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¢-BERNOULLI AND EULERIAN NUMBERS

BY
L. CARLITZ

1. Introduction. In a previous paper [2] the writer defined a set of
rational functions 7., of the indeterminate ¢ by means of

(1'1) (9’7+1)"‘=ﬂ"‘(m>1): 7]0=1) 771=0)
and a set of polynomials

Nn(%) = 1u(%, @)

in ¢* by

(1.2) (%) = ([x] + g™, 1a(0) = 1,
where [x]=(¢—1)/(¢—1); also

(1.3) ¢"Bn(#) = (%) + (¢ — Dama(x),  Bu(0) = Bum.

For g=1, B. reduces to the Bernoulli number B,, Bx(x) reduces to the
Bernoulli polynomial B,(x); 7. however does not remain finite for m > 1.
In the present paper we first define polynomials 4 ns = A ws(g) by means of

(1.4) [€]™ = ‘_g‘: Aml:x te - 1] (m = 1),

m

where

[x:l _ (¢ =D = 1) - (g = 1)
(@q—1D(g—=1) - (gm—1)

Alternatively if we define the rational function H,=H,(x, ¢) by means of
H0=1y Hl= 1/(x—g))

(1.5) (¢gH+ 1) = «xH™ (m > 1),

then we have

m,

(1.6) Ho(, ) = Au(, q)/fll (& — ¢,
where
(1.7) An(x, 9 = iAm.x“‘ (m 2 1),
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¢-BERNOULLI AND EULERIAN NUMBERS 333

and the coefficients are the same as those occurring in (1.4). For ¢=1, A
and H,(x) reduce to well known functions; some of the properties of these
quantities are stated in §2 below. As Frobenius [3] showed, many of the prop-
erties of the Bernoulli and related numbers can be derived from properties
of H,. We shall show that much the same is true in the case of the g analogues.

In [2] a theorem somewhat analogous to the Staudt-Clausen theorem
was obtained for 3, (with ¢ an indeterminate). We now show that if p is an
odd prime and we put ¢=a, where the rational number a is integral (mod ),
then if e=1 (mod p),

(1.8) pBm = — 1 (mod p)

provided p—1 l m; otherwise (3, is integral (mod p). If a1 (mod p) the situa-
tion is more complicated. In particular, if ¢ is a primitive root (mod p?), then
B. is integral (mod p) for p—1}m, while for p—1|m we have

1
phm = — — (mod 2), (k= (a7t = 1)/p).

In general the denominator of 8, may be divisible by arbitrarily high
powers of p (see Theorem 4 below).

Finally we derive some congruences of Kummer’s type for H,, etc. For
example if ¢=a is integral (mod p) while x is an indeterminate, then

Hm(H» — 1)* = 0 (mod p™, p") (= (p — 1) | w),

where after expansion of the left member H* is replaced by Hj;. We also ob-
tain simple congruences for the numbers 4 ., defined in (1.4). The correspond-
ing results for ., and B, are more complicated.

2. Eulerian numbers. To facilitate comparison we quote the following
formulas from the papers of Frobenius [3] and Worpitzky [5].

(2.1) x'"=iAm<x+;_l> (m 2 1),
(22) Am+1,a = (m + 2 — S)Am,a—l + 54 s,y
(2.3) Ame = Zj (—1)'<m :r 1) (s=nm
1 m m -1
(2.9 Bom = 5 0 (") e

In the next place if we put

(2.5) Am = Am(x) = i A a1,

=1
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and let
H, = Hu(x) = (x — 1)~"Rn(x),
then H,, satisfies
(2.6) H4+ )" =xH™ (m = 1), H, = 1.

The connection between H,, and the Bernoulli numbers is furnished by

k—1 7 kl—mg—

2.7 "Bu|— ) = ——mH_1({),
(2.7) Zz‘; o <k> = )
where {*=1, {#1. An immediate consequence of (2.7) is

r 1

2.8 k"‘Bm<—>—Bm= —-m — H,,_1({),

(2.8) i g c = He®

where { runs through the kth roots of unity distinct from 1.
We also mention

(2.9) H,= > (x— 1)"7A70m™
r=0

3. Some preliminaries. We shall use the notation of [2]; see in particular
§2 of that paper. In addition the following remarks will be useful. Let f(«) be
a polynomial in g* of degree <m. Then the difference equation

