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We use combinatorial methods to evaluate Hankel determinants

for the sequence of sums of consecutive t-Motzkin numbers. More

specifically, we consider the following determinant:

det
(
mt

i+j+r + mt
i+j+r+1

)
0� i,j � n−1

,

where t is a real number andmt
k is the total weight of all paths from

(0, 0) to (k, 0) that stay above the x-axis and use up and down steps

of weight one and level steps of weight t.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Motzkin number sequence, 1, 1, 2, 4, 9, 21, 51, . . ., enumerates many different combinatorial

objects and has been the subject of several studies [1,10]. A primer on combinatorial objects counted

by the Motzkin numbers should begin with one of the exercises from Stanley’s combinatorial volume

[19, Exercise 6.38]. Thegenerating function,M(z) = ∑∞
k=0 mkz

k ,wheremk is the k-thMotzkinnumber,

is given by

M(z) = 1 − z − √
1 − 2z − 3z2

2z2

and satisfies M(z) = 1 + zM(z) + z2M2(z). The Motzkin numbers are of particular interest because

they often appear in variations of counting problems involving the ubiquitous Catalan number
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sequence, ck = 1
k+1

(
2k

k

)
. There aremany noteworthy relationships between theMotzkin and Catalan

numbers documented throughout the literature. As one ofmany path interpretations, ck is the number

of paths from (0, 0) to (2k, 0) staying above the x-axis and using steps of the form (1, 1) (an up or

northeast step) and (1,−1) (a down or southeast step), whereasmk is the number of paths from (0, 0)
to (k, 0) staying above the x-axis and using up steps, down steps and steps of the form (1, 0) (a level

step). In this paper, we will refer to a weighted version of the Motzkin numbers known as t-Motzkin

numbers, denoted by {mt
k}k � 0, where t is a real number. One can describemt

k as the total weight of all

paths from (0, 0) to (k, 0) that stay above the x-axis and use up steps (1, 1) of weight one, down steps

(1,−1) of weight one and level steps (1, 0) of weight t. (The weight of a path is the product of the

weights of all its steps.) Note thatm1
k = mk andm0

2k = ck . One can also show thatm2
k = ck+1 through

a bijection to subdiagonal paths [15].

In this paper, we explore Hankel determinants associated with the t-Motzkin numbers. Given a

sequence of real numbers {ak}k � 0, we define an n × n Hankel determinant for {ak} as

det(ai+j)0� i,j � n−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 · · · an−1

a1 a2 a3 a4 · · · an
a2 a3 a4 a5 · · · an+1

...
...

...
...

. . .
...

an−1 an · · · · · · a2n−2

∣∣∣∣∣∣∣∣∣∣∣∣
.

Hankel determinants for generalized Catalan numbers have been considered extensively, for exam-

ple in [2,8,12,13,18], and Hankel determinants for the Motzkin number sequence, in particular, are

already documented in the literature. In particular, it is well-known that for every nonnegative

integer n,

det(mi+j)0� i,j � n−1 = 1.

See for instance [21, Chapter 4] or [1]. Here,wewill also considerHankel determinants for the sequence

{ak+r}k � 0, where the parameter r is a fixed nonnegative integer, that is,

det(ai+j+r)0� i,j � n−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

ar ar+1 ar+2 ar+3 · · · ar+n−1

ar+1 ar+2 ar+3 ar+4 · · · ar+n

ar+2 ar+3 ar+4 ar+5 · · · ar+n+1

...
...

...
...

. . .
...

ar+n−1 ar+n · · · · · · ar+2n−2

∣∣∣∣∣∣∣∣∣∣∣∣
.

For example, in the case of Motzkin numbers where r = 1, it turns out that

det(mi+j+1)0� i,j � n−1 =
⎧⎨
⎩
1 if n ≡ 1, 4 (mod 6)
0 if n ≡ 2, 5 (mod 6)
−1 if n ≡ 0, 3 (mod 6).

This result appears as a special case of Theorem 29 in [12] andwith several other extensions, using the

Gessel–Viennot–Lindström method, in [20,16].

