn = αb(n+1)
−βb(n+1)

αb n(αb
−βb)

and

b∗n = αb(n+1)
−βb(n+1)

βb n(αb
−βb)

. We similarly define dn and d∗n.

Theorem 1. (a) When ∆ = 0 and E = 1, then

Ψ1 =
e (n + 1) [ 6 a c + 3n(a d + b c) + n(2n + 1)b d ]

6α2
.

(b) When ∆ = 0 and E 6= 1, then Ψ1 = e[M a c+N(a d+b c)+P b d]
α2(E−1)3

, with

M =(E−1)2(En+1−1), N =E(E−1)
[
nEn+1−(n + 1)En + 1

]
,

P =E
[
n2 En+2−(2n2+2n−1)En+1+(n + 1)2 En−E−1

]
.
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Proof of (a). Since ∆ = 0 and E = αb+d = 1, we see that the product
Ũa+b j(p, q) Ũc+d j(p, q) is equal to

(a + b j) αa+b j−1 (c + d j) αc+d j−1 =
e

α2

[
a c + j (a d + b c) + j2 b d

]
.

From
∑n

j=0 1 = n + 1,
∑n

j=0 j = n(n+1)
2 , and

∑n
j=0 j2 = n(n+1)(2n+1)

6 , it fol-
lows that Ψ1 has the above value.

Proof of (b). Since ∆ = 0, the product Ũa+b j(p, q) Ũc+d j(p, q) is

(a + b j) αa+b j−1 (c + d j) αc+d j−1 =
e Ej

α2

[
a c + j (a d + b c) + j2 b d

]
.

From
∑n

j=0 Ej = En,
∑n

j=0 j Ej = N
(E−1)3

, and
∑n

j=0 j2 Ej = P
(E−1)3

, it fol-

lows that Ψ1 has the above value.

The following theorem covers for the sum Ψ1 the cases when ∆ 6= 0. It
uses Table 1 below that should be read as follows. The symbols � and �

in column E mean E 6= 1 and E = 1. In column b they mean αb 6= βb and
αb = βb. In columns F , G, H and d they have analogous meanings. The
symbol ⊠ is a conditional �. How it works becomes clear from the following
interpretation of the third subcase or row that should be read as follows:
When (∆ 6= 0), E = 1 and αb = βb, then G = 1 and H = F and for F 6= 1
the product ∆2 Ψ1 is equal to (n + 1) (e − g) + Fn (h − f).

Theorem 2. When ∆ 6= 0, then Table 1 gives the value of ∆2 Ψ1.

Proof of row 1. When ∆ 6= 0, the product Ua+b j(p, q) Uc+d j(p, q) is
(

αa+b j − βa+b j

∆

)
·

(
αc+d j − βc+d j

∆

)
=

e Ej

∆2
−

f F j

∆2
−

g Gj

∆2
+

hHj

∆2
.

From
∑n

j=0 Ej = En, we get ∆2 Ψ1 = e En − f Fn − g Gn + hHn.

Proof of row 2. When ∆ 6= 0 and E = αb+d = 1, we get

Ua+b j(p, q) Uc+d j(p, q) =
e

∆2
−

fF j

∆2
−

g

∆2

(
βb

αb

)j

+
hHj

∆2
.

From
∑n

j=0 1 = (n + 1),
∑n

j=0 F j = Fn and
∑n

j=0

(
βb

αb

)j

= bn (for αb 6=

βb), it follows that ∆2 Ψ1 = e (n + 1) − f Fn − g bn + hHn.

Proof of row 3. When ∆ 6= 0, E = αb+d = 1 and αb = βb, then

G = βb αd = αb αd = E = 1

and H = βb βd = αb βd = F . Hence,

Ua+b j(p, q) Uc+d j(p, q) =
e − g

∆2
+

(h − f)F j

∆2
.
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E F G H b d ∆2 Ψ1

1 � � � � En e − Fn f − Gn g + Hn h

2 � � � � (n + 1) e − Fn f − bn g + Hn h

3 � � ⊠ F � (n + 1)(e − g) + Fn(h − f)

