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Abstract

In this paper, using a theorem relating the potential polynomial F
(z)
k

and the exponential Bell polynomial Bn,j (0, . . . , 0, fr ,

fr+1, . . .), we obtain some explicit formulas for higher order degenerate Bernoulli numbers of the first and second kinds. We
also prove new recurrence formulas for these numbers. Furthermore, we discuss other applications of the theorem, from which we
deduce several formulas for degenerate Genocchi numbers, degenerate tangent numbers, and the coefficients of the higher order
degenerate Euler polynomials. Finally, we examine the polynomials V (k, j, z|�) and V1(k, l, z|�), and, in particular, we show how
these polynomials are related to the degenerate Bernoulli, Genocchi, tangent, and van der Pol numbers, and the numbers generated
by the reciprocal of (1 + �x)1/� − x − 1.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For r �0 and fr �= 0, let F(x) =∑∞
k=r fkx

k/k! be a formal power series. For a variable z, we define the potential

polynomial F
(z)
k by means of(

frx
r/r!

F(x)

)z

=
∞∑

k=0

F
(z)
k

xk

k! , (1.1)

and if r �1, we define the exponential Bell polynomial Bn,j (0, . . . , 0, fr , fr+1, . . .) by

(F (x))j = j !
∞∑

n=0

Bn,j (0, . . . , 0, fr , fr+1, . . .)
xn

n! . (1.2)

Thus if j is a positive integer,

F
(−j)
k =

(
r!
fr

)j
k!j !

(k + rj)!Bk+rj,j (0, . . . , 0, fr , fr+1, . . .).
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Howard [9] stated the following theorem:

Theorem 1.1. If F
(z)
k is defined by (1.1) and if Bn,j is defined by (1.2), then

(
k − z

k

)
F

(z)
k =

k∑
j=0

(
r!
fr

)j (
k + z

k − j

)(
k − z

k + j

)
(k + j)!
(k + rj)!Bk+rj,j (0, . . . , 0, fr , fr+1, . . .)

=
k∑

j=0

(
r!
fr

)j (
k − z

k + j

)
(k + j)!
(k + rj)!Bk+rj,j (0, . . . , 0, fr+1, . . .).

In [9], Howard gave a proof of Theorem 1.1 and pointed out some of its applications.
In this paper we discuss other applications of Theorem 1.1. To the authors’ knowledge, these applications are new

and provide a general approach to a large class of degenerate numbers. In particular, these applications generalize some
well-known formulas relating Bernoulli and Stirling numbers to the degenerate forms of those numbers, which is the
main motivation of the paper.

A summary by sections follows:
Section 2 is a preliminary section containing the basic definitions, theorems, notation, and terminology we need. In

Section 3, we examine the higher order degenerate Bernoulli numbers of the first and second kinds. In Section 4, we
give new formulas for the higher order degenerate Bernoulli numbers of both kinds. In particular, we obtain formulas
and recurrence relations for the higher order degenerate Bernoulli numbers of the first kind. In Section 5, we define
the higher order degenerate Genocchi numbers, higher order degenerate tangent numbers, and the coefficients of the
higher order degenerate Euler polynomials, and we obtain explicit formulas for them. Finally, in Section 6, we define
the polynomials V (k, j, z|�) and V1(k, l, z|�) by means of

(
1 − x

2

)z{x((1 + �x)1/� + 1) − 2((1 + �x)1/� − 1)}j

= j !
∞∑

k=2j

V (k, j, z|�)
xk

k!

and (
1 − x

2

)z{x((1 + �x)1/� + 1) − 2((1 + �x)1/� − 1) − �x2}l

= l!
∞∑

k=3l

V1(k, l, z|�)
xk

k! ,

respectively, and, in particular, we show how these polynomials are related to the degenerate Bernoulli, Genocchi,
tangent, and van der Pol numbers, and the numbers generated by the reciprocal of (1 + �x)1/� − x − 1.

2. Preliminaries

Throughout this paper, we use the theory of formal power series as outlined in [4, pp. 36–43]. Also, if z is a variable,
we use the following notation:

(z)k = z(z − 1) · · · (z − k + 1),

〈z〉k = z(z + 1) · · · (z + k − 1),(
z

k

)
= (z)k

k! .
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We also need the binomial theorem [4, p. 37]: for a variable z,

(1 + x)z =
∞∑

k=0

(
z

k

)
xk .

We now define the Stirling numbers. These numbers have been extensively studied and their properties are well
known. See, for example [4, Chapter 5] and [12, Chapter 4]. We include here their definitions in terms of generating
functions and a few basic properties.

