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A Characterization of the Bernoulli

and Euler Polynomials.

L. CARLITZ (*)

1. The following three multiplication formulas are well-known

[5, pp. 18, 24] :

where Bk(x), denote the Bernoulli and Euler polynomials in the
standard notation,

Nielsen has observed [4, p. 54] that (1.1) and (1.2) characterize
the respective polynomials. More precisely, y if a monic polynomial of
degree k satisfies (1.1) for a single value n &#x3E; 1, then it is identical with

(*) Indirizzo dell’A.: Department of Mathematics - Duke University -
Durham, N.C. 27706 U.S.A.
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similarly if a monic polynomial of degree k satisfies (1.2) for
:a single odd n &#x3E; 1, then it is identical with Bk(x). The present writer [1]
has proved that if are monic polynomials of degree k,
.k - ~ , respectively, y that satisfy

ior two distinct even k, then

were c is a n arbitrary constant.
The writer [2] has generalized (1.1), (1.2 ), (1.3) in the following way:

These results were suggested by the formula for the gamma function

due to Schoblock [3, pp. 196-198]. For m = 1, (1.11) reduces to the
familiar multiplication formula for the gamma function.

The purpose of the present note is to see to what extent the Ber-
noulli and Euler polynomials are characterized by (1.8), (1.9), (1.10)
We show that (1.8) and (1.9) do indeed characterize the Bernoulli and
Euler polynomials, respectively, if a monic polynomial of degree k
satisfies (1.8) for two unequal values m, n, then it is identical with

Bk(n); if a monic polynomial of degree k satisfies (1.9) for two unequal
.odd values m, n, then it is identical with Ek(x).
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The situation for (1.10) is somewhat less simple. We show that
if and gx(x) are monic polynomials of degree k + 1, and k,
respectively, that satisfy ~

for two pairs of m, n and m’, n’, where n and n’ are even and in addition

then

where c is an arbitrary constant. If however (1.12) is assumed only
for the single pair m, n with n even, then

if and only if

Conversely, y if gk(x) is defined by (1.14) then is determined

by (1.13) with ao arbitrary.
We remark that the results concerning the Euler polynomial can

be carried over to the Eulerian polynomials discussed in [I] and [2];
however we shall not do so in the present note.

2. We first prove

THEOREM 1. Let the monic polynomial of degree k satis f y
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f or two distinct (positive) values m, n. T hen

PROOF. Let

so that, by (1.8),

It is clear from (2.3) that m, n) is a monic polynomial of degree k.
Moreover, y from the proof of (1.8), we have

Now put

where the coefficients aj are independent of x and are uniquely de-
termined by Thus (2.1) becomes

Hence, by (2.3),

so that, by (2.4),

Since m, n) is of precise degree j in x, it follows from (2.7)
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that

and (2.6) reduces to fk(x) = Bk(x).
We remark that it follows from (2.5) that

where

Alternatively, y (mB + nB -~- x)k can be exhibited as a Bernoulli poly-
nomial of higher order [5, Ch. 6].

3. Turning to (1.9) we shall prove

THEOREM 2. Let the monic polynomial gk(x) o f degree k satisfy

¡or two distinct odd values of m, n. Then

PROOF. Let

so that, by (1.9),

at least for m, n both odd. It follows from (3.3) that, for n odd,
Tk(x; m, n) is a monic polynomial of degree 1~. From the proof of
(1.9) we have
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Now put

where the coefficients bj are independent of r and are uniquely de-
termined by Thus (3.1) becomes

Thus, by (3.3),

so that, by (3.4),

Since TAx; m, n) is of degree j in x, it follows from (3.7) that

and therefore (3.6) reduces to gx(x) = Ex(x).
It follows from (3.5) that

where

and [5, p. 28]
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For n even, it is proved in [2] that

Since the right hand side is symmetric in m, n, it follows that (1.9)
holds provided only that m and n have the same parity. The definition
(3.3) holds for arbitrary n and therefore

We accordingly get

Expanding the right member of (3.12) it is clear that, for n even,.
Tk(x; m, n) is of degree k -1; the coeincient of is equal to - mn.

We now consider the equation (3.1) assuming that both m and n
are even. The proof of Theorem 2 applies without change down to
and including (3.7). In the present situation TAx; m, n) is of degree
j -1 Hence we infer that

Finally we may state

THEOREM 3. Let the monic polynomial g,(x) satisfy (3.1 ) for two
distinct even values of m, n. Then

where c is an arbitrary constant.

4. Let be a monic polynomial of degree k -f- 1 and let 

be a monic polynomial of degree k. Consider the equation

for fixed m and fixed even n.
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Put

:and

Then by (1.10)

By (4.3) it is evident that n) is monic of degree k. Hence,

m, n) is of degree k and with highest coefficient equal to

.- ~. ( k -~- 1 ) .
Let

where the a~, b~ are independent of x and are uniquely determined by
and gk(x), respectively; in particular, ak+l = bt = 1.

Substituting from (4.5) in (4.1 ), we get

that is

By (4.4) this reduces to

Note that
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Since m, n ) is of degree j it follows from (4.7) that

(4.8) is automatically satisfied in view of bk = 1.
We now assume that (4.1) is satisfied by a second pair of numbers

m’, n’, with n’ even. Then by (4.8) we have also

It follows from (4.8) and (4.9) that

For j = k -1, (4.10) reduces to

We therefore assume that

It is then clear that (4.10) implies

so that

This completes the proof of

THEOREM 4. Let tk+1(x) and gk(x) be monic polynomials o f degree
k + 1 and k; respectively. Assume that

for two pairs of number m, n and m’, n’, where n and n’ are even and
in addition
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T hen

where c is an arbitrary constant.

If we assume only that (4.14) is satisfied for the pair m, n we get
the following

COROLLARY. Let and gk(x) satis f y the hypothesis of Theorems 4.
Assume that (4.14) holds for the pair m, n with n even. Let

Then gk(x) is uniquely determined by

Conversely, if gk(x) is given by (4.18) then is determined by (4.17)
with ao arbitrary.
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