4 � � � � (n + 1) e − dn f − Gn g + Hn h

5 � ⊠ � G � (n + 1)(e − f) + Gn(h − g)

6 � � ⊠ (see 5)

7 � � ⊠ (see 3)

8 � � � (n + 1)(e − g) + dn (h − f)

9 � � � (n + 1)(e + h) − dn f − d∗n g

10 � � � � En e − (n + 1) f − Gn g + bn h

11 � � E ⊠ � En (e − g) + (n + 1)(h − f)

12 � � � � d∗n e − (n + 1) f − Gn g + Hn h

13 ⊠ � � G � (n + 1)(e − f) + Gn (h − g)

14 � � � d∗n e − (n + 1)(f + g) + dn h

15 � � ⊠ (see 11)

16 � � � d∗n (e − g) + (n + 1)(h − f)

17 � � � � b∗n e − Fn f − (n + 1) g + Hn h

18 ⊠ � � F � (n + 1)(e − g) + Fn (h − f)

19 � � � � En e − Fn f − (n + 1) g + dn h

20 � E � ⊠ � En(e − f) + (n + 1)(h − g)

21 � � � ⊠ b∗n (e − f) + (n + 1)(h − g)

22 � � � � En e − b∗n f − Gn g + (n + 1)h

23 � ⊠ E � � En (e − g) + (n + 1)(h − f)

24 � � � � En e − Fn f − d∗n g + (n + 1)h

25 � E ⊠ � � En (e − f) + (n + 1)(h − g)

Table 1. The product ∆
2
Ψ1 when ∆ 6= 0.

From
∑n

j=0 1 = (n + 1) and
∑n

j=0 F j = Fn (for F 6= 1, of course), it follows

that the product ∆2 Ψ1 is equal to (e − g) (n + 1) + (h − f) Fn.

The missing case in the Table 1 after the third row is clearly when E = 1,
αb = βb and F = 1. However, it is easy to see that this situation can not
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happen since ∆ 6= 0, b > 0 and d > 0. The similar statement holds for all
other subcases missing from the Table 1.

Notice that αn = Vn+∆ Un

2 and βn = Vn−∆ Un

2 for ∆ 6= 0 and αn = βn =
Ũn+1

n+1 = Ṽn

2 for ∆ = 0. Hence, it is clear that each of the above expressions
for the sum Ψ1 could be transformed into an expression in Lucas numbers Un

and Vn (or Ũn and Ṽn). In most cases these formulae are more complicated
then the ones given above. This applies also to other sums that we consider
in this paper.

∆ Ψ2

1 En e + Fn f − Gn g − Hn h

2 (n + 1) e + Fn f − bn g − Hn h

3 (n + 1)(e − g) + Fn(f − h)

4 (n + 1) e + dn f − Gn g − Hn h

5 (n + 1)(e + f) − Gn(g + h)

8 (n + 1)(e − g) + dn (f − h)

9 (n + 1)(e − h) + dn f − d∗n g

10 En e + (n + 1) f − Gn g − bn h

11 En (e − g) + (n + 1)(f − h)

12 d∗n e + (n + 1) f − Gn g − Hn h

13 (n + 1)(e + f) − Gn (g + h)

14 d∗n e + (n + 1)(f − g) − dn h

16 d∗n(e − g) + (n + 1)(f − h)

17 b∗n e + Fn f − (n + 1) g − Hn h

18 (n + 1) (e − g) + Fn (f − h)

19 En e + Fn f − (n + 1) g − dn h

20 En(e + f) − (n + 1)(g + h)

21 b∗n (e + f) − (n + 1)(g + h)

22 En e + b∗n f − Gn g − (n + 1)h

23 En (e − g) + (n + 1)(f − h)

24 En e + Fn f − d∗n g − (n + 1)h

25 En (e + f) − (n + 1)(g + h)

Table 2. The product ∆Ψ2 when ∆ 6= 0.



252 Z. Čerin

Next we do the same for the sum Ψ2. Of course, the first is the simpler
case when ∆ = 0.

Theorem 3. (a) When ∆ = 0 and E = 1, then

Ψ2 =
e (n + 1) [ 2 a + n b ]

α
.