(3.1) g(u + 1) — cg(w) = f(u) (c # ¢q)

has a unique polynomial solution g(u), as can easily be proved by comparison
of coefficients. To put the solution in more useful form we rewrite (3.1) as
(E—c)g(u) =f(u) and recall that

A=E-1,0=(E-1D)E=q, 8= (E-1)E-QE-¢), .
In the identity
1 1 + Z— 21 1 (Z - zl)(z - 2'2) 1

I — gz I — 5 I — 351 t— 29 (t — 200 — 22) ¢ — 33
(3—21) - (3—3) 1
t—2) - (t—32,) t—3

take t=¢, 3=E, 2,=¢*"!, so that we get
1 1 A A?
Py P P S P Yo s
An 1
NI P
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Hence if we take #>m, we obtain the following formula for g(u):

= Asf(u)
3.2 = )
32 &) §=:o c—=ND—q - (c—¢)

4. The number A,,. We suppose 4., defined by means of (1.4). Using
the identity

(qm+l — 1)(qx — 1) = (qm+1—s — 1)(qz+s — 1) + qm+1—s(qs — 1)(q:¢+s—m—1 — 1)
and multiplying both members of (1.4) by [x], we get

[x] 7 = ;Am{[m +1-— S][; i Sl] + gmti=e[s] I:x:”_j__l l:l}

=Z[x+s—1

Jtbn+ 2 = s g,

R m+ 1
which implies the recursion
(4.1) Am+1,e = [m + 2 — S]Am,s—-l + q"‘“_" [S]Ams

For g=1 it is evident that (4.1) reduces to (2.2). As an immediate conse-
quence of (4.1) we infer that 4., is a polynomial in ¢ with positive integral
coefficients.

It is easy to show that 4., is divisible by g —s+1/2 Indeed if we put

(4.2) Aoy = qlm= (m—stDi2g]
then (4.1) becomes
(4.3) A e =42 — s + [s]dms

which proves the stated property. Moreover it follows easily from (4.3) that

(4.4) deg Ame = (s — 1)(m — s).
Indeed assuming the truth of (4.4), we get

deg ([m+ 2 — s]ldmes) =m+1—35) +(s—2)(m+1—5)
=@E—Dm+1-y),
Vdeg ([s)An) = (s =D+ (G —Dm—s) = (s = Dim + 1 -3),
so that
deg Ahpro= (s — Dm+1—5),
which proves (4.4).
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The symmetry properties

(4.5) A A,:n,m-s+l = Afne
and
(4.6) Ans(g) = g DL (¢Y)

will be proved below.
Comparing coefficients of ¢™* on both sides of (1.4) we get

m

(4.7) 2 Ap = [m]l = [m][m — 1] - - [1].

s=1

More generally if we expand both sides in powers of ¢* and equate coefficients
we get

(4.8) ‘ [m:l "_Vt‘{Amrq” - (7:;)9'”'8“"”’2[7”]1 (0=s=m).

N

The following table of A5, 1=s<m =<5, is easily computed by means of
(4.3).

1 2 3 4 5
1 1
2 1 1
3 1 2(g+1) 1
4 1 3¢2+5¢+3 3¢+5¢+3 1
S 1 4¢°+9¢*+9¢+4 | 6¢'+16¢°+22¢*+16¢+6 | 4¢°+9¢*+9¢+4 1

5. A formula for A,,. It is easy to show that if f(x) is a polynomial in
g® of degree =m,

5.1) @) =3 cm[er ‘T IJ (m = 1),
8=0 m
then
(5.2) Cmo = (—1)mgmm+DI2f(0),
(5.9) Comer = 5 =0 [ T s 1 = g
8=0 N

Since

%1(—1)’9“"1)’2 [m * l:lf(x +m+1—3) =0,

8=0 N

we have in particular
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m+1

5 g [" T e 1-9 -0,
N

s=0

and (5.3) yields

u 1
(5.9 %=Zeww%WWWVj]m—m

s=0

which includes (5.2) also. Thus the coefficients in (5.1) are determined.
If we take f(x) = [x]™, then Cp,=An- and we get after a little manipula-

tion

r 1
(5.5) Ay = g2 Y (-D*q““””[m * :l [r — s]m;
8=0 N

for ¢=1, (5.5) reduces to (2.3).
Replacing ¢ by ¢, (5.5) becomes

q(r—l)(m—r)A’;r(q—l) = q(r—l)m+r(r—l)/2z (_l)sqs(a—l)/2+e [m + 1] [,, _ s]m’
N

8=0
where
__s(s—l)—(m+1)(m+2)+(m—|—1—s)(m+2—s)
B 2 2
+j£i;2+-—2—(r—s+1)m=—(r—l)m.
Hence

