TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 6, pp. 2229-2244, December 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

NOTES ON CARLITZ'S q-OPERATORS

Jian Cao

Abstract. In this paper, Carlitz's q-operator and the auxiliary ones are applied to prove q-Christoffel-Darboux formulas and some Carlitz type generating functions. In addition, the technique of exponential operator decomposition to deduce q-Mehler's formulas for Rogers-Szegö and Hahn polynomials are shown.

1. INTRODUCTION

One of the customary ways to define the Hermite polynomials is by the relation [14, p. 193]

(1.1)
$$H_n(x) = (-1)^n \exp(x^2) D^n \exp(-x^2), \quad D = d/dx.$$

Burchnall [5] employed the operational formula

(1.2)
$$(D-2x)^n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} H_{n-k}(x) D^k$$

to prove the formula of Nielsen [21, p. 31]

(1.3)
$$H_{m+n}(x) = \sum_{k=0}^{\min\{m,n\}} (-2)^k \binom{m}{k} \binom{n}{k} k! H_{m-k}(x) H_{n-k}(x).$$

For more information about the classical Hermite polynomial and its operational formula, please refer to [1, 5, 9, 14, 15, 17, 20, 25].

The Rogers-Szegö polynomials [7, 23]

Received January 11, 2009, accepted April 6, 2009.

Communicated by H. M. Srivastava.

2000 Mathematics Subject Classification: 05A30, 11B65, 33D15, 33D45.

Key words and phrases: Carlitz's q-operators, Rogers-Szegö polynomials, q-Mehler's formula, Hahn polynomials, q-Christoffel-Darboux formulas, Exponential operator decomposition.

The author was supported by PCSIRT and Innovation Program of Shanghai Municipal Education Commission.

(1.4)
$$h_n(x|q) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k, \quad g_n(x|q) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} q^{k(k-n)} x^k = h_n(x|q^{-1}),$$

which are in some respects the analogue of the Hermite polynomial (See [8]), are closely related to the continuous q-Hermite polynomials via [22]

(1.5)
$$H_n(\cos\theta|q) = e^{-in\theta}h_n(e^{2i\theta}|q).$$

The Hahn polynomials [3, 11, 24] are defined by

(1.6)

$$\begin{aligned}
\phi_n^{(a)}(x|q) &= \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} (a;q)_k x^k, \\
\psi_n^{(a)}(x|q) &= \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} q^{k(k-n)} x^k (aq^{1-k};q)_k.
\end{aligned}$$

Carlitz gave a clever q-analogue of Burchnall's method by defining the shifted operator \mathbb{E} and \triangle as [8, Eq. (4) and (5)]

(1.7)
$$\mathbb{E}^n f(x) = f(xq^n)$$
 and $\triangle^n = (1 - \mathbb{E})(q - \mathbb{E}) \cdots (q^{n-1} - \mathbb{E}),$

and obtained the following results

(1.8)
$$\mathbb{E}^n = \sum_{r=0}^n (-1)^r \begin{bmatrix} n \\ r \end{bmatrix} \triangle^r \quad \text{and} \quad (\mathbb{E}_x + x)^n = \sum_{r=0}^n (-1)^r \begin{bmatrix} n \\ r \end{bmatrix} h_{n-r}(x|q) \triangle^r,$$

by means of inverse series relations and the noncommutative q-analogue of binomial theorem (See Lemma 2.1 below).

Using mathematical induction, Carlitz obtained the general formula [8, Eq. (11)]

(1.9)
$$\Delta^r h_m(x|q) = \frac{(q;q)_m}{(q;q)_{m-r}} q^{\binom{r}{2}} x^r h_{m-r}(x|q),$$

and deduced the following linearization formulas for $h_n(x|q)$:

Proposition 1.1. ([7, Eq. (1.7) and (1.8)]). *For* $m, n \in \mathbb{N}$ *, we have*

(1.10)
$$h_m(x|q)h_n(x|q) = \sum_{r=0}^{\min\{m,n\}} \begin{bmatrix} m \\ r \end{bmatrix} \begin{bmatrix} n \\ r \end{bmatrix} (q;q)_r x^r h_{m+n-2r}(x|q),$$

(1.11)
$$h_{m+n}(x|q) = \sum_{r=0}^{\min\{m,n\}} (-1)^r q^{\binom{r}{2}} \begin{bmatrix} m \\ r \end{bmatrix} \begin{bmatrix} n \\ r \end{bmatrix} (q;q)_r x^r h_{m-r}(x|q) h_{n-r}(x|q).$$

In this paper, we define the auxiliary operator of (1.8) as

(1.12)
$$\left(\mathbb{E}_x^{-1} + x\right)^n = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} q^{k(k-n)} x^{n-k} \mathbb{E}_x^{-k},$$

and the inverse pairs

(1.13)
$$\mathbb{E}^{-k} = \sum_{r=0}^{k} \begin{bmatrix} k \\ r \end{bmatrix} q^{r(r-k)} \delta^{r}$$
 and $(-\delta)^{k} = \sum_{r=0}^{k} (-1)^{r} \begin{bmatrix} k \\ r \end{bmatrix} q^{\binom{r}{2} - \binom{k}{2}} \mathbb{E}^{-r},$

then we obtain the following result and further deduce the linearization formulas for $g_n(x|q)$ (See Proposition 2.3 below).

Theorem 1.1. For $r, m \in \mathbb{N}$, we have

(1.14)
$$\delta^r g_m(x|q) = q^{-rm} \begin{bmatrix} m \\ r \end{bmatrix} (q;q)_r x^r g_{m-r}(x|q).$$

In [8], Carlitz gave a clever proof of q-Mehler's formula for $h_n(x|q)$ (See Proposition 3.1 below) by relations among operators \mathbb{E}_x , \mathbb{E}_y and \mathbb{E}_t .

