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Abstract

In this study we define the generalized Lucas V (p, q)-matrix similar to
the generalized Fibonacci U(1,−1)-matrix. The V (p, q)-matrix is dif-
ferent from the Fibonacci U(p, q)-matrix, but is related to it. Using this
matrix representation, we have found some well-known equalities and
a Binet-like formula for the generalized Fibonacci and Lucas numbers.
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1. Introduction

Consider a sequence {Wn} = {Wn(a, b, p, q)} defined by the recurrence relation

(1.1) Wn = pWn−1 − qWn−2, n ≥ 2,

with W0 = a, W1 = b, where a, b, p and q are integers with p > 0, q 6= 0.
We are interested in the following two special cases of {Wn}: {Un} is defined by

U0 = 0, U1 = 1, and {Vn} is defined by V0 = 2, V1 = p. It is well known that {Un} and
{Vn} can be expressed in the form

(1.2) Un =
αn − βn

α− β , Vn = αn + βn,

where α = p+
√

∆
2

, β = p−
√

∆
2

and the discriminant is ∆ = p2 − 4q.
Especially, if p = −q = 1 and 2p = −q = 2, {Un} is the usual Fibonacci and Jacobsthal

sequence, respectively.
We define U(p, q) be the 2× 2 matrix

(1.3) U(p, q) =

[
p −q
1 0

]
,

∗Institute of Mathematics, Pontificia Universidad Católica de Valparáıso Blanco Viel 596,
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then for an integer n with n ≥ 1, Un(p, q) has the form

(1.4) Un(p, q) =

[
Un+1 −qUn
Un −qUn−1

]
.

This property provides an alternate proof of Cassini Fibonacci formula:

Un+1Un−1 − U2
n = −qn−1.

Also, let n and m be two integers such that m,n ≥ 1. The following results are obtained
from the identity Un+m(p, q) = Un(p, q)Um(p, q) for the matrix (1.4):

(1.5) Un+m+1 = Un+1Um+1 − qUnUm,

(1.6) Un+m = UnUm+1 − qUn−1Um.

In this study, we define the Lucas V (p, q)-matrix by

(1.7) V (p, q) =

[
p2 − 2q −pq
p −2q

]
.

It is easy to see that[
Vn+1

Vn

]
= V (p, q)

[
Un
Un−1

]
and ∆

[
Un+1

Un

]
= V (p, q)

[
Vn
Vn−1

]
where Un and Vn are as above. Our aim, is not to compute powers of matrices. Our aim
is to find different relations between matrices containing generalized Fibonacci and Lucas
numbers. That is, we obtain relations between the generalized Fibonacci U(p, q)-matrix
and the Lucas V (p, q) in Theorem 2.1.

2. V (p, q)-matrix representation of the generalized Lucas numbers

In this section, we will present a new matrix representation of the generalized Fi-
bonacci and Lucas numbers. We obtain Cassini’s formula and properties of these numbers
by a similar matrix method to the Fibonacci U(1,−1)-matrix.

2.1. Theorem. Let V (p, q) be a matrix as in (1.7). Then, for all integers n ≥ 1, the
following matrix power is held below

(2.1) V n(p, q) =


∆

n
2

[
Un+1 −qUn
Un −qUn−1

]
if n even

∆
n−1
2

[
Vn+1 −qVn
Vn −qVn−1

]
if n odd,

with ∆ = p2 − 4q and where Un and Vn are the nth generalized Fibonacci and Lucas
numbers, respectively.

Proof. We use mathematical induction on n. First, we consider odd n. For n = 1,

V 1(p, q) =

[
V2 −qV1

V1 −qV0

]
,

since V2 = p2 − 2q, V1 = p and V0 = 2. So, (2.1) is indeed true for n = 1. Now we
suppose it is true for n = k, that is

V k(p, q) = ∆
k−1
2

[
Vk+1 −qVk
Vk −qVk−1

]
.

Using the induction hypothesis and V 2(p, q) by a direct computation. we can write

V k+2(p, q) = V k(p, q)V 2(p, q) = ∆
k+1
2

[
Vk+3 −qVk+2

Vk+2 −qVk+1

]
,
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as desired. Secondly, let us consider even n. For n = 2 we can write

V 2(p, q) = ∆

[
U3 −qU2

U2 −qU1

]
.

So, (2.1) is true for n = 2. Now, we suppose it is true for n = k, using properties of the
generalized Fibonacci numbers and the induction hypothesis, we can write

V k+2(p, q) = V k(p, q)V 2(p, q) = ∆
k+2
2

[
Uk+3 −qUk+2

Uk+2 −qUk+1

]
,

as desired. Hence, (2.1) holds for all n. �

2.2. Theorem. Let V (p, q) be a matrix as in (1.7). Then the following equalities are
valid for all integers n ≥ 1:

(i) det(V n(p, q)) = (−q∆)n,
(ii) Un+1Un−1 − U2

n = −qn−1,
(iii) Vn+1Vn−1 − V 2

n = ∆qn−1.

