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Abstract

Using certain Hessenberg matrices, we provide some determinantal
representations of the general terms of second- and third-order linear
recurrence sequences with arbitrary initial values. Moreover, we provide
explicit formulas for such general terms, including the n-th Fibonacci,
Pell, tribonacci, Perrin, and Padovan numbers, as well as for the n-th
tribonacci polynomial.
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1 Introduction

Many authors have studied determinantal and permanental representations for
a wide variety of number sequences and polynomials. For example, Cahill et
al. and J́ina and Trojovský investigated connections between the determinants
of tridiagonal matrices and familiar sequences such as the Fibonacci and Lu-
cas sequences [2, 3, 9]. In [12], Kilic and Tasci considered the relationships
between the second-order linear recurrence sequences and the permanents and
determinants of tridiagonal matrices. Also, the same authors have shown the
relationships between the generalized Fibonacci, Pell, and Lucas sequences
and the permanent and determinant of some Hessenberg matrices [13, 14]. In
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[25], Yazlik et al. obtained the generalized k-Fibonacci and k-Lucas numbers
in terms of determinants of tridiagonal matrices. Lastly, Kaygısız and Şahin
gave some determinantal and permanental representations of Fibonacci-type
numbers by using various Hessenberg matrices [10].

In this paper, we first (Section 2) consider second-order linear recurrence
sequences with arbitrary initial values, and introduce a tridiagonal Hessen-
berg matrix whose determinant gives the general term of the corresponding
sequence. By allowing arbitrary initial conditions, we succeed in unifying and
generalizing some of the previous work dealing with Fibonacci-type sequences
and their determinantal representations. In Section 3, we extend these results
to third-order linear recurrences. Specifically, by defining a couple of four-
diagonal Hessenberg matrices, we obtain a new determinantal representation
for generalized tribonacci-type numbers. We also give explicit formulas for the
general terms of both the second-order and the third-order linear recurrence
sequences. As particular cases, we obtain the n-th Fibonacci, Pell, tribonacci,
Perrin, and Padovan numbers. Finally, we briefly consider the tribonacci poly-
nomials and present a determinantal (as well as an explicit) formula for them.

Definition 1.1. An n× n matrix [H]n = (hij) is called a lower Hessenberg
matrix if hij = 0 for j > i + 1, i.e.,

[H]n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 0 . . . . . . 0
h21 h22 h23 . . . . . . 0

h31 h32 h33
. . . 0

...
...

...
. . .

. . .
...

hn−1,1 hn−1,2 hn−1,3 . . .
. . . hn−1,n

hn,1 hn,2 hn,3 . . . . . . hn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

.

Throughout this paper we shall use the following basic result about the
determinants of Hessenberg matrices, the proof of which can be found in, for
example, [2].

Lemma 1.2. Let [H]n be an n × n lower Hessenberg matrix for all n ≥ 1
and define det[H]0 = 1. Then the sequence of determinants {det[H]n, n ≥ 1}
satisfies the recurrence relation

det[H]n =

n∑
r=1

(−1)n−rqn,r det[H]r−1, (1)

where

qn,r =

⎧⎪⎨
⎪⎩

hn,n if r = n,

hn,r

n−1∏
i=r

hi,i+1 if r = 1, 2, . . . , n − 1.
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2 Determinantal expressions for Fibonacci-type

numbers by Hessenberg matrices

Several of the most famous of all mathematical number sequences are special
cases of the general sequence {An} defined by the following second-order linear
recurrence with constant coefficients:

An = rAn−1 + sAn−2, n ≥ 3, (2)

where r and s are real constants with s �= 0, and where the sequence {An}
starts with arbitrary initial values A1 and A2. For example, the celebrated
Fibonacci and Lucas sequences {Fn} and {Ln}, as well as the Pell and Pell-
Lucas sequences {Pn} and {Qn} are defined respectively as

Fn = Fn−1 + Fn−2, n ≥ 3, F1 = 1, F2 = 1,

Ln = Ln−1 + Ln−2, n ≥ 3, L1 = 1, L2 = 3,

Pn = 2Pn−1 + Pn−2, n ≥ 3, P1 = 1, P2 = 2,

Qn = 2Qn−1 + Qn−2, n ≥ 3, Q1 = 2, Q2 = 6.