A’:w(Q) = q(r—l)(m_r)Aj:w(q—l):

which is identical with (4.6).
In the next place we observe that exactly as in the proof of (6.2) of [2] we
have

id m m—t m
Z( . )[x]i+1q(m—i):v n + (gmtDs — 1) Mmt1

=0\ i+1 m+ 1
= iAmaqm—rl-l l:x + S 1:|'
8=1 m + 1
Divide both sides of this identity by [x] and then put x=0. We find that
1 m m —1
= —— _1 m—s—1,—(m—s) (m—s+1)/2 Ams.
B [m + 1] 3=Zl (=1) 1 [s — 1:’

Using (4.2) and (4.5) this becomes
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B = [—JlrlT ; (—1) it L " 1]_1A’fm

Tt 1] +1]Z( l)[ ]_IA:‘*’

the first of which may be compared with (2.4).
6. The polynomial A..(x). The polynomial 4.(x) =A.(x, ¢) is defined in
(1.7) for m=1; we put 4o(x) =1. Put

(6.1) bm(x) = I:nlo (x — ¢

and apply the Lagrange interpolation formula at the points x=g¢*,
s=0,1, - - -, m. Since ‘

o) = sf{(w —o I (¢ - &)
= J=8+1

= (=1)mosgmemsembiz(g — 1 [s]i[m — s]L,
we get using (4.8)
(6.2) An(a) = 2223 1>m-s< )—— :
G-H 5 x—q
As a first application of (6.2) consider
I S SR

A, ) = > - (")

c™qg—1m s=0

-

q8
which gives
(6.3) amlgnn DA (17 g7 = Aw(®, 9) (m 2z 1).
Substituting from (1.7) in (6.3) we get

qm(m—l)/zzAm(q—l)xm—a — ZAms(q)xa—l,

8=1 8=1

which implies
(6.4) q"‘("“”’zAm(Q"l) = Am,m—s+l(Q)°
Hence by (4.2) and (4.6), (6.4) becomes

qm(m—l)/Z—(m—s) (m—s+1)/2—(s—1) (m—a)Afns(q—l) — qs (s—-l)lefn m—s+l(q)’

which is the same as (4.5).
7. The functions H,(x) and H,(u, x). Using (6.2) and (1.6) we get
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d 1
(7.1 (¢ = D"Hu(x) = (s — D3 <_1)m—s<”:)

8=0 X — q“

We remark that (7.1) implies
(7.2) Ha(2) = (x — 1) 22« r]m
r=0

for |x| >|g*|, 0<s<m. It is also evident that

(1 + gH)™ = (x — 1)%(’;‘)“4_ 1y i(_l)HC) 1

r=0 s=0 x=q

0B () B (T e

X — (]" r=s

=03 (") ()

=== 05 o (M)

x— q°

which implies
(7.3) (1 + gH)™ = xHn™ (m > 1).

We have therefore proved (1.5). Alternatively taking (7.3) as definition of
H,, one can work back to the earlier formulas obtained for 4,,, above.

For some purposes it is convenient to define Hy(u; x) =H,(u; %, q), a
polynomial in ¢*. We put

(7.4) (g — V)™Hu(u; x) = (x — 1)? (_1)m—a(”:)_q_s_u__,

so that H,(0; x) = Hn.(x). It follows at once from (7.4) that

(7.5) Hau(l — u; 27, ¢ = (—q)"Hu(u; %, q)
and that
(7.6) 2Hn(u; %) — Hu(u + 1; 5) = (& — 1) [u]™

We have also

m

Z(":)qfﬂr(u; %) = Ha(u + 1; 2),

r=0

which becomes, using (7.6),

(7.7) (14 gH(u; x))™ = xHnu(u; x) — (x — 1) [u]™
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For u=0, (7.7) reduces to (7.3).
Clearly (7.6) implies