The Stirling number of the first kind, s(n, j), is defined by

s(n, j) = Bn,j (0!, −1!, 2!, −3!, 4! . . .),
that is,

(log(1 + x))j =
( ∞∑

k=1

(−1)k−1 xk

k

)j

= j !
∞∑

n=j

s(n, j)
xn

n! .

The unsigned Stirling number of the first kind, s̄(n, j), is defined by

s̄(n, j) = Bn,j (0!, 1!, 2!, . . .), (2.1)

that is,

(− log(1 − x))j =
( ∞∑

k=1

xk

k

)j

= j !
∞∑

n=j

s̄(n, j)
xn

n! .

It is well known [4, p. 213] that

〈z〉n =
n∑

j=0

s̄(n, j)zj , (2.2)

and, in fact, (2.2) is often used as the definition of s̄(n, j). We also have

s̄(n + 1, j) = ns̄(n, j) + s̄(n, j − 1). (2.3)

The Stirling number of the second kind, S(n, j), is defined by

S(n, j) = Bn,j (1, 1, 1, . . .), (2.4)

that is,

(ex − 1)j =
( ∞∑

k=1

xk

k!

)j

= j !
∞∑

n=j

S(n, j)
xn

n! .

The recurrence formula is

S(n + 1, j) = jS(n, j) + S(n, j − 1). (2.5)

Carlitz [3] has defined the degenerate Stirling numbers of the first and second kinds, s̄(n, j |�) and S(n, j |�), by
means of(

1 − (1 − x)�

�

)j

= j !
∞∑

n=j

s̄(n, j |�)
xn

n! (2.6)
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and

((1 + �x)1/� − 1)j = j !
∞∑

n=j

S(n, j |�)
xn

n! , (2.7)

respectively. The limiting case � = 0 gives the ordinary Stirling numbers. Quite a few properties of degenerate Stirling
numbers have been worked out in [3,7]. For example, we have the recurrence formulas

s̄(n + 1, k|�) = (n − k�)s̄(n, k|�) + s̄(n, k − 1|�), (2.8)

S(n + 1, k|�) = (k − n�)S(n, k|�) + S(n, k − 1|�). (2.9)

A special case of (1.1) of interest is the higher order degenerate Bernoulli numbers of the first kind, �(z)
k (�), defined by

[3]

(
x

(1 + �x)1/� − 1

)z

=
∞∑

k=0

�(z)
k (�)

xk

k! . (2.10)

The limiting case � = 0 is the Nörlund’s polynomial B
(z)
k [13, p. 146] and �(1)

k (�) = �k(�) is the degenerate Bernoulli
number. Degenerate Bernoulli numbers have been extensively studied in the past 10 years. In [11] Howard gave the
explicit formula

�k(�) = k!�kbk +
[k/2]∑
j=1

k

2j
B2j�

k−2j s(k − 1, 2j − 1), (2.11)

where [t] denotes the integer part of any real number t. Here B2j is the ordinary Bernoulli number and bk is the Bernoulli
number of the second kind defined by [12, p. 279]

x

log(1 + x)
=

∞∑
k=0

bkx
k .

Adelberg [1] developed a class of multivalued polynomials, which includes degenerate Bernoulli and Stirling polyno-
mials and various generalizations. His approach is different from Carlitz’s, which starts with generating functions, and
is more general. Recently these numbers and polynomials have been covered from other arithmetical aspects. In [14]
Young showed that degenerate Stirling and related numbers and similar sequences may in fact be expressed as p-adic
integrals of generalized factorials. As an application of this identification he deduced systems of congruences which are
analogues and generalizations of the Kummer congruences for the ordinary Bernoulli numbers. Furthermore, in [15]
he proved as analogue of the Kummer congruences for expressions involving the degenerate Bernoulli polynomials by
relating them to the general theory of “degenerate number sequences” developed in [14].

In [2], Carlitz defined the higher order Bernoulli numbers of the second kind, b
(z)
k , by means of

(
x

log(1 + x)

)z

=
∞∑

k=0

b
(z)
k xk . (2.12)

Analogous to �(z)
k (�), the polynomial �(z)

k (�) is defined by

(
�x

1 − (1 − x)�

)z

=
∞∑

k=0

�(z)
k (�)

xk

k! . (2.13)

For �=0, we have the higher order Bernoulli numbers of the second kind, and for �=0 and z=1, �(1)
k (0)= (−1)kk!bk .
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If we differentiate both sides of (2.10) with respect to x and compare the coefficients of x, we have

�(z+1)
k (�) = z − k

z
�(z)

k (�) + k

z
(�(z − k + 1) − z)�(z)

k−1(�). (2.14)

It follows from (2.8) and (2.14) that

s̄(n, n − k|�) =
(

k − n

k

)
�(n)

k (�), 0�k < n. (2.15)

Similarly we have

�(z+1)
k (�) = z − k

z
�(z)
k (�) − k

(
1 − � − k − 1

z

)
�(z)
k−1(�), (2.16)

and (2.9), (2.16) yield

S(n, n − k|�) =
(

k − n

k

)
�(n)
k (�), 0�k < n. (2.17)

Other special numbers and polynomials will be defined and used later in the paper as they are needed.