In this paper, our interest is evaluatingHankel determinants for the sequenceof sumsof consecutive

t-Motzkin numbers, {mt
k + mt

k+1}k � 0. More precisely, we are interested in determinants of the form

det
(
mt

i+j+r + mt
i+j+r+1

)
0� i,j � n−1

(1)

where r is a nonnegative integer. The two main results of this article are the evaluation of (1) for

the case when r = 0 and r = 1, which appear in Theorems 3.2 and 4.4, respectively. We consider

Hankel determinants of this type partly because such determinants have already been considered for

generalized Catalan numbers and produced interesting results [4,6,7,9,13,17]. Hence, the questions

considered here are quite natural in light of the intimate relationship between Catalan and Motzkin

numbers.
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2. Theory

All determinants in this paper will be evaluated using the well-known Gessel–Viennot–Lindström

method (G–V–L), which interprets determinants in terms of weighted path systems in an acyclic

directed graph [11,14]. A path system in a directed graph, or an n-path, is an n-tuple of paths (p1, p2,
. . . , pn) where pi is a path from an origin vertex oi to a destination vertex dσ(i) for some permutation

σ in Sn. The sign of an n-path P, sgn(P), is the sign of the permutation by which it is induced.

The G–V–L method relies on the fact that, given an acyclic directed graph D, if ai,j is the number of

paths in D from oi to dj and σ is some permutation in Sn then the product
∏n

i=1 ai σ(i) is the number of

ways to construct an n-path in D induced by σ . Since det(ai,j)0� i,j � n−1 = ∑
σ∈Sn

sgn(σ )
∏n

i=1 ai σ(i),

where sgn(σ ) is the sign of the permutation σ , this determinant is the number of n-paths induced by

even permutations (called even n-paths) minus the number of n-paths induced by odd permutations

(called odd n-paths).

If an n-path P has two paths pr , ps that intersect at a vertex of D, we say that P is intersecting. An

sign-reversing involution exists between even intersecting n-paths and odd intersecting n-paths. This

involution simplifies the evaluation of the determinant further because det(ai,j)0� i,j � n−1 reduces to

the number of even nonintersecting n-paths minus the number of odd nonintersecting n-paths. The

method also works for graphs with weighted edges. The weight of an n-path is the product of the

weights of its paths. If wi,j is the total weight of all paths in D from origin oi to destination dj and J is

the set of all nonintersecting n-paths in D then

det(wi,j)0� i,j � n−1 = ∑
σ∈Sn

sgn(σ )
n∏

i=1

wi σ(i)

= ∑
P∈J

sgn(P)wgt(P)

= (the total weight of even nonintersecting n�paths)
− (thetotal weight of odd nonintersecting n�paths).

For the determinant evaluations in this paper, we choose to use the following graph D. See Fig. 1.

Definition 2.1. D is thedirectedgraphwithvertex set {(x, y) : x, y ∈ Z}andhaving four typesof edges:
1. up steps, i.e., edges of weight one of the form ((x, y), (x + 1, y + 1)), where y� 0,

2. down steps, i.e., edges of weight one of the form ((x, y), (x + 1, y − 1)), where y� 0,

3. level steps, i.e., edges of weight t of the form ((x, y), (x + 1, y)) where y� 0 and

4. south steps, i.e., edges of weight one of the form ((x, 0), (x,−1)), where x � 1.

Notice that a path in this graph from vertex (i, 0) to (j, 0) with i � j is a t-Motzkin path.

Fig. 1. The directed graph D used throughout. The origin (0, 0) is designated by O. Horizontal edges have weight t, all other

edges have weight one.
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Fig. 2. (A) and (B) are examples of intersecting 4-paths in D, while (C) and (D) are nonintersecting. (Origin vertices are encircled,

destination vertices are boxed.) The 4-paths on the right are nonintersecting since no two paths intersect at a vertex of D.

See Fig. 2 for examples of n-paths (both intersecting and nonintersecting) in D with different sets

of origins and destinations.

In each subsequent section of this paper, we evaluate theHankel determinants for sums of consecu-

tive t-Motzkin numbers {mt
k+r + mt

k+r+1}k � 0 when r = 0 and r = 1. To evaluate these determinants,

it is helpful to consider first Hankel determinants for the original t-Motzkin sequence {mt
k+r+1}k � 0,

that is,

det
(
mt

i+j+r+1

)
0� i,j � n−1

, (2)

(in particular for the case when r = 0, 1) and subsequently their relationship to the sums of con-

secutive t-Motzkin numbers counterpart in (1). The determinant in (2), for the case when r = 0, 1,

has been treated in [21,12]. We follow the same treatment of this determinant here using Viennot’s

combinatorialmodel, considering only nonintersecting n-paths inD with particular sets of origins and

destinations. For the sake of simplicity later, these particular n-paths are described in the following

definitions.