The following table displays the first ten terms for each of these sequences.

n 1 2 3 4 5 6 7 8 9 10
Fn 1 1 2 3 5 8 13 21 34 55

Ln 1 3 4 7 11 18 29 47 76 123

Pn 1 2 5 12 29 70 169 408 985 2378

Qn 2 6 14 34 82 198 478 1154 2786 6726

Table 1: The first terms of {Fn}, {Ln}, {Pn}, and {Qn}.

A sequence satisfying recurrence (2) will be referred to as an (r, s) sequence.
The roots λ1 and λ2 of the characteristic equation x2 − rx − s = 0 associated
with (2) satisfy the relations

λ1 + λ2 = r,

−λ1λ2 = s,
(3)

where λ1 �= 0 and λ2 �= 0 since we are assuming s �= 0.
Consider the tridiagonal Hessenberg matrix of order n:

[R]n =

⎡
⎢⎢⎢⎢⎢⎣

A1 1 0 · · · 0
(λ1 + λ2)A1 − A2 λ1 + λ2 λ1

0 λ2 λ1 + λ2
. . .

...
. . .

. . . λ1

0 λ2 λ1 + λ2

⎤
⎥⎥⎥⎥⎥⎦

n

.

Next we state the following theorem.
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Theorem 2.1. The general term of an (r, s) sequence with initial values
{A1, A2} is given by An = det[R]n, n ≥ 1.

Proof. First we note that det[R]1 = A1 and det[R]2 = A2. For n ≥ 3, the
general recurrence relation (1) applied to the Hessenberg matrix [R]n becomes

det[R]n = (λ1 + λ2) det[R]n−1 − λ1λ2 det[R]n−2.

From relations (3) it follows that det[R]n = r det[R]n−1 + s det[R]n−2. There-
fore, since the recurrence relation (2) together with the initial conditions
A1 and A2 uniquely determine the (r, s) sequence {An}, it must be that
An = det[R]n, n ≥ 1.

Example 2.2. For the Fibonacci sequence {Fn}, we have F1 = F2 = 1 and

r = s = 1, with characteristic roots given by α = 1+
√

5
2

and β = 1−√
5

2
. Then

Fn =

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0
0 1 α

0 β 1
. . .

...
. . .

. . . α
0 β 1

∣∣∣∣∣∣∣∣∣∣∣
n

,

or, equivalently,

Fn+1 =

∣∣∣∣∣∣∣∣∣

1 α

β 1
. . .

. . .
. . . α
β 1

∣∣∣∣∣∣∣∣∣
n

. (4)

It is worth noting that Fn+1 can actually be expressed by any determinant of
the form

Fn+1 =

∣∣∣∣∣∣∣∣∣

1 x

−x−1 1
. . .

. . .
. . . x

−x−1 1

∣∣∣∣∣∣∣∣∣
n

,

where x takes any nonzero real or complex value. The particular case where
x = i (i =

√−1) was apparently first formulated by Cahill et al. [2].

Example 2.3. For the Lucas sequence {Ln}, we have L1 = 1, L2 = 3, and
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r = s = 1, with characteristic roots α and β. Then

Ln =

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0
−2 1 α

0 β 1
. . .

...
. . .

. . . α
0 β 1

∣∣∣∣∣∣∣∣∣∣∣
n

.

This determinant can be decomposed as the sum

Ln =

∣∣∣∣∣∣∣∣∣

1 α

β 1
. . .

. . .
. . . α
β 1

∣∣∣∣∣∣∣∣∣
n−1

+ 2

∣∣∣∣∣∣∣∣∣

1 α

β 1
. . .

. . .
. . . α
β 1

∣∣∣∣∣∣∣∣∣
n−2

,

from which we obtain the well-known relation Ln = Fn +2Fn−1 = Fn−1 + Fn+1

[15, 16].

Example 2.4. Analogously, the Pell numbers Pn can be expressed as

Pn =

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0
0 2 γ

0 δ 2
. . .

...
. . .