3. Higher order degenerate Bernoulli numbers

In this section we examine the higher order degenerate Bernoulli numbers of the first and second kinds, and we
obtain explicit formulas for them. These formulas appear to be new; in particular, the formulas for the higher order
degenerate Bernoulli numbers of the first kind are generalizations for the degenerate Bernoulli numbers, worked out
by Howard [11] in detail.

Let F(x) = f0 + f1x + · · · + fnx
n/n! + · · · be a formal exponential generating function. If f0 = 0, f1 �= 0, we

define

G(x) = log(F (x) + 1),(
x

G(x)

)k

=
∞∑

m=0

a(k)
m xm,

(G(x))j = j !
∞∑

m=j

T (m, j)
xm

m! ,

and if f0 = 0, f1 = 1,

(
x

F(x)

)k

=
∞∑

m=0

F (k)
m

xm

m! .

Theorem 3.1. If F
(k)
m , a

(k)
m , and T (m, j) are defined as above, then for positive integers k and m with m�k, we have

F
(k)
m

m! =
k−1∑
j=0

B
(k)
j

j ! a
(k−j)
m−j +

m−k∑
j=0

B
(k)
j+k

(j + k) · · · (j + 1)

T (m − k, j)

(m − k)! . (3.1)
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Proof. Let G(x) = t = log(F (x) + 1), so that F(x) = et − 1. Then

∞∑
m=0

F (k)
m

xm

m! = xk

tk

(
t

et − 1

)k

= xk

tk

∞∑
j=0

B
(k)
j

tj

j ! = xk
∞∑

j=0

B
(k)
j

tj−k

j !

= xk
k−1∑
j=0

B
(k)
j

tj−k

j ! + xk
∞∑

j=k

B
(k)
j

tj−k

j !

=
k−1∑
j=0

B
(k)
j

xj

j !
(x

t

)k−j + xk
∞∑

j=0

B
(k)
j+k

(j + k) · · · (j + 1)

tj

j !

=
k−1∑
j=0

B
(k)
j

xj

j !
∞∑

m=0

a
(k−j)
m xm +

∞∑
j=0

B
(k)
j+k

(j + k) · · · (j + 1)

∞∑
m=j

T (m, j)
xm+k

m!

=
∞∑

m=0

⎛
⎝k−1∑

j=0

B
(k)
j

j ! a
(k−j)
m

⎞
⎠ xm+j

+
∞∑

m=0

⎛
⎝ m∑

j=0

B
(k)
j+k

(j + k) · · · (j + 1)

T (m, j)

m!

⎞
⎠ xm+k .

Equating coefficients of xm gives Theorem 3.1. �

Corollary 3.2. For F(x) = (1 + �x)1/� − 1, we have

�(k)
m (�)

m! =
k−1∑
j=0

B
(k)
j

j ! b
(k−j)
m−j �m−j

+
m−k∑
j=0

B
(k)
j+k

(j + k) · · · (j + 1)

�m−k−j

(m − k)! s(m − k, j). (3.2)

Proof. We have

∞∑
m=0

F (k)
m

xm

m! =
(

x

(1 + �x)1/� − 1

)k

=
∞∑

m=0

�(k)
m (�)

xm

m! ,

so that F
(k)
m = �(k)

m (�),

∞∑
m=0

a(k)
m xm =

(
�x

log(1 + �x)

)k

=
∞∑

m=0

b(k)
m �mxm,

so that a
(k)
m = �mb

(k)
m , and

∞∑
m=j

T (m, j)
xm

m! = (log(1 + �x)/�)j

j ! =
∞∑

m=j

�m−j s(m, j)
xm

m! ,

so that T (m, j) = �m−j s(m, j). �

We note that for k = 1, (3.2) obviously entails (2.11).
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For positive integers k and m with m�k, we have (3.2) as an explicit formula for the higher order degenerate Bernoulli
numbers. When k > m or k is negative, we have the following formulas:

Theorem 3.3. For m = 0, 1, . . . , k − 1, we have

�(k)
m (�) = 1(

m − k

m

) m∑
j=0

(−1)m−j s̄(k, k − j)S(k − j, k − m)�m−j ,

and for k > 0,

�(−k)
m (�) = 1(

m + k

m

) m∑
j=0

(−1)j s̄(m + k, m + k − j)S(m + k − j, k)�j .