Definition 2.2. Gt,r
n is the set of all nonintersecting n-paths in D with designated origins (−n + 1, 0),

(−n + 2, 0), . . . , (0, 0) and destinations (r + 1, 0), (r + 2, 0), . . . , (r + n, 0).

Notice that the n-path in Fig. 2(C) is an element of Gt,0
4 . Now since, for i, j � 0, the total weight of all

paths from origin (−i, 0) to destination (r + 1 + j, 0) in D ismt
i+j+r+1, we will use Gt,r

n to evaluate (2).

Now, we introduce another set of nonintersecting paths.

Definition 2.3. Ht,r
n is the set of all nonintersecting n-paths in D with designated origins (−n +

1, 0), (−n + 2, 0), . . . , (0, 0) and destinations (r + 1,−1), (r + 2,−1), . . . , (r + n,−1).

For example, the n-path in Fig. 2(D) is an element of Ht,1
4 . By contrast, Ht,r

n will be used to eval-

uate (1), since the total weight of all paths in D from origin (−i, 0) to destination (r + 1 + j,−1) is

mt
i+j+r + mt

i+j+r+1.

All n-paths in Gt,r
n and Ht,r

n are nonintersecting, so for any n-path contained in these sets, no two

paths may share a common vertex. However, it is possible for edges of two different paths to “cross"

in the plane without creating a point of intersection. This is made precise in the following definition.

Definition 2.4. A crossing in an n-path P in D is the existence of an up step and a down step whose

endpoints occupy all four vertices of a 1 × 1 square of the form {(a, b), (a + 1, b), (a + 1, b + 1),
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(a, b + 1) : a, b ∈ Z}. (The up step and down step in this case are necessarily from two different paths

in P.) The (vertical) position of this crossing is the value b corresponding to its height above the x-axis.

For example, Fig. 2(C) has a crossing at position zero and Fig. 2(D) has two crossings at position one.

3. The case when r = 0

Our goal in this section is to evaluate the Hankel determinant for sums of consecutive t-Motzkin

numbers, that is,

det
(
mt

i+j + mt
i+j+1

)
0� i,j � n−1

. (3)

It will turn out that this determinant is a Chebychev polynomial of the second kind. This fact will be

established in two ways: (1) by establishing a recurrence relation for the determinant and (2) by a

combinatorial proof involving tilings. Recall that the Chebychev polynomials of the second kind are

defined by U0(x) = 1, U1(x) = 2x and Un(x) = 2xUn−1(x) − Un−2(x), for n� 2. For convenience and

simplicity later, we use Sn(x) to denote the polynomial Un(x/2), which will be noted in the following

definition.

Definition 3.1. S0(x) = 1, S1(x) = x, Sn(x) = xSn−1(x) − Sn−2(x), for n� 2.

Here is the main result of this section.

Theorem 3.2 (Recursive version). Let Ht
n =

(
mt

i+j + mt
i+j+1

)
0� i,j � n−1

. Then for n� 2

∣∣∣Ht
n

∣∣∣ = (t + 1)
∣∣∣Ht

n−1

∣∣∣ −
∣∣∣Ht

n−2

∣∣∣ , with
∣∣∣Ht

0

∣∣∣ = 1 and
∣∣∣Ht

1

∣∣∣ = t + 1.

Observe that the determinant we wish to evaluate in (3) is equal to the total weight of even

nonintersecting n-paths in Ht,0
n minus the total weight of odd nonintersecting n-paths in Ht,0

n . (To

simplify notation in this section, we will let Ht,0
n = Ht

n and Gt,0
n = Gt

n.) However, it is instructive to

consider the analogous quantity in Gt
n, in other words

det
(
mt

i+j+1

)
0� i,j � n−1

,

asHt
n and Gt

n share obvious graphic similarities and the latter determinant is known to bear a recursion

similar to the one in Theorem 3.2. In [12, Theorem 29] and [20, Proposition 2.2], one can find proofs of

the following result.

