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REND. SEM. MAT. UN1v. PADOVA, Vol. 62 (1980)

A Characterization of the Bernoulli
and Euler Polynomials.

L. CARLITZ (¥)

1. The following three multiplication formulas are well-known
[5, pp. 18, 24]:

(1.1)  Bi(nz) = nk—lnfB,, (x 1 i)

12)  Buna) — kS (—1)E, (w 4 5) (n odd)
8$=0

/nk—l k—1

(1.3) Ei—(nx) = 2 (—1 SBk(w -+ ) (n even),

where B, (x), Ex(x) denote the Bernoulli and Euler polynomials in the
standard notation,

1exr e zk

1.4 =SB =
(1.4) 1 = 2B
xz ) k

(1.5) 2o _ S Eu(2)—

Nielsen has observed [4, p. 54] that (1.1) and (1.2) characterize
the respective polynomials. More precisely, if a monic polynomial of
degree k satisfies (1.1) for a single value n > 1, then it is identical with

(*) Indirizzo dell’A.: Department of Mathematics - Duke University -
Durham, N.C. 27706 U.S.A.



310 L. Carlitz

B,(x); similarly if a monic polynomial of degree k satisfies (1.2) for
a single odd » > 1, then it is identical with Ey(z). The present writer [1]
has proved that if fi(w), gr(x) are monic polynomials of degree Ek,
k—1, respectively, that satisfy

Qpk—1 n— 1

. ,Z —1)* fk(ac—f- ) (n even)

0

{1.6) Jr(nx) = —

for two distinet even k, then

{1.7) fr(®) = By(®) + ¢, Je(®) = Epy(2) ,

where ¢ is a n arbitrary constant.
The writer [2] has generalized (1.1), (1.2), (1.3) in the following way:

ms

k—1 p— k—1 IYE
1.8) =n sz( +n) m EBk(m+m),

ms

n—1 x m—1 T
W9 WS 1B (] +5) =S (1B (ﬁ +2)

(m=n=1 (mod?2)),

. m—1
@10) wS 1B (2 +2) =~ Lo+ U S B (7 + )

n r=0 m

(n even) .

These results were suggested by the formula for the gamma function

(1.11) :lj:f’(mw + f'n—s-) — (—"-‘

mng-H(mn—m—n)/2
n

m—1
(2m) =2 ] ] F’(nw + ,’K)
r=0 n

due to Schoblock [3, pp. 196-198]. For m = 1, (1.11) reduces to the
familiar multiplication formula for the gamma function.

The purpose of the present note is to see to what extent the Ber-
noulli and Euler polynomials are characterized by (1.8), (1.9), (1.10)
We show that (1.8) and (1.9) do indeed characterize the Bernoulli and
Euler polynomials, respectively, if a monic polynomial of degree k
satisfies (1.8) for two unequal values m, n, then it is identical with
By(n); if a monic polynomial of degree k satisfies (1.9) for two unequal
odd values m, n, then it is identical with Hy(x).
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The situation for (1.10) is somewhat less simple. We show that

if fi.(z) and gx(x) are monic polynomials of degree %k + 1, and k,
respectively, that satisfy

n—1
12 m §O<~—1)’fm(

S8
*_
!
I

1 m-1 x nr
=—3 4+ 1)m Z(—l)gk(;n— + %)

0

for two pairs of m, » and m', n’, where n and n’ are even and in addition

m'n—mn' #0,
then

fea1(®) = Byny(®) + ¢, gu(@) = Ey(z),

where ¢ is an arbitrary constant. If however (1.12) is assumed only
for the single pair m, n with n even, then

k
(1.13) fen(®) = a0 + Za,,-ﬂm""'B,ﬂ(w)

i=0

if and only if

k
(1.14) ge(@) = 2 (G + 1)a;yn*+ By=) .
i=0

Conversely, if g;() is defined by (1.14) then fi,(x) is determined
by (1.13) with a, arbitrary.

We remark that the results concerning the Euler polynomial can
be carried over to the Eulerian polynomials discussed in[1] and [2];
however we shall not do so in the present note.

2. We first prove

THEOREM 1. Let the monic polynomial f.(x) of degree k satisfy

ms nr

n—1 m—1
(2.1) S (24 2) = S (5 + )

n m
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for two distinct (positive) values m,n. Then

(2.2) fu(@) = Bi(@) .
Proor. Let

so that, by (1.8),
(2.4) Sp(@; myn) = Se(w;ny,m) (k=0,1,2,...).