(b) When ∆ = 0 and E 6= 1, then

Ψ2 =
2 e

α

[
En a +

E
(
nEn+1 − (n + 1)En + 1

)
b

(E − 1)2

]

The following theorem is rather similar to Theorem 2 and covers for the
sum Ψ2 the cases when ∆ 6= 0. Its Table 2 above has the same columns 2–7
as in the Table 1 so that we shall give only the first and the last column with
rows 6, 7 and 15 omitted.

Theorem 4. When ∆ 6= 0, then Table 2 gives the value of ∆ Ψ2.

Somewhat simpler is the third sum Ψ3 that we treat now in much the
same way. We begin with two cases when ∆ = 0.

Theorem 5. (a) When ∆ = 0 and E = 1, then Ψ3 = 4 (n + 1) e.

(b) When ∆ = 0 and E 6= 1, then Ψ3 = 4 e En.

The following theorem considers for the sum Ψ3 the cases when ∆ 6= 0.
Its Table 3 below is again reduced to the first and the last column because
the other columns and the missing rows agree with those of Table 1.

Theorem 6. When ∆ 6= 0, then Table 3 gives the value of Ψ3.

3. Sums with binomial coefficients
In this section we consider the sums

Ψ4 =
n∑

j=0

(
n

j

)
Ua+b j(p, q) Uc+d j(p, q),

Ψ5 =

n∑

j=0

(
n

j

)
Ua+b j(p, q) Vc+d j(p, q),

Ψ6 =
n∑

j=0

(
n

j

)
Va+b j(p, q) Vc+d j(p, q),

when n ≥ 0, a ≥ 0, c ≥ 0, b > 0 and d > 0 are integers.
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Ψ3

1 En e + Fn f + Gn g + Hn h

2 (n + 1) e + Fn f + bn g + Hn h

3 (n + 1)(e + g) + Fn(f + h)

4 (n + 1) e + dn f + Gn g + Hn h

5 (n + 1)(e + f) + Gn(g + h)

8 (n + 1)(e + g) + dn (f + h)

9 (n + 1)(e + h) + dn f + d∗n g

10 En e + (n + 1) f + Gn g + bn h

11 En (e + g) + (n + 1)(f + h)

12 d∗n e + (n + 1) f + Gn g + Hn h

13 (n + 1)(e + f) + Gn (g + h)

14 d∗n e + (n + 1)(f + g) + dn h

16 d∗n(e + g) + (n + 1)(f + h)

17 b∗n e + Fn f + (n + 1) g + Hn h

18 (n + 1)(e + g) + Fn (f + h)

19 En e + Fn f + (n + 1) g + dn h

20 En(e + f) + (n + 1)(g + h)

21 b∗n(e + f) + (n + 1)(g + h)

22 En e + b∗n f + Gn g + (n + 1)h

23 En (e + g) + (n + 1)(f + h)

24 En e + Fn f + d∗n g + (n + 1)h

25 En (e + f) + (n + 1)(g + h)

Table 3. The sum Ψ3 when ∆ 6= 0.

Theorem 7. (a) When ∆ = 0, then

Ψ4 =





e a c
α2 , if n = 0,

e[(E+1)a c+E(a d+b c+b d)]
α2 , if n = 1,

e(E+1)n−2[(E+1)2 a c+n E(E+1)(a d+b c)+n E(n E+1) b d]
α2 , if n ≥ 2,

Ψ5 =





2 e a
α

, if n = 0,

2 e (E+1)n−1[(E+1)a+n E b]
α

, if n ≥ 1.



254 Z. Čerin

(b) When ∆ 6= 0, then

Ψ4 =
(E + 1)n e − (F + 1)n f − (G + 1)n g + (H + 1)n h

∆2
,

Ψ5 =
(E + 1)n e + (F + 1)n f − (G + 1)n g − (H + 1)n h

∆
.

(c) The sum Ψ6 is equal to

(E + 1)n e + (F + 1)n f + (G + 1)n g + (H + 1)n h.

Proof of (c). Since
(

n

j

)
Va+b j(p, q) Vc+d j(p, q) =

(
n

j

) (
e Ej + f F j + g Gj + hHj

)
,

from
∑n

j=0

(
n
j

)
Ej = (E + 1)n, it follows that Ψ6 indeed has the above

value.