-1
(7.8) > wbifu 4 i|™ = x*H(u; ) — Ha(u + k; %),
i=0

which includes (7.2) as a special case.
Since Hn(u; x) is a polynomial in ¢* of degree m, the remarks in §3 apply
to the difference equation (7.6). In particular, application of (3.2) leads to

m A [u]m (t/fs(x) = ,I:‘E (% — qr)>’

(7.9) Ho(u; %) = 2
8=0 ‘ps(x)

provided x#¢", r=0, 1, - - -, m. To simplify the right member of (7.9), we

used (2.6) and (3.1) of [2]; thus

A® [u]m — Z qr(r—l)/2aﬁm'r[7,1s [u]r_sqs(u—r+s)

and (7.9) becomes after a little manipulation

r qs(u—r+s)

(7.10) Ha(; 2) = 30 g7y, 3 [l
r=0 8=0 l//,,(x)

If we let G.(4) denote the inner sum it is clear from (3.2) that

%G.(u) — G, (u + 1) = [u],.
In (7.10) put #=0, then

m A ,r [r]!
(7.11) H,(x) = ) gqro—bi2 -,
r=0 ‘h(x)
which for ¢=1 reduces to (2.9).
Using (7.1) and (7.4) it is easy to verify the formula

m

(7.12) H,(u; x) = Z(mr)qu,[u]m—r = (¢*H + [u])™

r=0

Next using (7.12), (7.11), and the explicit formula [2, (6.2)] for an,, we get

m 1 r
113)  Haw;e) = 3 —— 3 (—1>8qs<s—l>/2[:][u+ r—slm,

r=0 ‘pr(x) 8=0

which is useful later.
8. Connection with 7,,(x). Using the formula [2, (4.7)]

(g — )mmu@) = 3 (—D'""(m) o

8=0 N

7
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we find that
k—1 7 m m qusu
k_lm—l —-rm u_'__ k)= _1 m—s( ).___________
@ =0T (a5 o) = E o (M) S5
m—1 — 1 ksutku—1
=mz (_J)m—l—a(m >£.q—__,
=0 s ¢ =gt
where

th=1, 1

Comparing with (7.4) we have therefore

k—1 r mg' ku—1
(8.1) [B]™ 1 ¢ (u + - q") = i C Hop(ku; tq7Y),
r=0 -

and in particular for =0

k=1 cqt
(8.2) [k]m—lz i m(%, qk> = ;” g ; Hopa(tq7Y),
r=0 -

which may be compared with (2.7).
Next using the multiplication formula (see [2, (4.12)]; note that a term
is missing in that formula)

b — [#]

k—1 r
m—1 — k) = m , — m
8.3)  [] g; nm<u+ p q> 1m(ku, ¢) + (=1) TR

together with (8.1) we get

r kE— [k]
k[k]"‘"nm<% +— qk) = (b, @) — (-1)" ———
k (g—Dnm
(8.4)
m ¢t
=— D ——— Hua(ku; tqY),
g 11—
and in particular for =0,
' r E— [k
i (50 ) = m = (—m =L
k (g—1nm
(8.5)
. m g-r-l-l
=— 2 —— Hua(iq™.
q 1 1-¢
By means of (1.3) it is easy to write down formulas like (8.1), - - -, (8.5) in-

volving . : .

9. Multiplication formulas. For the polynomial H,(u; x) we have, using
(7.4),
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k—1 7
(¢ = )" 2 g Ha (u + S q")

r=0
m m qksu k—1
= (g =12 (-D”‘“’( )“:ﬁ“ 2 £t
=0 N ?q b — q =0
quu 1 — g——qu(8+t)

- o (")

Consequently if {*=1=1, {1, we get

g— — qk(s+t) 1 — g-—lqs—ft

B3 ¢ 'H(+r§“ k) 8 e 0
" QT H o\ % _;-—1 = m(RU; —% )
0.1 iy ECAE — 7 q

analogous to (8.3).
In the special case x= —g~!, the polynomial e,(u) of [2, §8] satisfies

(9.2) en(t) = Hu(u; —q7% @);
in this case (9.1) becomes ({=—1, t=1)
k—1 7 qk_'_l
9.3 k™ —q)%€m — q*) = (bt
©.3) 1S (=020 0) = T eathu

for k odd; note that (8.6) of [2] requires a slight correction.