Proof. To establish (i) we use induction on n. Clearly det(V (p, q)) = −q∆. If we make
the induction hypothesis det(V k(p, q)) = (−q∆)k, then from the multiplicative property
of the determinant we have

det(V k+1(p, q)) = det(V k(p, q)) det(V 1(p, q)) = (−q∆)k+1,

which shows (i) for all n ≥ 1. The identities (ii) and (iii) easily seen by using (2.1) and
(i) for even and odd values of n, respectively. �

2.3. Theorem. Let n be any integer. The well-known Binet formulas for the generalized
Fibonacci and Lucas numbers are

Un = αn−βn

α−β and Vn = αn + βn,

where α = p+
√

∆
2

and β = p−
√

∆
2

.

Proof. Let the matrix V (p, q) be as in (1.7). We can write the characteristic equation of
V (p, q) as x2−∆x−q∆ = 0. If we calculate the eigenvalues and eigenvectors of the matrix

V (p, q) we obtain λ1 = −∆
1
2 β, λ2 = ∆

1
2α, v1 = (β, 1), v2 = (α, 1), where α = p+

√
∆

2
and

β = p−
√

∆
2

. Then we can diagonalize of the matrix V (p, q) by D = P−1V (p, q)P , where

(2.2) P = (vT1 , v
T
2 ) =

[
β α
1 1

]
,

and

(2.3) D =

[
−∆

1
2 β 0

0 ∆
1
2α

]
.

From properties of similar matrices, we can write Dn = P−1V n(p, q)P , where n is any
integer. Furthermore, we can obtain V n(p, q) = PDnP−1. By (2.1) and taking the nth
power of the diagonal matrix, we get

(2.4) V n(p, q) = ∆
n−1
2

[
αn+1 + (−β)n+1 −q(αn − (−β)n)
αn − (−β)n −q(αn−1 + (−β)n−1)

]
.

Thus, the proof follows from theorem (2.1). �
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3. Generalized Fibonacci Numbers and main results

3.1. Theorem. For all integers m and n, the following equalities are valid:

(i) ∆Um+n = Vm+1Vn − qVmVn−1,
(ii) Um+n = Um+1Un − qUmUn−1,

(iii) Vm+n = Um+1Vn − qUmVn−1,
(iv) ∆Um−n = −q−n(VmVn+1 − Vm+1Vn).

Proof. Vm+n(p, q) can be written, using (2.1), as

(3.1) V m+n(p, q) =


∆

m+n
2

[
Um+n+1 −qUm+n

Um+n −qUm+n−1

]
if m+ n even,

∆
m+n−1

2

[
Vm+n+1 −qVm+n

Vm+n −qVm+n−1

]
if m+ n odd.

For the case of odd m and n, V m(p, q)V n(p, q) is:

(3.2) ∆
m+n

2
−1

[
Vm+1Vn+1 − qVmVn −q(Vm+1Vn − qVmVn−1)
VmVn+1 − qVm−1Vn −q(VmVn − qVm−1Vn−1)

]
Comparing the entries in the first row and second column of the matrices (3.1) and (3.2),
we obtain

∆Um+n = Vm+1Vn − qVmVn−1,

while comparing the entries in the second row and first column gives

∆Um+n = VmVn+1 − qVm−1Vn.

For the case of even m and n, V m(p, q)V n(p, q) is:

(3.3) ∆
m+n

2

[
Um+1Un+1 − qUmUn −q(Um+1Un − qUmUn−1)
UmUn+1 − qUm−1Un −q(UmUn − qUm−1Un−1)

]
Comparing the entries in the first row and second column for the matrices (3.1) and
(3.3), we find that

Um+n = Um+1Un − qUmUn−1

and the entries in the second row and first column

Um+n = UmUn+1 − qUm−1Un.

For cases of odd m and even n, or odd n and even m, V m(p, q)V n(p, q) is:

(3.4) ∆
m+n−1

2

[
Um+1Vn+1 − qUmVn −q(Um+1Vn − qUmVn−1)
UmVn+1 − qUm−1Vn −q(UmVn − qUm−1Vn−1)

]
.

Comparing the entries in the first row and second column for the matrices (3.1) and
(3.4), we obtain the equations

Vm+n = Um+1Vn − qUmVn−1,

and the entries in the second row and first column

Vm+n = UmVn+1 − qUm−1Vn.

The inverse of the matrix V n(p, q) in (2.1) is given by

(3.5) V −n(p, q) =


1

qn∆
n
2

[
−qUn−1 qUn
−Un Un+1

]
if n even ,

−1

qn∆
n+1
2

[
−qVn−1 qVn
−Vn Vn+1

]
if n odd .