Proof. From (2.15), for m = 0, 1, . . . , k − 1, we have

s̄(k, k − m|�) =
(

m − k

m

)
�(k)

m (�).

Carlitz [3] proved that

s̄(k, m|�) =
k∑

j=m

(−1)j−ms̄(k, j)S(j, m)�j−m. (3.3)

Thus, we have

�(k)
m (�) = 1(

m − k

m

) m∑
j=0

(−1)m−j s̄(k, k − j)S(k − j, k − m)�m−j .

For the second equation, we make use of Carlitz’s formulas [3]

s̄(m, k|�) =
(

m

k

)
�(−k)

m−k(�)

and

s̄(m, k| − �) =
m∑

j=k

s̄(m, j)S(j, k)�m−j .

So we have

s̄(m + k, k|�) =
m+k∑
j=k

(−1)m+k−j s̄(m + k, j)S(j, k)�m+k−j

and

�(−k)
m (�) = 1(

m + k

m

) s̄(m + k, k|�)

= 1(
m + k

m

) m∑
j=0

(−1)j s̄(m + k, m + k − j)S(m + k − j, k)�j . �
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Remark 3.4. Theorem 3.3 is not new. It is in fact a special case of Corollary 4.3 of Adelberg’s paper [1], taking into
account �(w)

n (�) = �nn!An(1/�, −w), the definitions of Stirling polynomials, and the Stirling duality.

There are similar results for the higher order degenerate Bernoulli numbers of the second kind, �(k)
m (�). From the

definitions of �(k)
m (�), s̄(m, k|�), and S(m, k|�), it is clear that

�(−k)
m (�) = 1(

m + k

k

) s̄(m + k, k|�), k > 0,

and from (2.17) we have

�(k)
m (�) = 1(

m − k

k

)S(k, k − m|�), m = 0, 1, . . . , k − 1.

Theorem 3.5. The following relations hold.
For k > 0,

�(−k)
m (�) = (−�)m�(−k)

m (�−1),

�(−k)
m (�) = 1(

m + k

m

) m∑
j=0

(−1)m−j s̄(m + k, m + k − j)S(m + k − j, k)�m−j ,

and for m = 0, 1, . . . , k − 1,

�(k)
m (�) = (−�)m�(k)

m (�−1),

�(k)
m (�) = 1(

m − k

m

) m∑
j=0

(−1)j s̄(k, k − j)S(k − j, k − m)�j .

Proof. In [3] Carlitz proved that

s̄(m, k|�) = (−1)m−k�m−kS(m, k|�−1). (3.4)

Therefore, we obtain

�(−k)
m (�) = 1(

m + k

k

) s̄(m + k, k|�) = 1(
m + k

k

) (−�)mS(m + k, k|�−1)

= (−�)m�(−k)
m (�−1)

and

�(k)
m (�) = 1(

m − k

k

)S(k, k − m|�) = 1(
m − k

k

) (−�)ms̄
(
k, k − m|�−1

)

= (−�)m�(k)
m (�−1),

which are the first and third equations. Other equations follow from (2.17), (3.3), and (3.4). �

Remark 3.6. One of the referees has suggested the following simple proof of Theorem 3.5:
Replacing � by �−1 and x by −�x in the generating function (2.10) for {�(z)

m (�)}, we get the generating function for

{�(z)
m (�)}, from which the whole proof follows.
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4. New formulas and recurrence relations

Deeba and Rodriguez [5] proved the following recurrence formula: for any positive integer m and any integer n > 1,
we have

Bm = 1

n(1 − nm)

m−1∑
k=0

nk

(
m

k

)
Bk

n−1∑
j=1

jm−k . (4.1)

In 1995, Howard [10] pointed out that (4.1) is a special case of the multiplication theorem for Bernoulli polynomials.
Later, in [11], he proved an analogue of (4.1) for the degenerate Bernoulli numbers.

In this section we prove several recurrence formulas for the higher order degenerate Bernoulli numbers of the first and
second kinds, some of which are useful to obtain new explicit formulas for these numbers. We also prove an analogue
of (4.1) for the higher order degenerate Bernoulli numbers of the first kind, which generalizes the recurrence formula
for the degenerate Bernoulli numbers presented by Howard in [11].