In fact, we can deduce q-Mehler's formula for Rogers-Szegö polynomials by Carlitz's q-operators directly, the thought is decomposition, so the method may be called "exponential operator decomposition". See details in Sections 3 and 6.

The Christoffel-Darboux formula for Hermite polynomial reads that

Proposition 1.2. ([14, p. 193]).

(1.15)
$$\sum_{m=0}^{n} \frac{H_m(x)H_m(y)}{2^m m!} = \frac{H_{n+1}(x)H_n(y) - H_n(x)H_{n+1}(y)}{2^{n+1}n!(x-y)}, \quad n \in \mathbb{N}.$$

We give *q*-analogue of Christoffel-Darboux formula for Hermite polynomial as follows.

Theorem 1.2. For $n \in \mathbb{N}$, we have

(1.16)
$$\sum_{k=0}^{n} h_k(x/q|q) h_k(y|q) \frac{y^{n-k}q^k}{(q;q)_k} = \frac{h_{n+1}(x|q)h_n(y|q) - h_n(x|q)h_{n+1}(y|q)}{(x-y)(q;q)_n}.$$

Theorem 1.3. For $n \in \mathbb{N}$, we have

(1.17)
$$\sum_{k=0}^{n} g_k(xq|q)g_k(y|q)\frac{(-y)^{n-k}q^{\binom{k}{2}-\binom{n+1}{2}}}{(q;q)_k}$$
$$=\frac{g_{n+1}(x|q)g_n(y|q)-g_n(x|q)g_{n+1}(y|q)}{(x-y)(q;q)_n}.$$

Corollary 1.1. For $n \in \mathbb{N}$, we have

(1.18)
$$\sum_{k=0}^{n} h_k(x/q|q) h_k(y|q) \frac{y^{n-k}q^k}{(q;q)_k} = \sum_{k=0}^{n} h_k(y/q|q) h_k(x|q) \frac{x^{n-k}q^k}{(q;q)_k}.$$

Corollary 1.2. For $n \in \mathbb{N}$, we have

(1.19)
$$\sum_{k=0}^{n} g_k(xq|q)g_k(y|q)\frac{(-y)^{n-k}q^{\binom{k}{2}}}{(q;q)_k} = \sum_{k=0}^{n} g_k(yq|q)g_k(x|q)\frac{(-x)^{n-k}q^{\binom{k}{2}}}{(q;q)_k}$$

The structure of this paper is organized as follows. In Section 2, we prove Theorem 1.1 and the linearization formulas for $g_n(x|q)$. In Section 3, we show how to deduce Mehler's formula for Rogers-Szegö polynomials by Carlitz's *q*-operators. In Section 4, we give a new proof of Carlitz type Mehler's formulas for Rogers-Szegö polynomials and deduce Theorems 1.2 and 1.3. In Section 5, we deduce Mehler's formula for Hahn polynomials by Carlitz's *q*-operators. In Section 6, we give some results related to Carlitz's *q*-operators.

2. NOTATIONS AND PROOF OF THEOREM 1.1

In this paper, we follow the notations and terminology in [16] and suppose that 0 < q < 1. The q-shifted and its compact factorials are defined by

$$(a;q)_0 = 1, \quad (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad (a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k)$$

and $(a_1, a_2, \ldots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \ldots (a_m; q)_n$, respectively, where *n* is an integer or ∞ . The operator \mathbb{E} acting on the variable *x* will be denoted by \mathbb{E}_x . LHS (or RHS) means the left (or right) hand side of certain equality, and $\mathbb{N} = \{0, 1, 2, \cdots\}$.

The basic hypergeometric series $_r\phi_s$ is given by

(2.1)
$$_{r}\phi_{s}\begin{bmatrix}a_{1},\ldots,a_{r}\\b_{1},\ldots,b_{s}\end{bmatrix} = \sum_{n=0}^{\infty}\frac{(a_{1},a_{2},\ldots,a_{r};q)_{n}}{(q,b_{1},\ldots,b_{s};q)_{n}}z^{n}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{s+1-r},$$

for convergence of the infinite series in (2.1), |q| < 1 and $|z| < \infty$ when $r \le s$, or |q| < 1 and |z| < 1 when r = s + 1, provided that no zeros appear in the denominator.

The q-Chu-Vandermonde formula [16, Eq. (II.6) and (II.7)] reads that

(2.2)
$$_{2}\phi_{1}\begin{bmatrix}q^{-n},b\\c\end{bmatrix};q,q\end{bmatrix} = \frac{(c/b;q)_{n}}{(c;q)_{n}}b^{n}$$
 and $_{2}\phi_{1}\begin{bmatrix}q^{-n},b\\c\end{bmatrix};q,\frac{cq^{n}}{b}\end{bmatrix} = \frac{(c/b;q)_{n}}{(c;q)_{n}}b^{n}$

The noncommutative q-analogue of binomial theorem states that

Lemma 2.1. ([16, p. 28] or [13, Lem. 2.2]). Let A and B be two noncommutative identerminates satisfying BA = qAB, then we have

(2.3)
$$(A+B)^n = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} A^k B^{n-k}.$$

The linearization formulas for $g_n(x|q)$ are

Proposition 2.3. ([7, Eq. (4.18) and (4.19)]). *For* $m, n \in \mathbb{N}$ *, we have*

(2.4)
$$g_n(x|q)g_m(x|q) = \sum_{r=0}^{\min\{m,n\}} {m \brack r} {n \brack r} (q;q)_r q^{\binom{r}{2}+r(r-m-n)} \times (-x)^r g_{m+n-2r}(x|q),$$

(2.5)
$$g_{m+n}(x|q) = \sum_{r=0}^{\min\{m,n\}} q^{r(r-m-n)} \begin{bmatrix} m \\ r \end{bmatrix} \begin{bmatrix} n \\ r \end{bmatrix} (q;q)_r x^r g_{m-r}(x|q) g_{n-r}(x|q).$$