On generalized Fibonacci and Lucas numbers by matrix methods 177

Similarly, by computing the equality V m−n(p, q) = V m(p, q)V −n(p, q) the desired results
are obtained. Indeed, for the case of odd m and n,

∆Um−n = −q−n(VmVn+1 − Vm+1Vn),

for the case of even m and n,

Um−n = q−n(UmUn+1 − Um+1Un).

Finally, for the cases of odd n and even m, odd m and even n,

Vm−n = −q−n(UmVn+1 − Um+1Vn).

�

3.2. Theorem. If A is a square matrix with A2 = pA − qI and I matrix identity of
order 2. Then, An = UnA− qUn−1I, for all n ∈ Z.

Proof. If n = 0, the proof is obvious because U−1 = −q−1 by (1.2). It can be shown
by induction that An = UnA− qUn−1I, for every positive integer n. We now show that
A−n = U−nA− qU−n−1I. Let B = pI −A = qA−1, then

B2 = (pI −A)2 = p2I − 2pA+A2 = p(pI −A)− qI = pB − qI,

this shows that Bn = UnB−qUn−1I. That is, (qA−1)n = Un(pI−A)−qUn−1I. Therefore
qnA−n = −UnA+ (pUn − qUn−1)I = −UnA+ Un+1I. Thus,

A−n = −q−nUnA+ q−nUn+1I = U−nA− qU−n−1I.

Thus, the proof is completed. �

The well-known identity

(3.6) U2
n+1 − qU2

n = U2n+1

has as its Lucas counterpart

(3.7) V 2
n+1 − qV 2

n = ∆U2n+1.

Indeed, since Vn+1 = Un+2 − qUn = pUn+1 − 2qUn and Vn = 2Un+1 − pUn, the equation
( 3.7) follows from ( 3.6). We define R(p, q) be the 2× 2 matrix

(3.8) R(p, q) =
1

2

[
p ∆
1 p

]
,

then for an integer n, Rn(p, q) has the form

(3.9) Rn(p, q) =
1

2

[
Vn ∆Un
Un Vn

]
.

3.3. Theorem. V 2
n −∆U2

n = 4qn, for all n ∈ Z.

Proof. Since det(R(p, q)) = q, det(Rn(p, q)) = (det(R(p, q)))n = qn. Moreover, since
(3.9), we get det(Rn(p, q)) = 1

4
(V 2
n −∆U2

n). The proof is completed. �

Let us give a different proof of one of the fundamental identities of Generalized Fi-
bonacci and Lucas numbers, by using the matrix R(p, q).

3.4. Theorem. For all integers m and n, the following equalities are valid:

(i) 2Vm+n = VmVn + ∆UmUn,
(ii) 2Um+n = UmVn + VmUn,

(iii) 2qnVm−n = VnVm −∆UnUm,
(iv) 2qnUm−n = UnVm − VnUm.
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Proof. Since

Rm(p, q)Rn(p, q) =
1

4

[
Vm ∆Um
Um Vm

] [
Vn ∆Un
Un Vn

]
=

1

4

[
VmVn + ∆UmUn ∆(UmVn + VmUn)
UmVn + VmUn VmVn + ∆UmUn

]
and

(3.10) Rm+n(p, q) =
1

2

[
Vm+n ∆Um+n

Um+n Vm+n

]
.

Comparing the entries (1, 1) and (2, 1) of the matrix (3.10), we obtain the equations

2Vm+n = VmVn + ∆UmUn,

and

2Um+n = UmVn + VmUn.

Furthermore,

Rm(p, q)R−n(p, q) = Rm(p, q)(Rn(p, q))−1

=
1

4qn

[
Vm ∆Um
Um Vm

] [
Vn −∆Un
−Un Vn

]
=

1

4qn

[
VmVn −∆UmUn ∆(UmVn − VmUn)
UmVn − VmUn VmVn −∆UmUn

]
,

and

(3.11) Rm−n(p, q) =
1

2

[
Vm−n ∆Um−n
Um−n Vm−n

]
.

Comparing the entries (1, 1) and (2, 1) of the matrix (3.11), we obtain the equations

(3.12) 2qnVm−n = VnVm −∆UnUm,

and 2qnUm−n = UnVm − VnUm. �

3.5. Theorem. For all integers m and n, the following equalities are valid:

(i) VmVn = Vm−n + qnVm−n,
(ii) UmVn = Um−n + qnUm−n.

Proof. By the definition of the matrix Rn(p, q), it can be seen that

Rm+n(p, q) + qnRm−n(p, q) =
1

2

[
Vm−n + qnVm−n ∆(Um−n + qnUm−n)
Um−n + qnUm−n Vm−n + qnVm−n

]
.

On the other hand,

Rm+n(p, q) + qnRm−n(p, q) = Rm(p, q)(Rn(p, q) + qnR−n(p, q))

=
1

2

[
Vm ∆Um
Um Vm

] [
Vn 0
0 Vn

]
=

1

2

[
VmVn ∆UmVn
UmVn VmVn

]
.

Then, the results follow by comparing entries in the two matrices. �
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