Theorem 4.1. Let k be a positive integer. For any integer m�1, we have

m∑
j=0

S(m + k − j, k|�)

(m + k − j)!
�(k)

j (�)

j ! = 0. (4.2)

Proof. From the definition of the higher order degenerate Bernoulli numbers of the first kind, we have

xk = ((1 + �x)1/� − 1)k
∞∑

m=0

�(k)
m (�)

xm

m!

= k!
∞∑

m=k

S(m, k|�)
xm

m!
∞∑

m=0

�(k)
m (�)

xm

m!

= k!
∞∑

m=0

⎛
⎝ m∑

j=0

S(m + k − j, k|�)�(k)
j (�)

(m + k − j)!j !

⎞
⎠ xm+k

= S(k, k|�)�(k)
0 (�)xk +

∞∑
m=1

⎛
⎝ m∑

j=0

S(m + k − j, k|�)�(k)
j (�)

(m + k − j)!j !

⎞
⎠ xm+k .

Equating coefficients of xk and using the fact that S(k, k|�) = 1, we have

�(k)
0 (�) = 1,

and for all m�1,

m∑
j=0

S(m + k − j, k|�)

(m + k − j)!
�(k)

j (�)

j ! = 0. �

Lemma 4.2. With the notation of Section 1, we have

F
(z)
k =

k∑
j=0

(−1)j
(

z + j − 1
j

)(
z + k

k − j

)
F

(−j)
k . (4.3)
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Proof. Using the notation of Section 1, we have

∞∑
k=0

F
(z)
k

xk

k! =
(

fr
xr

r!
F(x)

)z

=
(

1 +
∞∑
i=1

ci

xi

i!

)−z

,

where ci = fr+i/fr(
r+i
r

). For convenience we let g = 1 +∑∞
i=1 cix

i/i!. By binomial theorem,

(g)−z = {1 + (g − 1)}−z =
∞∑

j=0

(−z

j

)
(g − 1)j .

Since xk will not appear in (g − 1)j for j > k, we see that F
(z)
k is the coefficient of xk/k! in

k∑
m=0

(−z

m

)
(g − 1)m =

k∑
m=0

(−z

m

) m∑
j=0

(−1)j−m

(
m

j

)
gj

=
k∑

m=0

(−1)j gj
k∑

m=j

(
z + m − 1

m

)(
m

j

)

=
k∑

j=0

(−1)j gj

(
z + j − 1

j

) k∑
m=j

(
z + m − 1

m − j

)

=
k∑

j=0

(−1)j
(

z + j − 1
j

)(
z + k

k − j

)
gj .

Thus we have

F
(z)
k =

k∑
j=0

(−1)j
(

z + j − 1
j

)(
z + k

k − j

)
F

(−j)
k . �

We now state a formula for the higher order degenerate Bernoulli numbers of the first kind from which several
interesting results can be deduced.

Theorem 4.3. For positive integers n and k, we have

�(kz)
n (�) =

n∑
j=1

(−1)j
(

z + j − 1
j

) (
n + z

n − j

)
(

n + jk

n

)S(n + jk, jk|�). (4.4)

Proof. Using Theorem 1.1 with F(x) = ((1 + �x)1/� − 1)k , we have

(
xk

F (x)

)z

=
∞∑

n=0

�(kz)
n (�)

xn

n! ,
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so that F
(z)
n = �(kz)

n (�), and(
F(x)

xk

)j

=
∞∑

n=0

F
(−j)
n

xn

n! ,

so that F
(−j)
n = (1/(

n+jk
n

))S(n + jk, jk|�). By (4.3), we obtain

�(kz)
n (�) =

n∑
j=1

(−1)j
(

z + j − 1
j

) (
n + z

n − j

)
(

n + jk

n

)S(n + jk, jk|�). �

Taking z = 1 in Theorem 4.3, we have the following formula, which generalizes a well-known result for ordinary
Bernoulli numbers [6, p. 48, formula (11)].

Corollary 4.4. For positive integers n and k, we have

�(k)
n (�) =

n∑
j=1

(−1)j

(
n + 1
j + 1

)
(

n + jk

n

)S(n + jk, jk|�). (4.5)

Corollary 4.5. We have the following explicit formula for �(k)
n (�):

�(k)
n (�) =

n∑
j=1

(−1)j

(
n + 1
j + 1

)
(

n + jk

n

)

× 1

(jk)!
jk∑
t=1

(−1)jk−t

(
jk

t

)
t (t − �) · · · (t − (n + jk − 1)�).

Proof. Carlitz [3] proved that

S(n, k|�) = 1

k!
k∑

t=0

(−1)k−t

(
k

t

)
t (t − �) · · · (t − (n − 1)�). (4.6)

Substituting (4.6) in (4.5), we obtain the desired formula. �

For the higher order degenerate Bernoulli numbers of the second kind, we have the following result analogous
to (4.4).