Proof of Theorem 1.1. In view of the fact that

(2.6)
$${}_{2\phi_{1}}\begin{bmatrix}q^{-n},b\\0;q,q\end{bmatrix} = b^{n},$$

then applying operator \mathbb{E}_x^{-n} to the second formula in (1.4) and using Lemma 2.1 give

$$\mathbb{E}_{x}^{-n}g_{m}(x|q) = \sum_{\substack{j=0\\j=0}}^{m} \begin{bmatrix} m\\ j \end{bmatrix} x^{j}q^{j(j-m-n)} = \sum_{\substack{j=0\\j=0}}^{m} \begin{bmatrix} m\\ j \end{bmatrix} x^{j}q^{j(j-m)} q^{j(1)} + \sum_{\substack{j=0\\j=0}}^{n} \begin{bmatrix} m\\ j \end{bmatrix} x^{j}q^{j(j-m)} q^{j(1)} + \sum_{\substack{j=0\\j=0}}^{n} \begin{bmatrix} n\\ j \end{bmatrix} q^{r(r-n-j)} \frac{1}{(q;q)m} \sum_{\substack{r=0\\j=0}}^{m} \begin{bmatrix} n\\ j \end{bmatrix} q^{r(r-n-j)} \frac{1}{(q;q)m} \sum_{\substack{r=0\\j=0}}^{m} \begin{bmatrix} m-r\\ j-r \end{bmatrix} q^{(j-r)(j-m)} x^{j} = \sum_{\substack{r=0\\r=0}}^{n} \begin{bmatrix} n\\ r \end{bmatrix} q^{r(r-m-n)} \frac{(q;q)m}{(q;q)m-r} x^{r} \sum_{\substack{j=0\\j=0}}^{m-r} \begin{bmatrix} m-r\\ j \end{bmatrix} q^{j(j-m+r)} x^{j} = \sum_{\substack{r=0\\r=0}}^{n} \begin{bmatrix} n\\ r \end{bmatrix} q^{r(r-n)} q^{-rm} \begin{bmatrix} m\\ r \end{bmatrix} (q;q)r x^{r} g_{m-r}(x|q).$$

Using the first formula in (1.13) yields

(2.8)
$$\mathbb{E}_x^{-n}g_m(x|q) = \sum_{r=0}^n \begin{bmatrix} n\\ r \end{bmatrix} q^{r(r-n)}\delta^r g_m(x|q).$$

Comparing the coefficient of (2.7) and (2.8), we have (1.14). The proof of Theorem is complete.

Proof of Proposition 2.3. Using (1.12), (1.13) and (1.14), LHS of (2.5) is equal to

$$\left(\mathbb{E}_x^{-1} + x \right)^n \{ g_m(x|q) \} = \sum_{k=0}^n {n \brack k} q^{k(k-n)} x^{n-k} \sum_{r=0}^k {k \brack r} q^{r(r-k)} \delta^r \{ g_m(x|q) \}$$

=
$$\sum_{r=0}^n {n \brack r} q^{r(r-n)} g_{n-r}(x|q) \delta^r \{ g_m(x|q) \},$$

which is RHS of (2.5). The proof is complete.

Using formula (2.5), RHS of (2.4) is equal to

$$\begin{split} & \sum_{r=0}^{\min\{m,n\}} \begin{bmatrix} m \\ r \end{bmatrix} \begin{bmatrix} n \\ r \end{bmatrix} (q;q)_r q^{\binom{r}{2}+r(r-m-n)}(-x)^r \\ & \times \sum_{s=0}^{\infty} q^{s(s-m-n+2r)} \begin{bmatrix} m - r \\ s \end{bmatrix} \begin{bmatrix} n - r \\ s \end{bmatrix} (q;q)_s x^s g_{m-r-s}(x|q) g_{n-r-s}(x|q) \\ & = \sum_{k=0}^{\min\{m,n\}} \underbrace{(q;q)_m(q;q)_n q^{k(k-m-n)} x^k}_{(q;q)_{m-k}(q;q)_k} g_{m-k}(x|q) g_{n-k}(x|q) \sum_{r+s=k} \underbrace{(-1)^r q^{\binom{r}{2}}(q;q)_k}_{(q;q)_r(q;q)_s} \\ & = \sum_{k=0}^{\min\{m,n\}} \underbrace{(q;q)_m(q;q)_n q^{k(k-m-n)} x^k}_{(q;q)_{m-k}(q;q)_{k}} g_{m-k}(x|q) g_{n-k}(x|q) \delta_{k,0}, \end{split}$$

which is LHS of (2.4), where $\delta_{m,n}$ is the Kronecker delta. This achieves the proof.

3. q-Mehler's Formulas for Rogers-SZEGÖ Polynomials

Carlitz [7] deduced the following *q*-Mehler's formulas by using the recurrence relations of Rogers-Szegö polynomials.

Proposition 3.1. ([7, Eq. (3.9)]). For $\max\{|t|, |xt|, |yt|, |xyt|\} < 1$, we have

(3.1)
$$\sum_{n=0}^{\infty} h_n(x|q) h_n(y|q) \frac{t^n}{(q;q)_n} = \frac{(xyt^2;q)_{\infty}}{(t,xt,yt,xyt;q)_{\infty}}.$$

Proposition 3.2. ([7, Eq. (3.13)]). For $|xyt^2/q| < 1$, we have

Notes on Carlitz's q-Operators

(3.2)
$$\sum_{n=0}^{\infty} g_n(x|q)g_n(y|q)\frac{(-1)^n q^{\binom{n}{2}}t^n}{(q;q)_n} = \frac{(t,xt,yt,xyt;q)_{\infty}}{(xyt^2/q;q)_{\infty}}.$$

Carlitz [10] gave another proofs of them by utilizing the transformation theory and the technique of operator. The authors [18] deduced them by the combinatorial method. Chen and Liu [12, 13] proved them by the method of parameter augmentation. For more information, please refer to [7, 10, 12, 13, 18].