4. The improved alternating sums
In this section we consider the sums obtained from the sums Ψ1–Ψ6 by

multiplication of their terms with the powers of a fixed complex number k.
When k = −1 we obtain the familiar alternating sums. More precisely, we
study the sums

Ψ7 =

n∑

j=0

kj Ua+b j(p, q) Uc+d j(p, q),

Ψ8 =
n∑

j=0

kj Ua+b j(p, q) Vc+d j(p, q),

Ψ9 =

n∑

j=0

kj Va+b j(p, q) Vc+d j(p, q),

Ψ10 =
n∑

j=0

kj

(
n

j

)
Ua+b j(p, q) Uc+d j(p, q),

Ψ11 =

n∑

j=0

kj

(
n

j

)
Ua+b j(p, q) Vc+d j(p, q),

Ψ12 =
n∑

j=0

kj

(
n

j

)
Va+b j(p, q) Vc+d j(p, q),

when n ≥ 0, a ≥ 0, c ≥ 0, b > 0 and d > 0 are integers.
Let E = k αb+d, F = k αb βd, G = k αd βb and H = k βb+d. When E 6= 1,

for any integer n ≥ 0, let En = En+1
−1

E−1 . We similarly define Fn, Gn and Hn.
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In this section we can assume that k 6= 1 and k 6= 0 because the case
when k = 1 was treated earlier while for k = 0 all sums are equal to zero.

With this new meaning of the symbols E, F , G and H we have the
following result.

Theorem 8. (a) The values given in Theorems 1 and 2, 3 and 4, and 5
and 6 express the sums Ψ7, Ψ8 and Ψ9, respectively. In particular, when
∆ 6= 0, then Tables 1, 2 and 3 give the values of ∆2 Ψ7, ∆ Ψ8 and Ψ9.

(b) The values given in Theorem 7 for the sums Ψ4, Ψ5 and Ψ6 express
also the sums Ψ10, Ψ11 and Ψ12.

Proof of (b) for Ψ12. Since

kj

(
n

j

)
Va+b j(p, q) Vc+d j(p, q) =

(
n

j

) (
e Ej + f F j + g Gj + hHj

)
,

from
∑n

j=0

(
n
j

)
Ej = (E + 1)n, it follows that Ψ12 indeed has the same ex-

pression as the sum Ψ6.

5. Terms multiplied by natural numbers
In this section we study the sums

Ψ13 =

n∑

j=0

kj (j + 1)Ua+b j(p, q) Uc+d j(p, q),

Ψ14 =
n∑

j=0

kj (j + 1)Ua+b j(p, q) Vc+d j(p, q),

Ψ15 =
n∑

j=0

kj (j + 1)Va+b j(p, q) Vc+d j(p, q),

Ψ16 =

n∑

j=0

kj (j + 1)

(
n

j

)
Ua+b j(p, q) Uc+d j(p, q),

Ψ17 =
n∑

j=0

kj (j + 1)

(
n

j

)
Ua+b j(p, q) Vc+d j(p, q),

Ψ18 =
n∑

j=0

kj (j + 1)

(
n

j

)
Va+b j(p, q) Vc+d j(p, q),

when n ≥ 0, a ≥ 0, c ≥ 0, b > 0 and d > 0 are integers.

Let E = k αb+d, F = k αb βd, G = k αd βb and H = k βb+d. Let e = αa+c,
f = αa βc, g = αc βa and h = βa+c. When E 6= 1, for any integer n ≥ 0, let
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En = (n+1)En+2
−(n+2)En+1+1

(E−1)2
. We similarly define Fn, Gn and Hn. On the

other hand, when αb 6= βb, for any integer n ≥ 0, let

bn =
αb(n+2) + (n + 1)βb(n+2) − (n + 2)αb βn+1

αb n(αb − βb)2

and

b∗n =
βb(n+2) + (n + 1)αb(n+2) − (n + 2)βb αn+1

βb n(αb − βb)2
.

We similarly define dn and d∗n.