Theorem 4.6. For positive integers n and k, we have

�(kz)
n (�) =

n∑
j=1

(−1)j
(

z + j − 1
j

) (
n + z

n − j

)
(

n + jk

n

) s̄(n + jk, jk|�). (4.7)

Proof. Using Theorem 1.1 with F(x) = {(1 − (1 − x)�)/�}k , we have(
xk

F (x)

)z

=
∞∑

n=0

�(kz)
n (�)

xn

n! ,
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so that F
(z)
n = �(kz)

n (�), and(
F(x)

xk

)j

=
∞∑

n=0

F
(−j)
n

xn

n! ,

so that F
(−j)
n = (1/(

n+jk
n

))s̄(n + jk, jk|�). By (4.3), we obtain

�(kz)
n (�) =

n∑
j=1

(−1)j
(

z + j − 1
j

) (
n + z

n − j

)
(

n + jk

n

) s̄(n + jk, jk|�). �

Corollary 4.7. For positive integers n and k, we have

�(k)
n (�) =

n∑
j=1

(−1)j

(
n + 1
j + 1

)
(

n + jk

n

) s̄(n + jk, jk|�). (4.8)

Corollary 4.8. We have the following explicit formula for �(k)
n (�):

�(k)
n (�) =

n∑
j=1

(−1)j

(
n + 1
j + 1

)
(

n + jk

n

) 1

(jk)!
jk∑
t=1

(−1)n+jk−t

(
jk

t

)

× t�(t� − 1) · · · (t� − (n + jk) + 1)�−jk .

Proof. Carlitz [3] proved that

s̄(n, k|�) = 1

k!
k∑

t=0

(−1)n−t

(
k

t

)
t�(t� − 1) · · · (t� − n + 1)�−k . (4.9)

Exploiting (4.9) in (4.8), the result follows. �

We now prove an analogue of (4.1) for the higher order degenerate Bernoulli numbers of the first kind.

Theorem 4.9. Let k be a non-negative integer. For any positive integer m and any integer n > 1, we have

nk�(k)
m (n�) =

m∑
s=0

ns

(
m

s

)
�(k)

s (�)

k(n−1)∑
j=0

c
(k)
j j (j − n�) · · · (j − (m − s − 1)n�),

where c
(k)
j is defined by

(1 + x + · · · + xn−1)k =
k(n−1)∑
j=0

c
(k)
j xj .

Proof. In [3] Carlitz defined the higher order degenerate Bernoulli polynomials of the first kind, �(k)
m (�, z), by means

of the generating function(
x

(1 + �x)1/� − 1

)k

(1 + �x)z/� =
∞∑

m=0

�(k)
m (�, z)

xm

m! ,
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for each integer k. It follows from this definition that

�(k)
m (�, z) =

m∑
s=0

(
m

s

)
z(z − �)(z − 2�) · · · (z − (m − s − 1)�)�(k)

s (�). (4.10)

In [2] Carlitz gave the multiplication formula for the higher order Bernoulli polynomials

nk−mB(k)
m (nz) =

k(n−1)∑
j=0

c
(k)
j B(k)

m

(
z + j

n

)
,

where c
(k)
j is defined by

(1 + x + · · · + xn−1)k =
k(n−1)∑
j=0

c
(k)
j xj .

Carlitz [3] also proved the multiplication formula for the degenerate Bernoulli polynomials of the first kind

n1−m�m(n�, nz) =
n−1∑
j=0

�m

(
�, z + j

n

)
. (4.11)

In the logical way, we can extend (4.11) by

nk−m�(k)
m (n�, nz) =

k(n−1)∑
j=0

c
(k)
j �(k)

m

(
�, z + j

n

)
. (4.12)

If we let z = 0 in (4.12) and use (4.10), we have

nk−m�(k)
m (n�) =

k(n−1)∑
j=0

c
(k)
j �(k)

m

(
�,

j

n

)

=
k(n−1)∑
j=0

c
(k)
j

m∑
s=0

ns−m

(
m

s

)
j (j − n�) · · · (j − (m − s − 1)n�)�(k)

s (�)

=
m∑

s=0

ns−m

(
m

s

)
�(k)

s (�)

×
k(n−1)∑
j=0

c
(k)
j j (j − n�) · · · (j − (m − s − 1)n�). (4.13)

We multiply both sides of (4.13) by nm to complete the proof. �

5. Other degenerate numbers

In this section we discuss other degenerate numbers. To be precise, we define the higher order degenerate Genocchi
numbers, higher order degenerate tangent numbers, and the coefficients of the higher order degenerate Euler polyno-
mials. Furthermore, we obtain explicit formulas for these numbers.