In this section, we deduce Propositions 3.1 and 3.2 directly by the thought of exponential operator decomposition.

Proof of Proposition 3.1. LHS of (3.1) equals

$$\begin{split} \sum_{n=0}^{\infty} h_n(y|q) \frac{t^n}{(q;q)_n} (\mathbb{E}_x + x)^n \{1\} &= \frac{1}{((\mathbb{E}_x + x)t, (\mathbb{E}_x + x)yt;q)_{\infty}} \{1\} \\ &= \frac{1}{((\mathbb{E}_x + x)t;q)_{\infty}} \left\{ \sum_{k=0}^{\infty} \frac{(yt)^k}{(q;q)_k} (\mathbb{E}_x + x)^k \{1\} \right\} \\ &= \frac{1}{((\mathbb{E}_x + x)t;q)_{\infty}} \left\{ \frac{1}{(yt,xyt;q)_{\infty}} \right\} \\ &= \frac{1}{(yt;q)_{\infty}} \sum_{k=0}^{\infty} \frac{t^k}{(q;q)_k} (\mathbb{E}_x + x)^k \left\{ \frac{1}{(xyt;q)_{\infty}} \right\} \\ &= \frac{1}{(yt;q)_{\infty}} \sum_{k=0}^{\infty} \frac{t^k}{(q;q)_k} \sum_{s=0}^k \left[k \atop s \right] x^{k-s} \frac{1}{(xytq^s;q)_{\infty}} \\ &= \frac{1}{(yt,xyt;q)_{\infty}} \sum_{s=0}^{\infty} \frac{t^s(xyt;q)_s}{(q;q)_s} \sum_{k=s}^{\infty} \frac{(xt)^{k-s}}{(q;q)_{k-s}}, \end{split}$$

which is the RHS of (3.1). This completes the proof.

Proof of Proposition 3.2. LHS of (3.2) is equal to

$$\begin{split} & \left(\left(\mathbb{E}_x^{-1} + x \right) t, \left(\mathbb{E}_x^{-1} + x \right) yt; q \right)_{\infty} \{ 1 \} \\ &= \sum_{n=0}^{\infty} (-1)^n q^{\binom{n}{2}} \frac{t^n}{(q;q)_n} \Big(\mathbb{E}_x^{-1} + x \Big)^n \{ (yt, xyt;q)_{\infty} \} \\ &= (yt;q)_{\infty} \sum_{n=0}^{\infty} (-1)^n q^{\binom{n}{2}} \frac{t^n}{(q;q)_n} \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} q^{k(k-n)} x^{n-k} (xytq^{-k};q)_{\infty} \\ &= (yt, xyt;q)_{\infty} \sum_{k=0}^{\infty} \frac{(xytq^{-k};q)_k}{(q;q)_k} \sum_{n=k}^{\infty} \frac{(-1)^n q^{\binom{n}{2}} t^n q^{k(k-n)} x^{n-k}}{(q;q)_{n-k}} \end{split}$$

2235

$$\begin{split} &= (yt, xyt; q)_{\infty} \sum_{k=0}^{\infty} \frac{q^{-\binom{k+1}{2}} (xyt)^{k} (q/(xyt); q)_{k}}{(q; q)_{k}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n+k}{2}} t^{n+k} q^{-nk} x^{n}}{(q; q)_{n}} \\ &= (yt, xyt; q)_{\infty} \sum_{k=0}^{\infty} \frac{(xyt^{2}/q)^{k} (q/(xyt); q)_{k}}{(q; q)_{k}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n}{2}} (xt)^{n}}{(q; q)_{n}}, \end{split}$$

which is equivalent to RHS of (3.2). This achieve the proof.

4. q-Christoffel-darboux Formulas

The following Carlitz type generating functions for $h_n(x|q)$ is deduced by

Proposition 4.3. ([11, Eq. (4.1)]). For $m \in \mathbb{N}$, we have

(4.1)
$$\sum_{n=0}^{\infty} h_{m+n}(x|q)h_n(y|q)\frac{t^n}{(q;q)_n} = \frac{x^m(xyt^2;q)_\infty}{(t,xt,yt,xyt;q)_\infty}{}_3\phi_1\left[\begin{array}{c}q^{-m},xt,xyt\\xyt^2\end{array};q,\frac{q^m}{x}\right],$$

where $\max\{|t|, |xt|, |yt|, |xyt|\} < 1$.

The auxiliary ones is given by

Proposition 4.4. ([6, Eq. (4.3)]). For $m \in \mathbb{N}$ and $\left| xyt^2/q \right| < 1$, we have

(4.2)
$$= \frac{\sum_{n=0}^{\infty} g_{m+n}(x|q)g_n(y|q)(-1)^n q^{\binom{n}{2}} \frac{t^n}{(q;q)_n}}{\frac{x^m(t,xt,yt,xyt;q)_{\infty}}{(xyt^2/q;q)_{\infty}} {}_3\phi_2 \left[\begin{array}{c} q^{-m}, q/(xt), q/(xyt) \\ 0, q^2/(xyt^2) \end{array} ; q, q \right].$$

There are many proofs of above Propositions. Al-Salam and Ismail [2] gave the proof of Proposition 4.3 by using the transformation theory, while Srivastava and Jain [24] obtained it by the technique of generating function. The author [6] utilized the method of parameter augmentation [12, 13] to deduce above two Propositions. For more information, please refer to [2, 6, 11, 12, 13, 24].

In this section, we will use Carlitz's q-operators to derive Propositions 4.3 and 4.4, then we give the proof of Theorems 1.2 and 1.3.