It is clear from (2.3) that S.(x; m, n) is a monic polynomial of degree k.
Moreover, from the proof of (1.8), we have

A F - zem(emmr—1)
(2.5) kzoSk(w’ m, n) = e D)o —1)"
Now put
k
(2.6) (@) = ZoaiBj(m) (@x=1),

where the coefficients a; are independent of # and are uniquely de-
termined by fi.(z). Thus (2.1) becomes

k n—1 @ ms k m—1 (.’L‘ /I'W')
n1>a; > Bi{-+—)=m*1Da; ) B;|—+—]).
BoZp o) = Bezp
Hence, by (2.3),
k k
S a,nr-i8,(w; myn) = 3 a,;mE18,(@; n, m)
i=0 i=0
so that, by (2.4),

k
(2.7) a;(n*7i—m*7)8;(x; myn) =0 .
i=0

Since §,(x;m,n) is of precise degree j in z, it follows from (2.7)
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that
a;=0 (j=0,1,2,...,k—1)

and (2.6) reduces to fi(x) = By(x).
We remark that it follows from (2.5) that

(2.8) mnkS;_,(s; myn) = (mB + nB + & 4+ mn)*— (mB + nB + x)*,

where
k!

@9) - (mB B0t = 2 =i

min'B,; B;x*17 .

Alternatively, (mB + nB -+ x)* can be exhibited as a Bernoulli poly-
nomial of higher order [5, Ch. 6].

3. Turning to (1.9) we shall prove

THEOREM 2. Let the monic polynomial g,(x) of deg}ee k satisfy

n—1 m—1
61 w3l + ) =S+ )

m

for two distinct odd values of m,n. Then

(3.2) 9x(®) = Ep(®) .
ProOF. Let
. nol x  ms
(3.3) Tutws myn) =S, (<17 +5).
§=0 n n
so that, by (1.9),
(3.4) Ti(w; myn) = Tyw; n,m), (k=0,1,2,..),

at least for m,n both odd. It follows from (3.3) that, for n odd,
Tw(®; m,n) is a monic polynomial of degree k. From the proof of
(1.9) we have

. S e mym & = 2D
( ) kgoT (‘Ty m, n)k' (em + 1)(e7lz+ 1)
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Now put

k
(3.6) gx(®) = g()biEi(w) (br=1),

where the coefficients b; are independent of # and are uniquely de-
termined by gi(z). Thus (3.1) becomes

. k n—1 . f I!_n_s . . k m—l_ . ﬁ ﬂ
n 5gobja§0(_1) E,‘( + n ) =m 5§objgo( 1) E:i (m + m) .

n

Thus, by (3.3),
3 k
zbink_lTi(w; m, n) = Zb,-'m""Tj(s; 7y M) ,
i=0 i=0

so that, by (3.4),

k
(3.7) > b(n*  —m*=i) T (w5 myn) =0 .
i=0
Since T,(xz; m,n) is of degree j in x, it follows from (3.7) that

b,=0 (j=0,1,2,..,k—1)

and therefore (3.6) reduces to gi(x) = Ei(x).
It follows from (3.5) that

(3.8) 2mnTy(x; myn) = (3mC + inC 4+ & + mn)* +
+ (3mC + $nC + 2)* (m=b=1 (mod})),

where

1 1 k k! . . X
_ — f— - 9=it—imint().().rk—i—i
(3.9) ( mC + nC+ zv) : ,Egk'&!?'( i 7)'2 m'n C,C,élf

and [5, p. 28]

(3.10) Eyw) = (@ +30)*, Ex0)=27"C;.
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For n even, it is proved in [2] that

2)k

oo (’ﬂ n—1 . z}
2 B eun(

ms) _ 2e%(1 — emnz)
n (em 4 1)(en+1)
Since the right hand side is symmetric in m, n, it follows that (1.9)

holds provided only that m and » have the same parity. The definition
(3.3) holds for arbitrary n and therefore

2612(1 — emnz)
(e + 1)(e + 1)

oo k
(3.11) kz Ez_' Tw(z; myn) = (n even).
—0 K+

We accordingly get
(3.12) 2mnTy(x; m, n) =
= (3mC + }nC + 2)*— (3mC + }nC + » + mn)* (n even).

