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1. INTRODUCTION 

The purpose of this paper is to discuss some of the properties of the 
Bernoulli and related numbers and to indicate the relationship of these numbers 
to cyclotomic fields, We shall use the notation of Norlund [25]. 

The Bernoulli numbers may be defined by means of 

00 

(1.1) f--=HBn TZ <lx|<2^ • 
n=o 

This is equivalent to 

(1.2) > C ) B r = B n ( n > l ) . EG) 
r=o 

together with B0 = 1. 
It is convenient to write (1.2) in the following symbolic form: 

(1.3) (B + l ) n - B n (n > 1) 

where it is understood that after expansion of the left member we replace B 
by B k . 

We next define the Bernoulli polynomial B (a) by means of 

k 

oo ax ^—^ n 

e - 1 

It follows that 
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(1.5) 

or symbolically 

(1.6) 

Bn<a> = 2 ^ 1 r P r a 

r=0 

Bn(a) = (B + a) n 

Moreover, we have from (1.4) 

(1.7) Bn(0) = B n 

(1.8) Bn(a + 1) -B n (a) = na11-1 , 

(1.9) B^a) = nBn_j(a) 

The polynomial B (a) is uniquely determined by means of (1.7) and (1.8). 
Additional properties of interest are 

(1.10) Bn( l - a) = (-l)nBn(a) 

and the multiplication theorem. 

k-i 
(1.11) BnW=kwJ]BBi(a+5) 

s=o 

valid for all integral k > 1. Nielsen [24] has observed that if a polynomial 
f (a) satisfies 

k-i 

fn(ka) ^ ^ E ^ ^ l ) 
s=o 

for some k > 1 then we have 
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f (a) = C • B (a) , 

where C i s independent of a. 

It i s not difficult to show that 

(1.12) B 2 n + 1 = 0 ( n > 0) 

and that 

(1.13) (-lf~\n > 0 (n> 0) . 

The Eu le r number s E may be defined by means of 

00 n 
(i.i4) — ^ — = y E ~ 

n^o 

which i s equivalent to 

(1.15) (E + l ) n
 + (E - l ) n = { 0

2 £ = °) (n > 0) 

It follows that 

(1.16) Ejjn+i = 0 ( n > 0) 

while 

(1.17) ( - 1 ) % ^ 0 (n > 1 ) 

the E 2 n a r e odd in tege r s . 

The E u l e r polynomial E (a) i s defined by means of 

~ ax w n 
(L18> - T — = E E n < a > ST 

e + 1 • n=o 
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It follows that 

(1.19) E n = 2 n E n ( l / 2 ) 

Clearly 

(1.20) E n (a + 1) + En(a) = 2a11 

Corresponding to (1.10) and (1.11) we have 

(1.21) E (1 - a) = (-l)nE (a) , 
n n 

k-i 
(1.22) En(kx) = k n ] T ( - l ) S E n U + | j (k odd) , 

s=o 

(1.23) En(kx) = ^ £ ( - D S E n + 1 ( a + f ) (k even) . 
s=o 

2. THE STAUDT-CLAUSEN THEOREM 

The B are rational numbers, as is evident from the definition. The n ' 
denominator of B2 n is determined by the following remarkable theorem. 

Theorem 1. We have, for n > 1, 

(2-1) B 2n = G 2 n " / j p » 
p-iJ2n 

where G2n is an integer and the summation on the right is over all primes p 
(including 2) such that p - 1 divides 2n. 

For example, we have 
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We shall sketch a proof of Theorem 1. It follows from (1.1) that 

». = E r a E <-»B (=) •" • (2.2) 
k=0 s=0 

Now it is familiar that 

K 
1 v * / ixk-s /k\ n 
kj- L H ) [B) S 

s=o 

is an integer (Stirling number of the second kind). Thus (2.2) becomes 

k=o 
B„ = > ^ r j c ( n*k) 

where c(n,k) is an integer. In the next place if a > 2S b > 2? ab > 4, we 
can easily verify that (ab - l)J/ab is integral. Hence in the right member of 
(2.2) it is only necessary to consider k = 4 and k equal to a prime p. Since 

p-i p- i 

s=o s=o 

/ -1 (mod p) (p - l |n, n > 0) 
" ( 0 (modp) (p - l|n) , 

(2.2) reduces to 

(2.3) B2n = G|n- £ ' § + i^"1)8 (2) ^ 
p-i|2n s=o 

where G ^ is an integer. But 
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3 

y ° V l ) S ( g ) s2 n = -3 - 3 2 n = 0 (mod 4 ) 
s=o 

so that (2.3) reduces to (2.1). 
Hurwitz [ l 2 ] has proved the following elegant analog of theStaudt-Clausen 

theorem. Let £(u) be the lemniscate function defined by means of 

(2.4) £'2(u) = 4^3 ( u ) -45(u) . 

We may put 

(2.5) 
^ E . . _.4 n-2 

C(U)
 ll2 Z ^ 4n (4n-2)! 