Proof of Proposition 4.3. Formula (3.1) can be written as
(4.3)
$$\sum_{n=0}^{\infty} h_n(x|q)h_n(y|q)\frac{t^n}{(q;q)_n} = \frac{1}{(t;q)_\infty}\sum_{n=0}^{\infty}\frac{(t;q)_n t^n}{(q;q)_n}\frac{x^n}{(xt;q)_\infty}\frac{y^n}{(yt;q)_\infty}.$$

2236

Applying $(\mathbb{E}_x + x)^m$ to both sides of (4.3) gives

$$\begin{split} &\sum_{n=0}^{\infty} h_{m+n}(x|q)h_n(y|q)\frac{t^n}{(q;q)_n} \\ &= \frac{1}{(t;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(t;q)_n t^n}{(q;q)_n} \frac{y^n}{(yt;q)_{\infty}} \left(\mathbb{E}_x + x\right)^m \left\{\frac{x^n}{(xt;q)_{\infty}}\right\} \\ &= \frac{1}{(t;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(t;q)_n t^n}{(q;q)_n} \frac{y^n}{(yt;q)_{\infty}} \sum_{k=0}^{\infty} \frac{t^k}{(q;q)_k} \sum_{s=0}^m \begin{bmatrix}m\\s\end{bmatrix} x^{m-s+n+k} q^{(k+n)s} \\ &= \frac{1}{(t,yt;q)_{\infty}} \sum_{s=0}^m \begin{bmatrix}m\\s\end{bmatrix} x^{m-s} \sum_{n=0}^{\infty} \frac{(t;q)_n (xytq^s)^n}{(q;q)_n} \sum_{k=0}^{\infty} \frac{(xtq^s)^k}{(q;q)_k}, \end{split}$$

which is the RHS of (4.1). The proof is complete.

Proof of Proposition 4.4. We can rewrite (3.2) as

(4.4)

$$\sum_{n=0}^{\infty} (-1)^n q^{\binom{n}{2}} g_n(x|q) g_n(y|q) \frac{t^n}{(q;q)_n}$$

$$= (t;q)_{\infty} \sum_{n=0}^{\infty} \frac{(t^2/q)^n (q/t;q)_n}{(q;q)_n} x^n (xt;q)_{\infty} y^n (yt;q)_{\infty}.$$

Similar to the proof of (4.1), utilizing operator $\left(\mathbb{E}_x^{-1} + x\right)^m$ to both sides of (4.4), we obtain the proof of Proposition 4.4.

Proof of Theorem 1.2. For m = 1, formula (4.1) becomes

(4.5)
$$\sum_{n=0}^{\infty} h_{n+1}(x|q)h_n(y|q)\frac{t^n}{(q;q)_n} = \frac{(xyt^2;q)_\infty}{(t,xt,yt,xyt;q)_\infty}\frac{1+x-xt-xyt}{1-xyt^2}$$

Replacing x by y in (4.5), then differencing between them gives

(4.6)
$$\sum_{n=0}^{\infty} \frac{h_{n+1}(x|q)h_n(y|q) - h_n(x|q)h_{n+1}(y|q)}{(x-y)(q;q)_n} t^n = \frac{(xyt^2q;q)_{\infty}}{(tq,xt,yt,xyt;q)_{\infty}}.$$

By virtue of formula (3.1), RHS of (4.6) equals

(4.7)
$$\frac{(xyt^2q;q)_{\infty}}{(tq,xt,ytq,xyt;q)_{\infty}}\frac{1}{1-yt}$$
$$=\sum_{k=0}^{\infty}(yt)^k\sum_{n=k}^{\infty}h_{n-k}(x/q|q)h_{n-k}(y|q)\frac{(tq)^{n-k}}{(q;q)_{n-k}}$$
$$=\sum_{n=0}^{\infty}\sum_{k=0}^n h_{n-k}(x/q|q)h_{n-k}(y|q)\frac{y^kq^{n-k}t^n}{(q;q)_{n-k}}.$$

Comparing the coefficient of (4.6) and (4.7) gives the proof of Theorem 1.2.

Proof of Theorem 1.3. Similar to (4.6), by (4.2), we have

$$\sum_{n=0}^{\infty} \frac{g_{n+1}(x|q)g_n(y|q) - g_n(x|q)g_{n+1}(y|q)}{(x-y)(q;q)_n} t^n (-1)^n q^{\binom{n}{2}}$$

$$= \frac{(t/q, xt, yt, xyt; q)_{\infty}}{(xyt^2/q^2; q)_{\infty}}$$

$$= \frac{(t/q, xt, yt/q, xyt; q)_{\infty}}{(xyt^2/q^2; q)_{\infty}} \frac{1}{1-yt/q}$$

$$= \sum_{k=0}^{\infty} \left(\frac{yt}{q}\right)^k \sum_{n=k}^{\infty} g_{n-k}(xq|q)g_{n-k}(y|q) \frac{(-t/q)^{n-k}q^{\binom{n-k}{2}}}{(q;q)_{n-k}}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} g_{n-k}(xq|q)g_{n-k}(y|q) \frac{(-1)^{n-k}q^{\binom{n-k}{2}}y^k t^n}{q^n(q;q)_{n-k}}.$$

Equating the coefficient of t on both sides of (4.8) yields the proof of Theorem 1.3.

5. q-mehler's Formula for Hahn Polynomials

Al-Salam and Carlitz [3] gave the following two bilinear generating functions by the transformation theory. For more information, please refer to [3, 19].