10. Staudt-Clausen theorems for 8,.. In [2] a theorem analogous to the
Staudt-Clausen theorem was proved for §8,, with ¢ indeterminate. Now on the
other hand we replace ¢ by a rational number a which is assumed to be inte-
gral modulo a fixed prime p. We shall use the representation [2, (6.2) ]

(10.1) Bm = 2 (—Dams[s]!/[s + 1],
8=0
where
q—s(a—l)/2 8 s
(10.2) Uy = ————— (_1)rqr<r—1>/2[ ][s — r]m;
S! r=0 r

the quantity @, is a polynomial in ¢ and has occurred in (7.10) and (7.11)
above.

Suppose first that a=1 (mod p). Then from (10.1) or [2, §7] it is clear
that the sth term in the right member of (10.1) is of the form u,
=N,(a)/Fs3a(a), where F,1(x) is the cyclotomic polynomial and N,(x) is a
polynomial with integral coefficients. If we recall that Fi(1) =p when k=2p¢,
e=1, but Fi(1) =1 otherwise, it is clear that #, is integral (mod p) except
possibly when s+41=2p¢; the same holds also for Fi(a). Now let s+1=2e
Then by a simple computation it is seen that [s]! is divisible by exactly 2/,
where
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f=0@=0D/p—-1—¢

while the denominator is divisible by exactly p¢ Since (p¢—1)/(p—1)=2e
for e=2, p=3, it follows that u, is integral in this case. If e=1, p =3, we have
first pla—1)/(a»—1)=1 (mod p). As for the numerator of #,_,, it follows
readily from (10.2) and

)

p—1 —1
P — 1l = 2 <—1>'(1’ )rm
r=0 r

that

{—1 (mod p) (¢ — 1| m),

=z 0 (mod ) (b — 14 m).

r=0
We have therefore proved
THEOREM 1. Let p=3, g=a=1 (mod p). Then
~1 (mod p) (p — 1|m),
(10.3) o= {
0 (mod p) (p — 1} m).

For p=2, the preceding argument shows that all terms in (10.1) are
integral (mod 2) except perhaps #; and u;. Now

_ Am,1 _ 1
TR T er 1
while
[3]'am,s a3 8 [3]
= — _1 royr(r—1)/2 3 —_ m,
“TTH T etrn@+ 1),2;0( )re , B

Let 2¢| (a+1), 21 (a+1); then (a*+a+1)*=1 (mod 2++1) and

i (—1)raf<r—1>/2|:i:|[3 —r]m

r=0

=@+e+)"—(@+ae+ D@+ 1)+ a(e®*+ac+1)
_ { 0 (mod 2¢t?) (m even),
~ la + 1 (mod 2¢1Y) (m odd).

Consequently u; is integral (mod 2) for m even while for m odd 2uz=1 (mod 2).
This yields the following supplement to Theorem 1.

THEOREM 2. Let p=2, g=a=1 (mod 2); also let 2¢| (a+1), 2} (a+1).
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Then if e=1 we have 2B,=1 (mod 2) for m even=2, 28;=1 (mod 2), while
B 1s integral (mod 2) for m odd =3. If e>1 then

(10.4) 2¢3,, = 1 (mod 2)

for all m=1.

In particular it is evident from (10.4) that the denominator of 8,, may be
divisible by arbitrarily high powers of 2.

In the next place we suppose ¢g=a31 (mod p), p>2. It is now con-
venient to use [2, (5.3)]

L 1
(10.5) (4= D= 3 <—1>m—s("j)[—j—i—]-

We shall assume first that a is a primitive root (mod p2). Clearly in the right
member of (10.5) we need consider only those terms in which p—lls+1.
Put a»~'=1+4Fkp, ptk. Then

a(”_l)'=l+rk1§+<;)k2p2+ <,
atr—br — 1 1
e k+—2-(r— Dk + - - - =k (mod p).

rp

Thus (10.5) implies

1
(10.6) (@ — D)mpm = (—1)m— 3

k>0 (r(p —”i) _ 1) (mod p).