. . . γ
0 δ 2

∣∣∣∣∣∣∣∣∣∣∣
n

,

where γ = 1 +
√

2 and δ = 1 −√
2. Hence

Pn+1 =

∣∣∣∣∣∣∣∣∣

2 γ

δ 2
. . .

. . .
. . . γ
δ 2

∣∣∣∣∣∣∣∣∣
n

. (5)

The following theorem gives us the explicit form of An in terms of A1, A2,
r, and s.

Theorem 2.5. (i) For r �= 0, s �= 0, and n ≥ 2, we have

An =

�n−1
2

�∑
j=0

(
n − 1 − j

j

)
(n − 1 − 2j)A2 + jrA1

n − 1 − j
rn−2−2jsj. (6)

(ii) For r = 0, s �= 0, and n ≥ 1, we have

A2n−1 = sn−1A1

A2n = sn−1A2

}
. (7)
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Remark 2.6. A proof of part (i) of Theorem 2.5 is given by Fuller in [5,
Theorem 5] employing an auxiliary (r, s) sequence. Alternatively, it can be
directly verified (after a rather lengthy series of standard manipulations) that,
for n ≥ 4, the right-hand side of (6) indeed satisfies the recurrence (2). Since
that expression gives the correct values A2 and A3 = rA2 + sA1 for n = 2
and 3, respectively, it follows that (6) indeed constitutes the general term of
an (r, s) sequence with initial values A1 and A2. On the other hand, relations
(7) follow straightforwardly from the recurrence An = sAn−2, n ≥ 3, and the
initial values A1 and A2. They can also be obtained by writing (6) as

An = A1

�n−1
2

�∑
j=0

(
n − 1 − j

j

)
j

n − 1 − j
rn−1−2jsj

+ A2

�n−1
2

�∑
j=0

(
n − 1 − j

j

)
n − 1 − 2j

n − 1 − j
rn−2−2jsj ,

and then setting either the exponent n − 1 − 2j or n − 2 − 2j of r to zero.

We notice that for the special case in which A2 = rA1, expression (6)
reduces to

An = A1

�n−1
2

�∑
j=0

(
n − 1 − j

j

)
rn−1−2jsj , n ≥ 1. (8)

In particular, for r = s = 1 and A1 = 1, we obtain the well-known combinato-
rial form of the Fibonacci numbers

Fn =

�n−1
2

�∑
j=0

(
n − 1 − j

j

)
, n ≥ 1.

Combining Theorems 2.1 and 2.5 yields the following corollary.

Corollary 2.7. For n ≥ 2, we have

∣∣∣∣∣∣∣∣∣∣∣

A1 1 0 · · · 0
(λ1 + λ2)A1 − A2 λ1 + λ2 λ1

0 λ2 λ1 + λ2
. . .

...
. . .

. . . λ1

0 λ2 λ1 + λ2

∣∣∣∣∣∣∣∣∣∣∣
n

=

�n−1
2

�∑
j=0

(−1)j

(
n − 1 − j

j

)
(n − 1 − 2j)A2 + j(λ1 + λ2)A1

n − 1 − j
(λ1+λ2)

n−2−2j(λ1λ2)
j .
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From Corollary 2.7 and equation (8), we obtain the result

∣∣∣∣∣∣∣∣∣

λ1 + λ2 λ1

λ2 λ1 + λ2
. . .

. . .
. . . λ1

λ2 λ1 + λ2

∣∣∣∣∣∣∣∣∣
n

=

�n
2
�∑

j=0

(−1)j

(
n − j

j

)
(λ1 + λ2)

n−2j(λ1λ2)
j .

Applying this relation and equation (5), we deduce that the Pell numbers are
given explicitly by

Pn+1 = 2n

�n
2
�∑

j=0

1

22j

(
n − j

j

)
, n ≥ 0.

Alternatively, using the neat polynomial identity [23, 1]

�n
2
�∑

j=0

(−1)j

(
n − j

j

)
(x + y)n−2j(xy)j = xn + xn−1y + · · · + xyn−1 + yn,

and noting that xn+1 − yn+1 = (x − y)
∑n

i=0 xiyn−i, we can express the above
determinant as [12]

∣∣∣∣∣∣∣∣∣

λ1 + λ2 λ1

λ2 λ1 + λ2
. . .