Proposition 5.1. ([3, Eq. (1.17)]). If $\max\{|z|, |xz|, |yz|, |xyz|\} < 1$, we have

(5.1)
$$\sum_{n=0}^{\infty} \phi_n^{(a)}(x|q) \phi_n^{(b)}(y|q) \frac{z^n}{(q;q)_n} = \frac{(axz, byz;q)_{\infty}}{(z, xz, yz;q)_{\infty}} {}_3\phi_2 \begin{bmatrix} a, b, z \\ axz, byz; q, xyz \end{bmatrix}.$$

Proposition 5.2. ([3, Eq. (1.18)]). If $\max\{|qaxz|, |qbyz|\} < 1$, we have

(5.2)
$$\sum_{n=0}^{\infty} \psi_n^{(a)}(x|q)\psi_n^{(b)}(y|q)\frac{(-1)^n q^{\binom{n+1}{2}}z^n}{(q;q)_n} \\ = \frac{(qz, qxz, qyz; q)_{\infty}}{(qaxz, qbyz; q)_{\infty}} {}_{3}\phi_2 \left[\frac{\frac{1}{a}, \frac{1}{b}, \frac{1}{z}}{\frac{1}{axz}, \frac{1}{byz}}; q, q \right].$$

In this section, we will deduce Propositions 5.1 and 5.2 directly from q-Mehler's formula for Rogers-Szegö polynomials by Carlitz's q-operators.

Proof of Proposition 5.1. We first prove that

(5.3)

$$\sum_{m=0}^{\infty} \frac{a^{m}}{(q;q)_{m}} (\mathbb{E}_{x} + x)^{m} \left\{ \frac{x^{n}}{(xz;q)_{\infty}} \right\}$$

$$= \sum_{k=0}^{\infty} \frac{z^{k}}{(q;q)_{k}} \sum_{m=0}^{\infty} \frac{a^{m}}{(q;q)_{m}} (\mathbb{E}_{x} + x)^{m} \{x^{n+k}\}$$

$$= \sum_{k=0}^{\infty} \frac{z^{k}}{(q;q)_{k}} \sum_{m=0}^{\infty} \frac{a^{m}}{(q;q)_{m}} \sum_{j=0}^{m} {m \brack j} x^{m-j} \mathbb{E}_{x}^{j} \{x^{n+k}\}$$

$$= x^{n} \sum_{k=0}^{\infty} \frac{(xz)^{k}}{(q;q)_{k}} \sum_{j=0}^{\infty} \frac{a^{j}q^{j(n+k)}}{(q;q)_{j}} \sum_{m=j}^{\infty} \frac{(ax)^{m-j}}{(q;q)_{m-j}}$$

$$= \frac{x^{n}(a;q)_{n}(axz;q)_{\infty}}{(axz;q)_{n}(a,ax,xz;q)_{\infty}}.$$

Similarly, we have

(5.4)
$$\sum_{m=0}^{\infty} \frac{b^m}{(q;q)_m} (\mathbb{E}_y + y)^m \left\{ \frac{y^n}{(yz;q)_{\infty}} \right\} = \frac{y^n (b;q)_n (byz;q)_{\infty}}{(byz;q)_n (a,by,yz;q)_{\infty}}$$

A little computation shows that [11, Eq. (3.3)]

(5.5)
$$\sum_{m=0}^{\infty} \frac{a^m}{(q;q)_m} (\mathbb{E}_x + x)^m \{h_n(x|q)\} = \frac{1}{(a,ax;q)_{\infty}} \phi_n^{(a)}(x|q)$$

and

(5.6)
$$\sum_{m=0}^{\infty} \frac{b^m}{(q;q)_m} \left(\mathbb{E}_y + y \right)^m \left\{ h_n(y|q) \right\} = \frac{1}{(b,by;q)_{\infty}} \phi_n^{(b)}(y|q).$$

Now, we applying operators

(5.7)
$$\frac{1}{\left(a(\mathbb{E}_x+x);q\right)_{\infty}} \quad \text{and} \quad \frac{1}{\left(b(\mathbb{E}_y+y);q\right)_{\infty}}$$

to both sides of (4.3), then combining (5.3)-(5.6) yield

(5.8)
$$\frac{1}{(a, ax, b, by; q)_{\infty}} \sum_{n=0}^{\infty} \phi_n^{(a)}(x|q) \phi_n^{(b)}(y|q) \frac{z^n}{(q;q)_n} \\ = \frac{(axz, byz; q)_{\infty}}{(a, ax, xz, b, by, yz, z; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(z;q)_n z^n}{(q;q)_n} \frac{x^n (a;q)_n}{(axz;q)_n} \frac{y^n (b;q)_n}{(byz;q)_n},$$

which equals RHS of (5.1). The proof is complete.

Proof of Proposition 5.2. From (1.12), we have

(5.9)

$$\sum_{m=0}^{\infty} \frac{a^{m}}{(q;q)_{m}} (-1)^{m} q^{\binom{m+1}{2}} \left(\mathbb{E}_{x}^{-1} + x\right)^{m} \{x^{n}(xz;q)_{\infty}\}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k} q^{\binom{k}{2}} z^{k}}{(q;q)_{k}}$$

$$\times \sum_{m=0}^{\infty} \frac{a^{m}}{(q;q)_{m}} (-1)^{m} q^{\binom{m+1}{2}} \sum_{j=0}^{m} {m \brack j} q^{j(j-m-n-k)} x^{m-j+n+k}$$

$$= (-1)^{n} q^{-\binom{n}{2}} (ax)^{n} (1/a;q)_{n} \frac{(aq,axq,xz;q)_{\infty}}{(axzq^{-n};q)_{\infty}}.$$

Similarly

(5.10)
$$\sum_{m=0}^{\infty} \frac{b^m}{(q;q)_m} (-1)^m q^{\binom{m+1}{2}} \left(\mathbb{E}_y^{-1} + y\right)^m \{y^n(yz;q)_\infty\} \\ = (-1)^n q^{-\binom{n}{2}} (by)^n (1/b;q)_n \frac{(bq,byq,yz;q)_\infty}{(byzq^{-n};q)_\infty}.$$

It's easily to verify that [11, Eq. (8.5)]