(The E in (2.5) should not be confused with the Euler number defined by (1.14).) 
Corresponding to (2.1) we have 

(2.6) E =G + I + 1M^E± 
x f n n 2 p 

where G is an integer and the sum on the right is over all primes p '= 1 (mod 
4) such that p - 1 divides 4n; moreover, a is uniquely determined by means 
of 

p = a2 + b2, a = b + 1 (mod 4) . 

Hurwitz1 s proof makes use of the complex multiplication of the function 
£(u). However the present writer [ ? ] has proved the following generalized 
Staudt-Clausen theorem in an elementary manner. 

Put 

(2.7) f(x) - y ^ a n x n / n : (ai = 1} 

n=i 
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where the a are arb 
function is of the type 
where the an are arbitrary rational integers and assume that the inverse 

0 0 

(2.8) \(x) = J2 Cnx I 1 /n (Cl = 1)? 

n=i 

where the c are integers. Note that the denominator in (2.8) is n9 not nl, 
Now put 

(2.9) 

Then we have 

x -E"̂ /-' f(x) 
0 

(2.10) a = G - Y ^ 
Pn n / J p p 

p-ljn 

I cn/(p-i) 

where G is integral and the summation is over all primes p such that p - 1 
divides n. 

When f(x) = e x - 1, X(x) = log (1 + x), (2.10) reduces to (2.1). 

3. KUMMER!S CONGRUENCES 

Kummer obtained certain congruences for both the Bernoulli and Euler 
numbers that are of considerable importance in applications. We state first 
the result for Euler numbers. 

Theorem 2. Let r > 19 n > r and let p denote an arbitrary odd prime. 
Then 

S=0 
(3-D > . (-1)° C J E

n+s(p-i) s ° ( m o d P r ) -
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A more general result is contained in Theorem 3. Let r > 1, e > 1, 
e- i n > re and put w = p (p - 1), where p is an odd prime. Then 

s=o 
(3-2) > ' (-1)° C ) E n + g w = 0 (modp r e ) 

For the Bernoulli numbers we have Theorem 4. Let r > 1, e > 1, 
e—l fr 

n > re and put w = p (p - 1), where p is a prime such that p - 1 j n. 
Then 

/o ov \ ~ ^ / ivS / r \ n+sw A , , re. 
(3.3) ^(-1) J I T T ^ ^ ° <mod P >• 

s=o x ' 

For proof of these theorems see Nielsen [24, Ch. 14] or Bachmann [26]. 
Note that p = 2 is excluded in Theorems 2 and 3. Frobenius [9] has proved 
a result for the case p = 2. There is a fallacious proof in Bachmann's book. 

Vandiver [19] obtained a result like (3.3) without the denominator n + 
sw but under more restrictive hypotheses. He proved that 

(3.4) 

where 

a > 0 , r > 0 , a + r < p - l , 

For more general results in this direction see [3]. 
The quotient B / n occurring in (3.3) is integral (mod p) provided p -

1 -}- n. More precisely we state 
Theorem 5. If p is prime and p - 1 i 2n, p |n then the numerator of 

r B2 n is divisible by p . 
The case p - l|2n is covered by the following supplementary theorem. 

s=o 
E (-1)S u Vsxp-i)s ° < m o d p r - 1 > > 
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Theorem 6. Let p r (p - l)jn. Then p r divides the numerator of 

• Ban + J - 1 . 

For proof of Theorem 6, see [3] , 

4. RECURRENCES 

In addition to the fundamental recurrence (1.2)9 the B satisfy many 
more recurrences. Many are derived in Nielsen1 s book. The following two 
occur in a paper by D. H. Lehmer [ l3J. 

r=o 

n 

(4.2) £ (St5)B«r« = | (6n + 5) . 
r=o 

In all the known recurrences the number of terms is of order An, where 
A is a positive constant. Thus it is of interest to ask whether B can satisfy 
a relation of the form 

k 

Z Ar(n)Bn-r = AW • 
r=o 

where the A.(n) and A(n) satisfy certain restrictions and k is independent 
of n. 

We may state 
Theorem 7. The equation 

k 

(4.3) Z A r ( n ) B n-r = A(n) (n > No) 

r=o 
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where A0(n) is a polynomial in n with integral coefficients, A^n),- • • , A, (n), 
A(n) are arbitrary integral-valued functions of n and k is independent of n, 
is impossible. 

Theorem 8. The equation 
k 

(4.4) SAr ( n ) En-r = A(n) (n > N o ) ' 
r=o 

where A0(n), AA(n), • •••, A^(n), A(n) are polynomials in n with integral co-
efficients and k is independent of n, is impossible. 

Theorem 7 is proved by means of the Staudt-Clausen Theorem; Theorem 
8 by means of Kummer's Congruences. For these and more general results, 
see [5], [6]. 

5. IRREGULAR PRIMES 

A prime p is said to be regular if it does not divide the numerator of 
any of the numbers 

(5.1) B2, B4, • - . , B p ^ 3 . 

The prime p is irregular if it does divide the numerator of at least one of the 
numbers (5.1). The motivation for these definitions will appear presently. 

The first few irregular primes are 

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293. 