. . .
. . . λ1

λ2 λ1 + λ2

∣∣∣∣∣∣∣∣∣
n

=
λn+1

1 − λn+1
2

λ1 − λ2
, (9)

provided that λ1 �= λ2. From this relation and equations (4) and (5), we readily
obtain the familiar Binet formulas for Fn and Pn [15, 16]:

Fn =
αn − βn

√
5

, Pn =
γn − δn

2
√

2
.

To complete our treatment of the second-order linear recurrence sequences
we point out another special case that deserves an explicit mention, namely
the case in which A1 = r and A2 = r2 + 2s. For this case, expression (6)
becomes

An =

�n−1
2

�∑
j=0

(
n − 1 − j

j

)
(n − 1 − j)r2 + 2(n − 1 − 2j)s

n − 1 − j
rn−2−2jsj.
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Putting this as

An = rn +

�n−1
2

�∑
j=1

(
n − 1 − j

j

)
rn−2jsj +

�n+1
2

�∑
j=1

(
n − j

j − 1

)
2n + 2 − 4j

n − j
rn−2jsj ,

it is not hard to verify that

An =

�n
2
�∑

j=0

n

n − j

(
n − j

j

)
rn−2jsj, n ≥ 1. (10)

Thus, using the widely-known identity [7]

�n
2
�∑

j=0

(−1)j n

n − j

(
n − j

j

)
(x + y)n−2j(xy)j = xn + yn,

and recalling that r = λ1 + λ2 and s = −λ1λ2, we deduce that the general
term of the (r, s) sequence for which A1 = r and A2 = r2 + 2s, is given by the
Binet-type formula An = λn

1 +λn
2 . In particular, for the Lucas sequence we get

Ln = αn + βn.
On the other hand, we note that, for the case considered in which A1 = r

and A2 = r2 + 2s, the determinant of the matrix [R]n is given by

∣∣∣∣∣∣∣∣∣∣∣

λ1 + λ2 1 0 · · · 0
2λ1λ2 λ1 + λ2 λ1

0 λ2 λ1 + λ2
. . .

...
. . .

. . . λ1

0 λ2 λ1 + λ2

∣∣∣∣∣∣∣∣∣∣∣
n

=

∣∣∣∣∣∣∣∣∣∣∣

λ1 + λ2 2λ1

λ2 λ1 + λ2 λ1

λ2 λ1 + λ2
. . .

. . .
. . . λ1

λ2 λ1 + λ2

∣∣∣∣∣∣∣∣∣∣∣
n

.

Therefore, identifying the last determinant with the general term An = λn
1 +λn

2 ,
we find that [12]∣∣∣∣∣∣∣∣∣∣∣

λ1 + λ2 2λ1

λ2 λ1 + λ2 λ1

λ2 λ1 + λ2
. . .

. . .
. . . λ1

λ2 λ1 + λ2

∣∣∣∣∣∣∣∣∣∣∣
n

= λn
1 + λn

2 . (11)
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n 1 2 3 4 5 6 7 8 9 10 11 12
Tn 1 1 2 4 7 13 24 44 81 149 274 504

Rn 0 2 3 2 5 5 7 10 12 17 22 29

Dn 1 1 1 2 2 3 4 5 7 9 12 16

Table 2: The first terms of {Tn}, {Rn}, and {Dn}.

Finally, we note that Wasutharat and Kuhapatanakul [24] constructed a
generalized Pascal-like triangle and derived the explicit formulas (8) and (10)
from the properties of this triangle. Further, we observe that the tridiagonal
determinants such as those in equations (9) and (11) can alternatively be
evaluated by applying the algorithm formulated in [4] (the so-called DETGTRI
algorithm).

3 Determinantal expressions for tribonacci-type

numbers by Hessenberg matrices

Let us now consider the general sequence {An} defined by the following third-
order linear recurrence with constant coefficients:

An = rAn−1 + sAn−2 + tAn−3, n ≥ 4, (12)

where r, s, and t are real constants with t �= 0, and where the sequence {An}
starts with arbitrary initial values A1, A2, and A3. We will correspondingly
refer to a sequence satisfying (12) as an (r, s, t) sequence. Table 2 displays the
first twelve terms of the tribonacci, Perrin, and Padovan sequences, defined
respectively by [20, 22]

Tn = Tn−1 + Tn−2 + Tn−3, n ≥ 4, T1 = 1, T2 = 1, T3 = 2,
Rn = Rn−2 + Rn−3, n ≥ 4, R1 = 0, R2 = 2, R3 = 3,
Dn = Dn−2 + Dn−3, n ≥ 4, D1 = 1, D2 = 1, D3 = 1.