Let z be a variable. For positive integer n and any k, the higher order degenerate Euler polynomial, E
(k)
n (�, z), may

be defined by means of(
2

(1 + �x)1/� + 1

)k

(1 + �x)z/� =
∞∑

n=0

E(k)
n (�, z)

xn

n! . (5.1)



2372 M. Cenkci, F.T. Howard / Discrete Mathematics 307 (2007) 2359–2375

For � = 0, we have the higher order Euler polynomials defined by Nörlund [13, p. 143]. Taking z = 0 in (5.1), we get
the coefficients of the higher order degenerate Euler polynomials, e

(k)
n (�), that is,(

2

(1 + �x)1/� + 1

)k

=
∞∑

n=0

e(k)
n (�)

xn

n! . (5.2)

The higher order degenerate Genocchi numbers, G
(k)
n (�), may be defined by(

2x

(1 + �x)1/� + 1

)k

=
∞∑

n=0

G(k)
n (�)

xn

n! . (5.3)

For � = 0, G
(k)
n are the higher order Genocchi numbers, and G

(1)
n (0) = Gn are the ordinary Genocchi numbers. It

follows from (5.2) and (5.3) that

e
(k)
n (�)

n! = G
(k)
n+k(�)

(n + k)! . (5.4)

The higher order tangent numbers T
(k)
n may be defined by(

2

ex + 1

)k

=
∞∑

n=0

T
(k)
n

2n

xn

n! .

The higher order degenerate tangent numbers, T
(k)
n (�), may be defined by means of(

2

(1 + �x)1/� + 1

)k

=
∞∑

n=0

T
(k)
n (�)

2n

xn

n! , (5.5)

so that

T (k)
n (�) = 2ne(k)

n (�). (5.6)

Let F(x)=f0+f1x+· · ·+fnx
n/n!+· · · be a formal exponential generating function as in Section 3. If f0 �= 0, f1 �= 0,

we define

G(x) = log(F (x) − f0 + 1),(
x

G(x)

)k

=
∞∑

m=0

a(k)
m xm,

(G(x))j = j !
∞∑

m=j

T (m, j)
xm

m! ,

and if f0 = 2, f1 �= 0,(
2

F(x)

)k

=
∞∑

m=0

F (k)
m

xm

m! ,

(
2

ex + f0 − 1

)k

=
∞∑

m=0

C(k)
m

xm

m! .

Theorem 5.1. If F
(k)
m , T (m, j), and C

(k)
m are defined as above, then we have

F (k)
m =

m∑
j=0

C
(k)
j T (m, j). (5.7)
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Proof. Since G(x) = t = log(F (x) − f0 + 1), we have F(x) = et + f0 − 1. Then

∞∑
m=0

F (k)
m

xm

m! =
(

2

F(x)

)k

=
(

2

et + f0 − 1

)k

=
∞∑

j=0

C
(k)
j

tj

j !

=
∞∑

j=0

C
(k)
j

(G(x))j

j ! =
∞∑

j=0

C
(k)
j

∞∑
m=j

T (m, j)
xm

m!

=
∞∑

m=0

⎛
⎝ m∑

j=0

C
(k)
j T (m, j)

⎞
⎠ xm

m! .

Comparing the coefficients of xm/m!, Theorem 5.1 follows. �

Taking F(x) = (1 + �x)1/� + 1 in Theorem 5.1, we get some interesting results:

Corollary 5.2. The following relations hold:

e(k)
m (�) =

m∑
j=0

e
(k)
j �m−j s(m, j),

G
(k)
m+k(�) =

m∑
j=0

(
m + k

j + k

)
(

m

j

) G
(k)
j+k�

m−j s(m, j),

T (k)
m (�) =

m∑
j=0

(2�)m−j T
(k)
j s(m, j).

We also have the following explicit formula for the higher order degenerate Genocchi numbers, which can be proved
following exactly the same steps of the proof of Theorem 3.1.

Theorem 5.3. For positive integers k and m with m�k, we have

G
(k)
m (�)

m! =
k−1∑
j=0

G
(k)
j

j ! b
(k−j)
m−j �m−j +

m−k∑
j=0

G
(k)
j+k

(j + k) · · · (j + 1)

�m−k−j

(m − k)! s(m − k, j).