Expanding the right member of (3.12) it is clear that, for n even,
Tw(@; m, n) is of degree k — 1; the coefficient of #*-! is equal to — mn.

We now consider the equation (3.1) assuming that both m and n
are even. The proof of Theorem 2 applies without change down to
and including (3.7). In the present situation T',(z; m,n) is of degree
j—1 for j>1. Hence we infer that

b,=0 (j=1,2,..,k—1).

Finally we may state

THEOREM 3. Let the monic polynomial g.(x) satisfy (3.1) for two
distinet even values of m,n. Then

(3.9) 9i(x) = Ey(x) + ¢,

where ¢ 18 an arbitrary constant.

4. Let fr41(2) be a monic polynomial of degree k¥ 4 1 and let g.(x)
be a monic polynomial of degree k. Consider the equation

n m m

n_1 m—1
(1) 03 (=1 fen (s + "—’5) =5k + 1)mkfgogk(” - "—")

for fixed m and fixed even n.
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Put
n—1
(4.2) Usnal; my m) = n5 3 (— 1) Byay (“—” + ’—”-8-)
§=0 n n
and
Ot xz . nr
(4.3) Vel@; myn) = m rZOEk (;n— + %) .
Then by (1.10)
(4.4) Uiia(@; mym) =— 3 (k + 1) Vi(w; my m) .

By (4.3) it is evident that Vi(x; m, n) is monic of degree k. Hence
Uisi(w; myn) is of degree k and with highest coefficient equal to

—3(k+1).
Let
kE+1 k
(4.5) fen (@) = za'iBi(x) y  gk(@) = zobj-Ej(w) y
i=0 i=

where the a;, b, are independent of  and are uniquely determined by
fira(®) and g.(x), respectively; in particular, a.; = b= 1.
Substituting from (4.5) in (4.1), we get

m m

k+1 n—1 1 k m—1
nkzajz(—l)sB,-(?—” + 2’f) =—C(k+1)m 3b, 3 E,(”” - "—’)
i=0 s n n 2 =0 r=0

o
that is
k+1 k
4.6) Dan=1U(x; myn) =—3%(k + 1) > b;m:~iV (x; m, n) .
i=0 i=0

By (4.4) this reduces to
(4.7) a1 Uy (25 m, m) +
+ 3k + l)ézo{b,-mk—"—— (G + Daun*}Vi@; myn) =0.
Note that |

n n

Usla; myn) = n—l"f(— 1B, (f+ @) —0.
8=0
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Sincé Vi(x; m, n) is of degree j it follows from (4.7) that
(4.8) bmi—i— (j + Da;n~i=0 (j=0,1,2,.., k).
For j = k, (4.8) is automatically satisfied in view of a;., = b= 1.
We now assume that (4.1) is satisfied by a second pair of numbers
m'yn', with »’ even. Then by (4.8) we have also
(4.9) bm'* i —(j +1)a;n =0 (j=0,1,2,..,k).
It follows from (4.8) and (4.9) that
(4.10)  @uq((m n)e—i— (mn/)E=1) =0  (j=0,1,...,k—1).
For j = k—1, (4.10) reduces to
ax(m'n—mn') = 0.
We therefore assume that
(4.11) m'n—mn' #£0 .

It is then clear that (4.10) implies

(4.12) ;=0 ((=1,2,..,k),
so that
(4.13) b,=0 (¢ =0,1,..,k—1).

This completes the proof of

THEOREM 4. Let fin(®) and g.(x) be monic polynomials of degree
E + 1 and k; respectively. Assume that

@19 w1 (;L + —) —— 3G+ 1Sy, (m + )

n m

for two pairs of number m,n and m',n', where n and n' are even and
i addition

(4.15) m'n—mn' #£0 .
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Then
(4.16) fin(@) = Ben(@) +¢, gu(®) = Eu(x),

where ¢ is an arbitrary constant.

If we assume only that (4.14) is satisfied for the pair m, n we get
the following

COROLLARY. Let fi,(2) and gi(x) satisfy the hypothesis of Theorem 4.
Assume that (4.14) holds for the pair m,n with n even. Let

(4.17) frena () = ao +.§ @y M By () .

i=0

Then gi(x) is uniquely determined by

k
(4.18) (@) = _20(7' + 1) ajun 7 Eyx) .

J

Conversely, if gi(x) is given by (4.18) then fit,(x) 78 determined by (4.17)
with a, arbitrary.
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