Let us define the following four-diagonal Hessenberg matrices of order n:

[U ]n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 1 0 · · · · · · · · · 0
A1r − A2 r A−1

1 0 · · · · · · 0
0 A2r − A3 r t
0 A1 −st−1 r t

0 0 t−1 −st−1 r
. . .

...
...

. . .
. . .

. . . t
0 0 t−1 −st−1 r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

,
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and

[V ]n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2 1 0 · · · · · · · · · 0
A2r − A3 r t 0 · · · · · · 0

0 −st−1 r t
0 t−1 −st−1 r t

0 0 t−1 −st−1 r
. . .

...
...

. . .
. . .

. . . t
0 0 t−1 −st−1 r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

.

We can now state the following theorem.

Theorem 3.1. (i) The general term of an (r, s, t) sequence with initial val-
ues {A1 �= 0, A2, A3} is given by An = det[U ]n, n ≥ 1. (ii) The general
term of an (r, s, t) sequence with initial values {A1 = 0, A2, A3} is given by
An = det[V ]n−1, n ≥ 2.

Proof. We prove part (i) of the theorem, the proof of part (ii) being similar.
Firstly, we can readily check that det[U ]1 = A1, det[U ]2 = A2, and det[U ]3 =
A3. For n ≥ 4, the general recurrence relation (1) applied to the Hessenberg
matrix [U ]n becomes

det[U ]n = r det[U ]n−1 + s det[U ]n−2 + t det[U ]n−3.

Therefore, since the recurrence relation (12) together with the initial values
A1, A2, and A3 uniquely determine the (r, s, t) sequence {An}, it must be that
An = det[U ]n, n ≥ 1.

Remark 3.2. The entries r, t, t−1, and −st−1 of the matrices [U ]n and [V ]n
can equally be expressed in terms of the roots λ1, λ2, and λ3 of the characteristic
equation x3−rx2−sx− t = 0 associated with the recurrence (12). Specifically,
we have that

r = λ1 + λ2 + λ3,

t = λ1λ2λ3,

−st−1 = λ−1
1 + λ−1

2 + λ−1
3 .

Example 3.3. For the tribonacci sequence {Tn}, we have T1 = T2 = 1,
T3 = 2, and r = s = t = 1. Therefore, applying part (i) of Theorem 3.1 leads
to the result

Tn+1 =

∣∣∣∣∣∣∣∣∣∣∣

1 1
−1 1 1

1 −1 1
. . .

. . .
. . .

. . . 1
1 −1 1

∣∣∣∣∣∣∣∣∣∣∣
n

.
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Example 3.4. Regarding the Perrin sequence, defined by R1 = 0, R2 = 2,
R3 = 3, r = 0, and s = t = 1, we apply part (ii) of Theorem 3.1 to get

Rn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 · · · · · · 0
−3 0 1
0 −1 0 1

0 1 −1 0
. . .

...
. . .

. . .
. . . 1

0 1 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
n

,

from which we obtain

Rn+1 = 2

∣∣∣∣∣∣∣∣∣∣∣

0 1
−1 0 1

1 −1 0
. . .

. . .
. . .

. . . 1
1 −1 0

∣∣∣∣∣∣∣∣∣∣∣
n−1

+ 3

∣∣∣∣∣∣∣∣∣∣∣

0 1
−1 0 1

1 −1 0
. . .

. . .
. . .

. . . 1
1 −1 0

∣∣∣∣∣∣∣∣∣∣∣
n−2

.

Further determinantal (as well as permanental) representations of the Pell and
Perrin numbers can be found in, for example, [18, 26].

