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THE COEFFICIENTS OF THE RECIPROCAL
OF A BESSEL FUNCTION!

L. CARLITZ

Put

{i (—1)"x"}“= S

=0 nin! nmo nln!

This is equivalent to

1) i(—l)r(f)zwr X D

r=0 0 (n > 0).

In a letter to the author, J. Riordan has raised the question whether
the w, can satisfy a recurrence of order independent of #. We shall
show that the w, cannot satisfy a recurrence order &, where % is inde-
pendent of #, with polynomial coefficients. More precisely we show
that the assumption

k
(2) 2 AMwasi =0 (n> N),

=0

where the 4;(n) are polynomials in # with complex coefficients and
E, N are fixed, leads to a contradiction.

Since it is no more difficult, we consider the following more general
problem. Put

o (=Dmr 7 & o)
®) {2 nT(v + n + 1)} “E, nl( + n + 1)

This is equivalent to
n [y (v +n 1 (n=0
@) 2 (=1) ( r >(n - r)w,(v) B {0 (n > 0).

We assume that » is not a negative integer; then it is clear that the
wn(v) are uniquely determined by (3) or (4).
Now assume that the w,(») satisfy the recurrence

(5) Z; A(n, v)wayi(v) = 0
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for all n> N, where the 4;(n, v) are polynomials in # with complex
coefficients and &, N are fixed. Put
0 (_ l)nxn

f@) = Z% nll'(v + n + 1)’

i w.(v)x"

1

Now if P(x) is an arbitrary polynomial with constant coefficients, it
is evident that

glx) =

P(xD)g(x) = i}P(n) W(?%}-T)- ’

where D =d/dx; moreover since
> Wn i (¥) 2"

Dy, = ’
W = 2 e D

it follows that

. » P(n) wns(v)2"
6)  P(D)-Dig(s) = '
©  P@D) D) = & e e D

If we multiply both sides of (5) by

xﬂ
nTv+n+1)
and sum over all #> N we get
L. Wnti(v) 2"
7 4i(n, v) ——— = C(x),
(M EE i(n y)n!r(u+ w1 (%)

where C(x) is a polynomial in x of degree <N. Repeated differentia-
tion of (7) leads to an equation of the same kind in which the right
member vanishes.

Comparison of (7) with (6) shows that g(x) satisfies a differential
equation of the form

® i By(x, v) D™ig(a) = 0,

where the B;(x, ») are polynomials in x. The order m depends upon
the degree of the 4;(n, v). We may assume that

%) Bo(x, ») 5% 0.
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In the next place since g(x) =1/f(x), we have

oy _ @) by @ 2 @)
f///(x) f’(x)f”(x) (f’(x))3
117 _ — 6 _ 6 ,
g’ (x) ) + @ )

and so on. Making use of (10) we may replace (8) by a differential
equation in f(x).

For simplicity we shall assume m =3; the method is however quite
general. We find that

Bof —f2(0)f" (%) + 6f(@)f' (x)f" (x) — 6(f'(x))*}
+ Bi{ —f2@)f" (%) + 2@ (f ()} — Bof*(0f () + Byf*(x) = 0,
where B;=B;(x, v). Now, on the other hand, we have

aof"(x) + (v +1)f" () + f) =0,

(11)

so that
af "'(x) + (v + 2)f" (@) + f'(x) = 0.

We may eliminate f”/(x) and f"/(x) in (11); there results an equation
of the form

Co(x, ) (f (#))* + Calw, ») (f'(x)) ¥ (2)
+ Calx, »)f'(0)f*(%) + Ci(a, »)f*(x) = 0,

where C;(x, ») are polynomials in x. Moreover, by (9) Co(x, »)
= —6Bo(x, V)#O

It therefore follows from (12) that f'(x)/f(x) is an algebraic func-
tion of x. However, since f(x) has infinitely many zeros, it follows
that the logarithmic derivative f’(x)/f(x) has infinitely many poles
and therefore cannot be an algebraic function.

We have proved the following

(12)

THEOREM. Let v be an arbitrary complex number not equal to a nega-
tive integer and define w,(v) by means of (3). Then w,(v) cannot satisfy
a recurrence

2 Ai(n, Vwnys(®) =0 (n > N),

i=0

where the A ;(n, v) are polynomials in n with complex coefficients and k,
N are fixed.
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