Theorem 3.3. If Gt
n =

(
mt

i+j+1

)
0� i,j � n−1

then for n� 2

∣∣∣Gt
n

∣∣∣ = t
∣∣∣Gt

n−1

∣∣∣ −
∣∣∣Gt

n−2

∣∣∣ , with
∣∣∣Gt

0

∣∣∣ = 1 and
∣∣∣Gt

1

∣∣∣ = t. (4)

Our approach then to proving Theorem 3.2 is to show that |Ht
n| = |Gt+1

n | by establishing a corre-

spondence between Gt+1
n andHt

n. The correspondencewill be based on an equivalence relation on Ht
n,

which we establish in Lemma 3.4.

Lemma 3.4. Let∼ be the relation on Ht
n defined as follows: Q ∼ Q ′ if and only if the number and position

of all crossings in Q equals the number and position of all crossings in Q ′. Then∼ is an equivalence relation.

Proof of Theorem 3.2. Given P ∈ Gt+1
n , we define the map C : Gt+1

n → Ht
n by letting C(P) be the

n-path in Ht
n obtained by adding a south step (0,−1) at each of the destinations in P. See Fig. 3.
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Fig. 3. An example of an 4-path P ∈ Gt+1
4 and its image C(P) ∈ Ht

4 under the map C. The level steps in P have weight t + 1

while the level steps in C(P) have weight t.

Fig. 4. The three 3-paths in the center are elements of G2
3 and have weights −2, −2 and 8, respectively. Each 3-path in the

center is mapped to a class of 3-paths in H1
3 with equal weight.

Clearly, C is an injection and sgn(P) = sgn(C(P)). Let Ht
n denote the set of all equivalence classes

in Ht
n, that is, Ht

n = {[Q ] : Q ∈ Ht
n}. Define the map C : Gt+1

n → Ht
n by C(P) = [C(P)].

Claim 1: C is a bijection.

Proof of Claim 1. To see that C is injective, assume that P /= P′. Then P and P′ must differ in either

the number or vertical positions of their crossings, and hence the same will be true of C(P) and C(P′).
Therefore, C(P) � C(P′) and [C(P)] /= [C(P′)]. To see that C is onto, consider [Q ] in Ht

n. There is a

unique n-path Q∗ in [Q ] such that all edges incident to destinations are south steps. Since all edges

to destinations in Q∗ are south steps, all steps in Q∗ occurring to the right of the line x = 1 must be

down steps, and all steps to the left of the line x = 0must be up steps. Therefore, any crossing in Q∗ is

forced to occur in the central column between the lines x = 0 and x = 1. Let P∗ ∈ Gt+1
n be the n-path

obtained from Q∗ by deleting the n south steps incident to its destinations and increasing by one the

weight of each level step. Then we have [Q ] = [Q∗] = [C(P∗)] = C(P∗), so C is onto.

Claim 2: If P ∈ Gt+1
n , then wgt(P) = ∑

Q∈[C(P)] wgt(Q).
This claim is illustrated in Fig. 4 for the case where n = 3 and t = 1.

Proof of Claim2. Suppose P has exactly k level steps,where 0� k � n. On onehand,wgt(P) = (t + 1)k .
On the other, we consider the n-paths in [C(P)]. Notice C(P) must also have k level steps located

between the lines x = 0 and x = 1, and the number of crossings in C(P) is n−k
2

, an integer. IfQ ∼ C(P),
thenQ must have the same number of crossings as C(P), whichmeans that Q has atmost k level steps.

(If not and Q ∈ [C(P)] has x level steps, where x > k, then the number of paths in C(P) would be

x + 2
(
n−k
2

)
= x + n − k > n.) Therefore, we can say that each Q in [C(P)] has i level steps, where

0� i � k. If Q has exactly i level steps, then its weight is ti. There are

(
k

i

)
n-paths in [C(P)] having

exactly i level steps. Hence,

∑
Q∈[C(P)]

wgt(Q) =
k∑

i=0

(
k

i

)
ti = (t + 1)k.
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Fig. 5. A 4-path in Gt
4 and its associated tiling of a 4 × 1 board with squares of weight t and dominoes of weight −1.