6. The polynomials V (k, j, z|�) and V1(k, l, z|�)

Let z be a variable, j is a non-negative integer, and k�2j . We define V (k, j, z|�) by means of(
1 − x

2

)z{
x((1 + �x)1/� + 1) − 2((1 + �x)1/� − 1)

}j

= j !
∞∑

k=2j

V (k, j, z|�)
xk

k! . (6.1)

For z = 0 and z = 1, we set V (k, j, 0|�) = V (k, j |�) and V (k, j, 1|�) = A(k, j |�) = V (k, j |�) − (k/2)V (k − 1, j |�),
respectively. The limiting case � = 0 was studied in [8,9]. It is clear from (6.1) that

V (k, j, z|�) =
k−2j∑
i=0

(z)i

(
k

i

)
(−2)−iV (k − i, j |�). (6.2)
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For a variable z, a non-negative integer l, and k�3l, we define V1(k, l, z|�) by(
1 − x

2

)z{
x((1 + �x)1/� + 1) − 2((1 + �x)1/� − 1) − �x2

}l

= l!
∞∑

k=3l

V1(k, l, z|�)
xk

k! . (6.3)

For z = 0, we adopt the notation V1(k, l, 0|�) = V1(k, l|�). For the limiting case � = 0, V (k, j, z|�) and V1(k, l, z|�)

coincide, since the left sides of (6.1) and (6.3) are then equal. Similar to (6.2), we have

V1(k, l, z|�) =
k−3l∑
i=0

(z)i

(
k

i

)
(−2)−iV1(k − i, l|�). (6.4)

In this section we use Theorem 1.1 to obtain several formulas, which are generalizations of the results in [8,9]. We first
need to define some special numbers. We define A

(z)
k (�) and V

(z)
k (�) by means of(

((1 − �)/2)x2

(1 + �x)1/� − x − 1

)z

=
∞∑

k=0

A
(z)
k (�)

xk

k! (6.5)

and (
((1 − �)(1 + 4�)/6)x3

x((1 + �x)1/� + 1) − 2((1 + �x)1/� − 1) − �x2

)z

=
∞∑

k=0

V
(z)
k (�)

xk

k! , (6.6)

respectively. The limiting case � = 0 gives A
(z)
k and V

(z)
k , which were examined in [8]. The polynomial T

(z)
n (�) in the

next theorem is defined by (5.5).

Theorem 6.1. The following relations hold:

�(z)
n (�) =

n∑
j=0

2−j 〈z〉j
n!

(n + j)!V (n + j, j, z|�),

T (z)
n (�) = 2n

[n/2]∑
j=0

4−j 〈z〉jV (n, j, z|�),

A(z)
n (�) =

n∑
l=0

(1 − �)−l〈z〉l
n!

(n + 2l)!V1(n + 2l, l, z|�) (� �= 1),

(
n − z

n

)
V (z)

n (�) =
n∑

l=0

(
6

(1 − �)(1 + 4�)

)l (
n + z

n − l

)(
n − z

n + l

)

× (n + l)!
(n + 3l)!V1(n + 3l, l|�).

Proof. Let F
(z)
n (�) be either �(z)

n (�) or T
(z)
n (�), and define K

(z)
n (�) by(

2frx
r/r!

(2 − x)F (�, x)

)z

=
∞∑

n=0

K(z)
n (�)

xn

n! , (6.7)

where

F(�, x) =
{

(1 + �x)1/� − 1, r = 1, fr = 1 if F
(z)
n (�) = �(z)

n (�),

(1 + �x)1/� + 1, r = 0, fr = 2 if F
(z)
n (�) = T

(z)
n (�).
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By Theorem 1.1,

K
(z)
i (�) =

i∑
j=0

(
r!

2fr

)j

〈z〉j
i!

(i + rj)!V (i + rj, j |�), (6.8)

and by (6.7),

�(z)
n (�) =

n∑
i=0

(−2)i−n

(
z

n − i

)
n!
i! K

(z)
i (�), (6.9)

T (z)
n (�) = 2n

n∑
i=0

(−2)i−n

(
z

n − i

)
n!
i! K

(z)
i (�). (6.10)

We now substitute (6.8) into (6.9) and (6.10), switch summations, and simplify; using (6.2) we obtain the first two
formulas in Theorem 6.1. With an argument analogous to the one above, using the polynomial V1 instead of V with
F(�, x) = (1 + �x)1/� − x − 1 and (6.4), we can prove the third formula. The last formula follows immediately from
Theorem 1.1, with r = 3 and fr = (1 − �)(1 + 4�). �

7. Final remarks

One of the referees has pointed out that in this paper we need only be in an integral domain of characteristic zero.
The authors wish to express their sincere gratitude to the referees for their valuable comments and suggestions.
The first author was supported by Akdeniz University Scientific Research Project Unit.
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