(5.11)
$$\sum_{m=0}^{\infty} \frac{a^m}{(q;q)_m} (-1)^m q^{\binom{m+1}{2}} \left(\mathbb{E}_x^{-1} + x \right)^m \{g_n(x|q)\} = (aq, axq;q)_{\infty} \psi_n^{(a)}(x|q)$$

and

(5.12)
$$\sum_{m=0}^{\infty} \frac{b^m}{(q;q)_m} (-1)^m q^{\binom{m+1}{2}} \left(\mathbb{E}_y^{-1} + y \right)^m \left\{ g_n(y|q) \right\} = (bq, byq;q)_{\infty} \psi_n^{(b)}(y|q).$$

Applying operators $\left(a\left(\mathbb{E}_x^{-1}+x\right);q\right)$ and $\left(b\left(\mathbb{E}_y^{-1}+y\right);q\right)$ to both sides of (4.4) yields

(5.13)
$$\begin{aligned} (aq, axq, bq, byq; q)_{\infty} \sum_{n=0}^{\infty} \psi_n^{(a)}(x|q) \psi_n^{(b)}(y|q) \frac{(-1)^n q^{\binom{n}{2}} z^n}{(q;q)_n} \\ &= \frac{(z, aq, axq, xz, bq, byq, yz; q)_{\infty}}{(axz, byz; q)_{\infty}} \\ &\times \sum_{n=0}^{\infty} \frac{(z^2/q)^n (q/z; q)_n}{(q;q)_n} q^{-n^2 + n} \frac{(abxy)^n (1/a, 1/b; q)_n}{(axzq^{-n}, byzq^{-n}; q)_n}, \end{aligned}$$

replacing z by qz gives the proof.

6. Some Results Related to Carlitz's q-Operators

The generalized Rogers-Szegö polynomials are defined by

(6.1)
$$h_n(x,y|q) = \sum_{k=0}^n {n \brack k} x^{n-k} y^k$$
 and $g_n(x,y|q) = \sum_{k=0}^n {n \brack k} q^{k(k-n)} x^{n-k} y^k$.

In this section, using Carlitz's q-operators, we first deduce their q-Mehler's formulas as follows.

Proposition 6.1. For $\max\{|xtu|, |xtv|, |ytu|, |ytv|\} < 1$, we have

(6.2)
$$\sum_{n=0}^{\infty} h_n(x, y|q) h_n(u, v|q) \frac{t^n}{(q; q)_n} = \frac{(xyuvt^2; q)_\infty}{(xtu, xtv, ytu, ytv; q)_\infty}$$

Proposition 6.2. For $\left|xyuvt^2/q\right| < 1$, we have

(6.3)
$$\sum_{n=0}^{\infty} g_n(x,y|q) g_n(u,v|q) \frac{(-1)^n q^{\binom{n}{2}} t^n}{(q;q)_n} = \frac{(xut,xvt,yut,yvt;q)_{\infty}}{(xyuvt^2/q;q)_{\infty}}$$

Remark 1. Comparing (1.4) and (6.1), we find that $h_n(x, 1|q) = h_n(x|q)$ and $g_n(x, 1|q) = g_n(x|q)$. So when y = v = 1, Propositions 6.1 and 6.2 reduce to Propositions 3.1 and 3.2 respectively.

In addition, we derive the following q-analogue of binomial theorem.

Proposition 6.3. ([16, p. 20]). For $n \in \mathbb{N}$, we have

(6.4)
$$(xy;q)_n = \sum_{k=0}^n {n \brack k} (x;q)_k (y;q)_{n-k} y^k.$$

Proof of Proposition 6.1. By formula (1.8) and Proposition 2.1, we get

$$(y\mathbb{E}_x + x)^n = \sum_{k=0}^n {n \brack k} x^{n-k} y^k \sum_{r=0}^k (-1)^r {k \brack r} \triangle^r$$
$$= \sum_{r=0}^n (-1)^r {n \brack r} \sum_{k=r}^n {n-r \brack k-r} x^{n-k} y^k \triangle^r$$
$$= \sum_{r=0}^n (-1)^r {n \brack r} y^r \sum_{k=0}^{n-r} {n-r \brack k} x^{n-k-r} y^k \triangle^r$$
$$= \sum_{r=0}^n (-1)^r {n \brack r} y^r h_{n-r}(x, y|q) \triangle^r,$$

where \triangle defined by (1.7), so we have $(y\mathbb{E}_x+x)^n\{1\} = h_n(x,y|q)$. We can verified that

(6.5)
$$\sum_{n=0}^{\infty} h_n(x, y|q) \frac{t^n}{(q;q)_n} = \frac{1}{(xt, yt;q)_{\infty}}.$$

Using the technique of exponential operator decomposition, LHS of (6.2) equals

(6.6)
$$\frac{1}{\left(ut(y\mathbb{E}_{x}+x),vt(y\mathbb{E}_{x}+x);q\right)_{\infty}}\left\{1\right\}} = \frac{1}{(yvt;q)_{\infty}}\frac{1}{\left(ut(y\mathbb{E}_{x}+x);q\right)_{\infty}}\left\{\frac{1}{(xvt;q)_{\infty}}\right\},$$

which is RHS of (6.2) after some computation. The proof is complete.

Proof of Proposition 6.2. First we can deduce that

(6.7)
$$\sum_{n=0}^{\infty} (-1)^n q^{\binom{n}{2}} g_n(x,y|q) \frac{t^n}{(q;q)_n} = (xt,yt;q)_{\infty},$$

and $\left(y\mathbb{E}_x^{-1}+x\right)^n \{1\} = g_n(x,y|q)$. Similar to (6.6), LHS of (6.3) is equivalent to

(6.8)
$$\left(ut\left(y\mathbb{E}_{x}^{-1}+x\right),vt\left(y\mathbb{E}_{x}^{-1}+x\right);q\right)_{\infty}\left\{1\right\}$$
$$=(yvt;q)_{\infty}\left(ut\left(y\mathbb{E}_{x}^{-1}+x\right);q\right)_{\infty}\left\{(xvt;q)_{\infty}\right\},$$

which equals RHS of (6.3) after some computation. The proof is ended.