It might appear that the irregular primes are relatively rare . Actually, 
it is not known whether infinitely many regular primes exist. In the opposite 
direction we have 

Theorem 9. The number of irregular primes is infinite. 
This theorem is due to Jensen; for the proof see [23, p. 82], A simpler 

proof is given in [2]. Jensen proved a slightly stronger result, namely that 
there exist infinitely many irregular primes congruent to 5 (mod 6). This r e -
sult has very recently been improved by Montgomery [14]. 
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Theorem 10. Let T be a fixed integer >2e Then there exist infinitely 
many irregular primes that are not congruent to 1 (mod T). 

Paralleling the above definition^ we may say that a prime p is i rregu-
lar relative to the Euler numbers provided it divides at least one of the Euler 
numbers 

(5.2) E 2 , E 4 , - - - , E p _ 3 . 

Theorem 11. There exist inifiniteiy many primes that .are irregular 
relative to the Euler numbers, 

For proof see [2]. Here again nothing is known about the number of reg-
ular primes relative to the Euler numbers. Also it is not known how the two 
kinds of regular primes are related. 

6. CONNECTION WITH CLASS NUMBERS AND FERMATfS LAST THEOREM 

Let p denote a fixed odd prime and put £ = eVi/p. Let h = h(£) de-
note the class number of the cyclotomic field Q(£)» ^ i s customary to put 

(6.1) h = AB; 

A is called the first factor of the class number and B is called the second 
factor8 The number B appears as the quotient of two determinants involving 
logarithms of units; it is equal to the class number of the real field Q(£ + £ ""1)a 

It is of considerable interest to know when h is divisible by p. We have 
the following criterion. 

Theorem 12. The class number of Q(£) is divisible by p if and only 
if p is irregular. 

It can be proved that if p divides B then necessarily p divides A. 
This yields 

Theorem 13. pjh<^p(Ae 

Vandiver [18] has proved 
Theorem 14. Let n > 1. Then A satisfies 

(6.2) A = 2-l/2(P™3)p n B (modpn) , 
s sp +i 
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where the product is over s = 1, 3, 5, • • • , p - 2. 
When n = 19 (6.2) reduces to 

A = 2~1/2(P~3)p n B g + 1 (mod p) 
s p 

Now by Theorem 4 with r = 1 we have 

Sp+1 __ S+l , A \ it , n\ 
^TT ~ JTT <m o d P) (i £ s < P - 2) ; 

for s = p - 2 we have by the Staudt-Clau'sen Theorem 

pBp(p-2)+i = P B(p-i)2 S ^ ( m ° d p ) ' 

Thus (6.2) reduces to 

4 l/2(p-3) 
(6.3) A = (172^13)); ° B2s ( m o d P)-

S -L 

Kummer has proved the following result concerning Fermat' s last theorem. 
Theorem 15. If p is regular the equation 

(6.4) « p + /3P + i/p = 0 (asp,p e Q(£)) 

has only the trivial solution a = 0 = ^ = 0. 
Nicol, Self ridge and Vandiver [16] have proved that FermatTs last theo-

rem holds for prime exponents less than 4002. 
The equation (in rational integers) 

(6.5) xP + yP + zp = 0 (p | xyz) 

is known as the first case of Fermat 's last theorem. 
It has been proved that if (6.5) is satisfied then 

(6.6) 2 P = • 2 (mod p2) 
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and 

(6.7) 3 P = 3 (mod p2) 

Indeed considerably more is known in this direction. 
It has also been proved that if (6.5) holds then 

(6.8) B . = B = B = B n = 0 (mod p) . 
v ' p-3 p-5 p-7 P~9 v 

Finally we state some criteria involving the Euler numbers. Vandiver 
[20] has proved that if (6.5) is satisfied then 

(6.9) E p ^ = 0 (modp). 

M. Gut [10] has proved that if 

(6.10) x2P + y2P = z2P (p |xyz) 

is satisfied, then 

(6.11) E H E = E „ = E n = E ,, = 0 (modp) . 1 ; p-3 p-5 p-7 p-9 p-ii v ^ 

7. CONCLUDING REMARKS 

The references that follow include mainly papers that have been referred 
to above8 Vandiver in his expository paper [22] remarks that some 1500 papers 
on Bernoulli numbers have been published! 

For Fermat 's last theorem, the reader is referred to Vandiver1 s expos-
itory paper [21] as well as Dickson [8], Hilbert [ l l ] and Vandiver-Wahlin [23]. 

For the Euler numbers and related matters see Salie [17]. 
We conclude with some remarks about real quadratic fields. Let p be a 

prime = 1 (mod 4) and let E = 1/2(t + uVp) > 1 denote the fundamental unit 
of Q( vf>). Ankeny, Artin andChowla [l] have conjectured that u £ 0 (mod p); 
Mordell [15] has proved the following results: 

(1) If p is regular then u ^ 0 (mod p). 
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(2) If p = 5 (mod 8) then u = 0 (mod p) if and only if B v/2 ~ 0 
(mod p)„ Chowla had proved (2) for all p =. 1 (mod 4). 
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