But it is known [4, p. 255] that
m _ —1 (mod p) (p — 1[m),
o<r‘(p§>§m<f(17 -1 - 1) - { 0 (mod p) (» — 1m).
Hence (10.6) implies that p is integral when w0 (mod p—1). This proves
THEOREM 3. Let p=3, g=a, a primitive root (mod p2?); then B is integral
(mod p) for p—1}m, while
(10.7) PBm = — % (mod p) (> — 1| m),

where k= (a?~1—1)/p.
It is now clear how to handle the general situation. We may state

TureoreM 4. Let p=3, ¢=a, where a belongs to the exponent e (mod p),
e>1. Put
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(10.8) a =1+ plk (o} k).
Then
0.9 @-Dmpa=— () —( " ) (mod 7).

>0 re — 1

In particular if e=p—1, then

[ 0 (mod p) (p — 1} m),
(10.10) (a — 1)mpig =

1
| = (mod p) (p — 1| m).

Tp prove (10.9) it is only necessary to observe that (10.8) implies

re re

= pl
=1 Pt en -1

7 = — (mod ).

k

It is clear from (10.10) that the denominator of 8, may be divisible by
arbitrarily high powers of . We also remark that theorems like Theorems 3
and 4 can be framed for 7,,.

When pel a, it is evident {rom (10.5) that

m

m
(10.11) Bm = D (—1)s< >(s+ 1) = 0 (mod p°) (m > 1).
5=0 N
11. Congruences. The formula (7.11) together with (10.2) makes it pos-
sible to derive certain congruences satisfied by H,(x, ¢). We observe, to
begin with, that if g=a is integral (mod p) then #,= [s]!an,, satisfies, for s
fixed and (p—1)p=1| w,

(11.1) um™(u? — 1)7 = 0 (mod p™, p7°),

where after expansion of the left member, u” is replaced by u,. To prove
(11.1) we need only remark that

hd s
um(w — 1)r = a—s(s—l)/22 (_1)rar(r—l)/2[ :|[s —r]n([s = r]» — 1)~.
r=0 r
If we look on x in (7.11) as an indeterminate and apply (11.1), we can
assert that

(11.2) Hm(Hw — 1)1' =0 (mod pm Pre)_

We interpret this congruence in the following manner. The left member of
(11.2) is a rational function of x such that the coefficient of each term in the
numerator =0 (mod p™, p7). We may call (11.2) Kummer’s congruence for
H,. Using (7.13) we can prove like results for H,,(#; x), where % is now an
integer.
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In view of (1.6) the result (11.2) can be restated in terms of A,(x):

r 7 m+rw
(11.3) > (—1)r—s< )Am+w(x) IT (= %) =0 (mod pm, pre).
8=0 S t=m4sw+1

We may state

THEOREM 5. Let ¢=a be integral (mod p), x an indeterminate, and r=1;
then (11.3) holds.

In the next place (11.3) implies congruences for the 4., , of (1.7). (For the
case ¢=1, compare [1].) Since

mtrw (r—8)w —_
H (x —_ ai) _ H (_1) (r—s)w—iai(i+1)/2+i(m+aw) [(7’ s)w:l xi’
i=mtaw+1 i=0 1
examination of the coefficient of x*~1 in (11.3) implies
u r (r — s)w
— 1 r—s _ 1 (r~a)'w—iAm sw, _iai(i+1)/2+i(m+sw) [ :l
<11.4)a§( ) (s);( ) ek i
= 0 (mod p™, pr).

In order to obtain simpler results we consider some special values of the
parameters. In the first place we take =1, so that (11.4) becomes

(115) Am+w,k — Z (—‘1)w_iAm,k—iai(i+l)/2+iml:z:] =0 (mod ™, Pe)'

Now suppose first that a=1 (mod p). It is necessary to examine

w B (aw_l) (aw—i-i-l_ 1) '
(11.6) [i]_ (@—1) - (ai — 1)

We assume from now on that p>2. If we put a=14p'h, pthk, then as in the
proof of Theorem 4 we find that

3] ()

are divisible by exactly the same power of p. But if ¢ <p/, it is clear from the

identity
w wfw— 1
(i)—7<i—1)

(%) =0 tmod p= G <.

that
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Consequently if pi~1<k <p? and j<e, we see that (11.5) implies
(11.7) Amywts = Ami (mod p™, po=7).
This proves

THEOREM 6. Let p=3, g=a=1 (mod p), p"‘l(p—l),w, and pIIS k<P,
where j<e. Then (11.7) holds.