Theorem 9. (a) When ∆ = 0 and E = 1, then

Ψ13 =
e (n + 1)(n + 2) [ 6 a c + 4n (a d + b c) + n (3n + 1) b d ]

12α2
,

Ψ14 =
2 e (n + 1)(n + 2) [ 3 a + 2n b ]

6α
,

and Ψ15 = 2 e (n + 1)(n + 2).

(b) When ∆ = 0 and E 6= 1, then

Ψ13 =
e

α2

[
En a c +

E

(E − 1)3
M (a d + b c) +

E

(E − 1)4
N bd

]
,

where M and N are polynomials n (n + 1)En+2 − 2n (n + 2)En+1+
(n + 1)(n + 2)En − 2 and n2 (n + 1)En+3 − n (3n2 + 6n − 1)En+2+
(n + 2)(3n2 + 3n − 2)En+1 − (n + 2)(n + 1)2 En + 4E + 2,

Ψ14 =
2 e

α

[
En a +

E

(E − 1)3
M b

]
,

and Ψ15 = 4 e En.

Proof of (b) for Ψ14. Since ∆ = 0, the product

kj (j + 1) Ũa+b j(p, q) Ṽc+d j(p, q)

is

2 kj (j + 1)(a + b j) αa+b j−1 αc+d j =
2 e Ej

α
[a (j + 1) + j (j + 1) b ] .

From
∑n

j=0 (j + 1)Ej = En and
∑n

j=0 j (j + 1)Ej = E M
(E−1)3

, it follows that

Ψ14 has the above value.

Theorem 10. When ∆ 6= 0, then Tables 1, 2 and 3 give the values of
∆2 Ψ13, ∆ Ψ14 and Ψ15.
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Proof of row 1 in Table 1 for Ψ13. When ∆ 6= 0, we have

kj (j + 1)Ua+b j(p, q) Uc+d j(p, q) =

kj (j + 1)

(
αa+b j − βa+b j

∆

)
·

(
αc+d j − βc+d j

∆

)
=

(j + 1)

(
e Ej

∆2
−

f F j

∆2
−

g Gj

∆2
+

hHj

∆2

)
.

From
∑n

j=0 (j + 1)Ej = En, we get ∆2 Ψ13 = e En − fFn − g Gn + hHn.

For any integer n ≥ 0, let E∗

n = (n + 1)E + 1, E∗∗

n = E∗

n (E + 1)n−1.
We define F ∗

n , G∗

n, H∗

n, F ∗∗

n , G∗∗

n and H∗∗

n similarly.

Theorem 11. (a) When ∆ = 0, then

Ψ16 =





e a c
α2 , if n = 0,

e[(2 E+1)a c+2 E(a d+b c+b d)]
α2 , if n = 1,

e[(E+1)(3 E+1)a c+2 E (3 E+2)(a d+b c)+4 E(3 E+1) b d)]
α2 , if n = 2,

e(E+1)n−3[E∗

n (E+1)2 a c+n E (E+1)(E∗

n+1) (a d+b c)+R b d]
α2 , if n ≥ 3,

where R = nE(n(n + 1)E2 + 4nE + 2),

Ψ17 =





2 e a
α

, if n = 0,

2 e [ (2 E+1) a+2E b ]
α

, if n = 1,

2 e (E+1)n−2[ (E+1) E∗

n a+n E (E∗

n+1) b ]
α

, if n ≥ 2.

(b) When ∆ 6= 0, then

Ψ16 =
E∗∗

n e − F ∗∗

n f − G∗∗

n g + H∗∗

n h

∆2
,

Ψ17 =
E∗∗

n e + F ∗∗

n f − G∗∗

n g − H∗∗

n h

∆
.

(c) The sum Ψ18 is equal to E∗∗

n e + F ∗∗

n f + G∗∗

n g + H∗∗

n h.

Proof of (c). Since

kj (j + 1)

(
n

j

)
Va+b j(p, q) Vc+d j(p, q) =

(j + 1)

(
n

j

) (
e Ej + f F j + g Gj + hHj

)
,

from
∑n

j=0 (j + 1)
(
n
j

)
Ej = E∗∗

n , it follows that Ψ18 indeed has the above
value.
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