In what follows, we would like to determine the explicit form of the general
term of the (r, s, t) sequence (12) with arbitrary initial conditions {A1, A2, A3}.
For this purpose, we introduce the fundamental (r, s, t) sequence {Gn} whose
initial values are defined to be G1 = G2 = 0 and G3 = 1. The first terms of
{Gn} are thus: 0, 0, 1, r, r2 + s, r3 + 2rs + t, r4 + 3r2s + s2 + 2rt, etc. It can be
shown (see, for example, [6, 19, 21]) that the general term of the fundamental
sequence is given by

Gn =

�n−3
2

�∑
i=0

�n−3
3

�∑
j=0

(
n − 3 − i − 2j

i + j

)(
i + j

j

)
rn−3−2i−3jsitj . (13)

Furthermore, we observe that Gn can be decomposed as

Gn =

�n−3
2

�∑
i=0

�n−3
3

�∑
j=0

(
i + j

j

)
δ(2i + 3j, n − 3)sitj

+

�n−3
2

�∑
i=0

�n−3
3

�∑
j=0

(
n − 3 − i − 2j

i + j

)(
i + j

j

)
[1 − δ(2i + 3j, n − 3)]rn−3−2i−3jsitj ,
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where δ(i, j) denotes the Kronecker delta, namely, δ(i, j) = 0 for i �= j and
δ(i, j) = 1 for i = j. Therefore, for r = 0, the general term (13) reduces to

Gn =

�n−3
2

�∑
i=0

�n−3
3

�∑
j=0

(
i + j

j

)
δ(2i + 3j, n − 3)sitj .

By letting k = i + j and employing the constraint 2i + 3j = 2k + j = n − 3,
this can be written in the form

Gn =

�n−3
2

�∑
k=0

(
k

n − 3 − 2k

)
s3k+3−ntn−3−2k. (14)

The usefulness of the fundamental sequence relies on the fact that any
(r, s, t) sequence can be expressed in terms of {Gn}, as the following theorem
shows.

Theorem 3.5. The general term of an (r, s, t) sequence with initial values
{A1, A2, A3} is given by

An = GnA3 + (Gn+1 − rGn)A2 + Gn−1tA1, n ≥ 2. (15)

Proof. We proceed by induction on n. It is readily verified that, for the first
values of n = 2, 3, 4, . . . , the right-hand side of (15) yields the corresponding
values A2, A3, A4, . . . . For example, for n = 4 we have G4A3 +(G5−rG4)A2 +
G3tA1 = rA3 + (r2 + s− r2)A2 + tA1 = rA3 + sA2 + tA1 = A4. Let us assume
as the inductive hypothesis that formula (15) holds for all n = 2, 3, . . . , k. In
particular, we assume that

Ak = GkA3 + (Gk+1 − rGk)A2 + Gk−1tA1,

Ak−1 = Gk−1A3 + (Gk − rGk−1)A2 + Gk−2tA1,

Ak−2 = Gk−2A3 + (Gk−1 − rGk−2)A2 + Gk−3tA1.

(16)

Then, as Ak+1 = rAk + sAk−1 + tAk−2, from relations (16) we have

Ak+1 = (rGk + sGk−1 + tGk−2)A3 + (rGk−1 + sGk−2 + tGk−3)tA1

+ [rGk+1 + sGk + tGk−1 − r(rGk + sGk−1 + tGk−2)]A2.

Since {Gn} is itself an (r, s, t) sequence, we finally obtain

Ak+1 = Gk+1A3 + (Gk+2 − rGk+1)A2 + GktA1.

This completes the inductive step and the proof of the theorem.
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Example 3.6. Applying (15) to the tribonacci sequence {Tn}, we find that
Tn = Gn+2, and then

Tn =

�n−1
2

�∑
i=0

�n−1
3

�∑
j=0

(
n − 1 − i − 2j

i + j

)(
i + j

j

)
.

Clearly, restricting to the plane j = 0, we retrieve the ordinary Fibonacci
numbers [20].

Example 3.7. For the Perrin sequence {Rn}, from (15) we obtain that
Rn = 2Gn+1 + 3Gn. Hence, from (14) we have

Rn = 2

�n−2
2

�∑
k=0

(
k

n − 2 − 2k

)
+ 3

�n−3
2

�∑
k=0

(
k

n − 3 − 2k

)
.