When a1 (mod p) let a belong to the exponent ¢ (mod p). Then it is
clear from (11.6) that we need only consider those factors in the right member
with exponents divisible by ¢. Thus if ¢, is the greatest integer =4/t we need

only examine
]
1

with a replaced by a'. The preceding discussion therefore applies and we ob-
tain the following theorem which includes Theorem 6.

THEOREM 7. Let p =3, let ¢=a belong to the exponent t (mod p), pe~1(p—1) , W
and k<tpi, where j<e. Then (11.7) holds.

The case k=w is not covered by the theorem. We find for example that
if w=t=p—1 (so that @ is a primitive root (mod p)), then

Am,k (mod ﬁ) (k <p-— 1),
Am+p—1.k =

Aogs + (%)A (modp)  (k=p—1),

where (a/p) is Legendre’s symbol.

Returning to (11.2) we can also consider the case in which x is put equal
to an integer (mod p), provided the resulting denominators are not divisible
by p. Now the least common denominator is evidently

m+rw
Vniro(2) = I (2 — a).
8=1
It will therefore suffice to assume that x#a* (mod p) for any s. We may

therefore state

THEOREM 8. Let a and x be rational numbers that are integral (mod p) and
suppose that x#Za* (mod p) for any s. Let

pNp—1|w and rz= 1.
Then
(11.8) Hn(x)(H™(x) — 1) = 0 (mod p™, ).
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In particular the theorem may be applied with slight changes to e,(%)
= €n(u, a) defined in (9.2); we have explicitly [2, (8.18)]
m (_ l)sas

w0 = E @D e

e M TR Rl
r

r=0

which is included in (7.13). If « is an integer we have
e™(u)(e*(u) — 1)7 = 0 (mod p™, p™)

provided p=3 (mod 4) and a is a quadratic residue (mod ). For in this case
—1 is a nonresidue (mod p) and therefore —1sa* for any s.
12. Congruences involving 7,, and (3,. Let

(12.1) on = ompr = ;i—{k[k]m-lnm(%, qk) — 1 = (—méi_ [l'j}}

so that by (8.5)

1
(12.2) Om = — )
. g1 1—¢

g‘r+1

Hm—l(fq—l) )

where { runs through the kth roots of unity distinct from 1. As for the de-
nominators in the right member of (12.2), note that

aks

II (e = 0) =

el a® —

1
n =D 4 ... s 41,

which is prime to p for all s provided pfk. We may therefore state
THEOREM 9. If a is integral (mod p) and plk, then

(12.3) w™w?® — 1) = 0 (mod p™1, pre),

where wn, 1s defined by (12.1) and pe=1(p—1) | w.

As for 3, we have
r
k[k]™1q"Bnm ~ q") — Bn

+1 -1
DG D S e+ Y
q =1 1 — ¢ g =1 1 —¢

(12.4)

§r+l g-r-i-l

Hm—l(g‘q_l)

analogous to (8.5). In much the same way as above (12.4) implies
TuaEOREM 10. If @ is integral (mod p) and plk then
(12.5) Qm( @ — 1) = 0 (mod p™1, pir—De),
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where Q, stands for the left member of (12.4) and p*~'(p—1) , w.

Unfortunately we seem unable to obtain simpler congruences for 8, and

Nm.
13. Combinatorial interpretation of am.. Put

(s—1) (m—s)

Ams = Z amsroqr (70 = S(S —_ 1)/2 _I_ 7’).

r=0

“The following combinatorial interpretation of the coefficients @, was kindly
suggested by J. Riordan. The number @, is the number of permutations of m
things requiring s readings and such that r=r.+27;+ - - - +(s—1)7,, where
7% is the number of elements read on the kth reading. The following numerical
illustration for m =4 was also supplied by Riordan.

Permutation Reading s r

1234 1234 1 0

1243
1423 123]4 2 1
4123

1324
1342
3124 12|34 2 2
3142
3412

2134
2314 1]234 2 3
2341

1432
4132 12|3]4 3 3
4312

2134
2413
2431 1]23]4 3 4
4213
4231

3214
3241 1]2|34 3 5
3421

4321 1]2]3]4 4 6
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