Proof of Proposition 6.3. We consider the following type of Carlitz's q-operator

(6.9)
$$\left(y(1-x)\mathbb{E}_x + (1-y)\mathbb{E}_y\right)^n$$

and find the fact that

$$\left(y(1-x)\mathbb{E}_x + (1-y)\mathbb{E}_y \right) \{1\} = y(1-x) + 1 - y = 1 - xy, \left(y(1-x)\mathbb{E}_x + (1-y)\mathbb{E}_y \right)^2 \{1\} = \left(y(1-x)\mathbb{E}_x + (1-y)\mathbb{E}_y \right) \{1-xy\} = y(1-x)(1-xyq) + (1-y)(1-xyq) = (1-xy)(1-xyq) = (xy;q)_2.$$

Generally we have

(6.10)
$$\left(y(1-x)\mathbb{E}_x + (1-y)\mathbb{E}_y \right)^n \{1\} = (xy;q)_n$$

Similarly, we get

(6.11)
$$\left((1-y)\mathbb{E}_y\right)^k \{1\} = (y;q)_k \text{ and } \left(y(1-x)\mathbb{E}_x\right)^k \{1\} = y^k(x;q)_k.$$

From Proposition 2.1, we gain

(6.12)
$$\left(y(1-x)\mathbb{E}_x + (1-y)\mathbb{E}_y\right)^n = \sum_{k=0}^n {n \brack k} \left(y(1-x)\mathbb{E}_x\right)^k \left((1-y)\mathbb{E}_y\right)^{n-k}.$$

Combining (6.10), (6.11) and (6.12), we conclude the proof.

References

- 1. W. A. Al-Salam, Operational representations for the Laguerre and other polynomials, *Duke Math. J.*, **31** (1964), 127-142.
- W. A. Al-Salam and M. E. H. Ismail, *q*-beta integrals and the *q*-hermite polynomials, *Pacific J. Math.*, 135 (1988), 209-221.
- 3. W. A. Al-Salam and L. Carlitz, Some orthogonal *q*-polynomials, *Math. Nachr.*, **30** (1965), 47-61.
- 4. D. Bowman, q-difference operator, orthogonal polynomials, and symmetric expansions, *Mem. Amer. Soc.*, **159** (2002).
- 5. J. L. Burchnall, A note on the polynomials of Hermite, *Quart. J. Math. Oxford Ser.*, **12** (1941), 9-11.
- 6. J. Cao, New proofs of generating functions for Rogers-Szeg polynomials, *Appl. Math. Comp.*, **207** (2009), 486-492.
- 7. L. Carlitz, Some polynomials related to theta functions, *Annali di Matematica Pura ed Applicata*, **41** (1956), 359-373.
- 8. L. Carlitz, Some polynomials related to theta functions, *Duke Math. Jour.*, **24** (1957), 521-527.
- 9. L. Carlitz, A note on the Laguerre polynomials, *Michigan Math. Jour.*, 7 (1960), 219-223.
- 10. L. Carlitz, A q-identity, Monatsh. für. Math., 67 (1963), 305-310.
- L. Carlitz, Generating functions for certain q-orthogonal polynomials, *Collectanea Math.*, 23 (1972), 91-104.

- 12. W. Y. C. Chen and Z.-G. Liu, Parameter augmentation for basic hypergeometric series II, *J. Combin. Theory Ser. A*, **80** (1997), 175-195.
- W. Y. C. Chen and Z.-G. Liu, Parameter augmentation for basic hypergeometric series, I, in: *Mathematical Essays in honor of Gian-Carlo Rota*, B. E. Sagan and R. P. Stanley (Eds.), Birkäuser, Basel, 1998, pp. 111-129.
- 14. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, *Higher Transcendental Functions* II, McGraw-Hill, New York, (1953).
- 15. G. Dattoli, A. Torre and M. Carpanese, Operational rules and arbitrary order Hermite generating functions, *J. Math. Anal. Appl.*, **227** (1998), 98-111.
- 16. G. Gasper and M. Rahman, *Basic Hypergeometric Series*, Cambridge Univ. Press, Cambridge, MA, 1990.
- 17. H. W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, *Duke Math. J.*, **29** (1962), 51-64.
- 18. M. E. H. Ismail, D. Stanton and G. Viennot, The combinatorics of *q*-Hermite polynomials and the Askey-Wilson integral, *Europ. J. Combinatorics*, **8** (1987), 379-392.
- 19. Z.-G. Liu, q-Hermite polynomials and a q-Beta integral, Northeast Math. J., 13 (1997), 361-366.
- 20. Z.-G. Liu, Some identiites of differential operator and Hermite polynomials, *J. Math. Res. Exp.*, **18** (1998), 412-416, (in Chinese).
- 21. N. Nielsen, Recherches sur les polynomes d'Hermite, Kgl. Danske Vidensk. Selskat. mat.-fys. Meddelelser (I), 6 (1918), 1-78.
- L. J. Rogers, On the expansion of some infinite products, *Proc. London Math. Soc.*, 24 (1893), 337-352.
- 23. G. Szegö, Ein Beitrag zur Theorie der Thetafunktionen, Sitz. Preuss. Akad. Wiss., Phys. Math. Klasse, 19 (1926), 242-252.
- 24. H. M. Srivastava and V. K. Jain, Some multilinear generating functions for *q*-hermite polynomials, *J. Math. Anal. Appl.*, **144** (1989), 147-157.
- 25. H. M. Srivastava and H. L. manocha, *A treatise on generating functions*, Ellis Horwood, New York, 1984.

Jian Cao Department of Mathematics, East China Normal University, Shanghai 200241, P. R. China E-mail: 21caojian@gmail.com 21caojian@163.com