Incidentally, it is easy to show that this relation can be expressed in a more
compact form as [17]

Rn = n

�n
2
�∑

k=1

1

k

(
k

n − 2k

)
, n ≥ 2.

Example 3.8. Analogously, from the definition of the Padovan sequence
{Dn} and applying (15), we find that Dn = Gn+1+Gn+Gn−1 = Gn+1+Gn+2 =
Gn+4. Therefore, from (14) we obtain

Dn =

�n+1
2

�∑
k=0

(
k

n + 1 − 2k

)
.

From the expressions for the Perrin and Padovan numbers obtained in the
two previous examples we can deduce the relationship between them, namely,
Rn = 2Dn−3+3Dn−4. Moreover, from (15) we have that the general term of the
(r, s, t) sequence for the special case in which A1 = 0 and A3 = rA2, is given
by An = A2Gn+1. Combining this result with part (ii) of Theorem 3.1 and
using the explicit form (13) of Gn, allows us to derive the following corollary.

Corollary 3.9.∣∣∣∣∣∣∣∣∣∣∣

r t
−st−1 r t

t−1 −st−1 r
. . .

. . .
. . .

. . . t
t−1 −st−1 r

∣∣∣∣∣∣∣∣∣∣∣
n

=

�n
2
�∑

i=0

�n
3
�∑

j=0

(
n − i − 2j

i + j

)(
i + j

j

)
rn−2i−3jsitj .
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In particular, for r = s = t = 1 we obtain
∣∣∣∣∣∣∣∣∣∣∣

1 1
−1 1 1

1 −1 1
. . .

. . .
. . .

. . . 1
1 −1 1

∣∣∣∣∣∣∣∣∣∣∣
n

=

�n
2
�∑

i=0

�n
3
�∑

j=0

(
n − i − 2j

i + j

)(
i + j

j

)
,

and, for r = 0, s = t = 1, we get
∣∣∣∣∣∣∣∣∣∣∣

0 1
−1 0 1

1 −1 0
. . .

. . .
. . .

. . . 1
1 −1 0

∣∣∣∣∣∣∣∣∣∣∣
n

=

�n
2
�∑

k=0

(
k

n − 2k

)
.

To conclude, let us briefly consider the tribonacci polynomials Tn(x). These
are defined by [8]

Tn(x) = x2Tn−1(x) + xTn−2(x) + Tn−3(x), n ≥ 4.

Notice that Tn(1) = Tn. The first few tribonacci polynomials are

T1(x) = 1, T5(x) = x8 + 3x5 + 3x2,

T2(x) = x2, T6(x) = x10 + 4x7 + 6x4 + 2x,

T3(x) = x4 + x, T7(x) = x12 + 5x9 + 10x6 + 7x3 + 1,

T4(x) = x6 + 2x3 + 1, T8(x) = x14 + 6x11 + 15x8 + 16x5 + 6x2.

We now state the following theorem, the proof of which is left to the reader.

Theorem 3.10. For n ≥ 1, we have

Tn+1(x) =

∣∣∣∣∣∣∣∣∣∣∣

x2 1
−x x2 1

1 −x x2 . . .
. . .

. . .
. . . 1

1 −x x2

∣∣∣∣∣∣∣∣∣∣∣
n

. (17)

Then, from (17) and Corollary 3.9, we obtain (by making the identifications
r = x2, s = x, t = 1) the following explicit formula for Tn+1(x):

Tn+1(x) =

�n
2
�∑

i=0

�n
3
�∑

j=0

(
n − i − 2j

i + j

)(
i + j

j

)
x2n−3(i+2j).
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Finally, it should be mentioned that, by changing the sign of the entries
hi,i+1 in the Hessenberg matrices [R]n, [U ]n, and [V ]n defined previously, all
the results we have obtained involving the determinants of [R]n, [U ]n, and
[V ]n, can automatically be converted into their permanental counterparts (for
a general justification of this assertion, see [11, Theorem 4.1]). For instance,
it turns out that Rn+1 can alternatively be expressed as

Rn+1 = per

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · · · · 0
−3 0 −1
0 −1 0 −1

0 1 −1 0
. . .

...
. . .

. . .
. . . −1

0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n

.
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