Suppose Ht
n = {[Q1], [Q2], . . . , [Qs]} so that s = |Ht

n| = |Gt+1
n |.∣∣∣Ht

n

∣∣∣ = ∑
Q∈Ht

n

sgn(Q)wgt(Q)

=
s∑

i=1

∑
Q∈[Qi]

sgn(Q)wgt(Q)

=
s∑

i=1

∑
Q∈[C(Pi)]

sgn(C(Pi))wgt(Q)

=
s∑

i=1

sgn(C(Pi))
∑

Q∈[C(Pi)]
wgt(Q)

=
s∑

i=1

sgn(Pi)wgt(Pi)

=
∣∣∣Gt+1

n

∣∣∣ . �

Remark. At this point, we will detail a useful combinatorial interpretation of (4). While this interpre-

tation is already known and documented in the literature, for example in [21, Chapter 1–2] and more

recently in [5, Theorem 3], we describe it here because it will be useful in the following section when

we consider what happens as the parameter r increases.

The recurrence in (4) describes the total weight of all the tilings of a n × 1 board using dominoes

of weight −1 and squares of weight t. (The weight of a tiling is the product of the weights of all its

tiles.) We can draw a one-to-one correspondence between these tilings and the signed n-paths in Gt
n.

Since an n-path in Gt
n is nonintersecting, it is completely determined by the steps that occur in the

n × 1 rectangle between the lines x = 0, x = 1, y = 0 and y = n. All steps that occur to left of this

rectangle are up steps and all those to the right are down steps (all of which have weight 1). If we

divide this rectangle into n 1 × 1 blank spaces, we find that there are only two ways that the n-path

may occupy these spaces: (1) with a crossing which requires one blank space above it in order to avoid

an intersection, and (2) with a level step. Since every crossing in the n-path effectively uses two blank

spaces and contributes a factor of−1 to the signedweight of the n-path,we can associate each crossing

with a 2 × 1 domino ofweight−1. Similarly, each level step in the rectangle is associatedwith a 1 × 1

square of weight t. See Fig. 5.

The sum of the weights of the tilings of a n × 1 board using dominoes of weight−1 and squares of

weight t is given by Sn(t). This implies the following alternate form of (4), which appears as a special

case of Theorem 29 in [12]∣∣∣Gt
n

∣∣∣ = Sn(t), (5)
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Consequently, we have an alternate, nonrecursive version of the Theorem 3.2.

Theorem 3.2 (Nonrecursive version). det
(
mt

i+j + mt
i+j+1

)
0� i,j � n−1

= Sn(t + 1).

Let us summarize the approach used to establish Theorem 3.2, the main result so far. In order to

evaluate the Hankel determinant associated with the sequence of consecutive sums of t-Motzkin

numbers with parameter r = 0, we first considered the Hankel determinant associated with the

original t-Motzkin sequence, with the expectation that the set of n-paths associated with each have a

quantifiable relationship. The latter determinant happened to have a combinatorial interpretation in

terms of tilings which made its evaluation straightforward. The work then (i.e., the proof of Theorem

3.2) lies in qualifying the essential difference between the sets of n-paths associated with t-Motzkin

numbers and consecutive sums of t-Motzkin numbers, that is, between Gt
n and Ht

n. In the next section,

a similar approach is taken as we increase the parameter r by one and see how the situation changes.

4. The case when r = 1

In this section, our goal is to evaluate the following determinant:

det
(
mt

i+j+1 + mt
i+j+2

)
0� i,j � n−1

. (6)

But first, as the approach in the previous section suggests, we consider a simpler, related problem,

which is the following determinant:

det
(
mt

i+j+2

)
0� i,j � n−1

.

This determinant evaluation is already known. The evaluation of an evenmore general form of this

determinant is presented in [12].While the next result is not new, in order to helpmotivate the evalua-

tion of the desired determinant in (6),we include here a formal proof of this special case using the same

approachdescribedbyKrattenthaler in the remarks following [12, Theorem29]and thesquare–domino

tiling interpretation referenced in the previous section. So to this end, let us consider Gt,1
n , the set of all

nonintersecting t-Motzkin n-paths, with origins (−n + 1, 0), (−n + 2, 0), . . . , (0, 0) and destinations

(2, 0), (3, 0), . . . , (n + 1, 0). We know that det(mt
i+j+2)0� i,j � n−1 is given by

∑
P∈Gt,1

n
sgn(P)wgt(P).

Using the square–domino interpretation of n-paths described in the previous section, we confirm

with a formal proof, as indicated in [12, Theorem 29], that the Hankel determinant associated with

{mt
k+2}k � 0 is a sum of squares of Chebychev polynomials.

Theorem 4.1. det
(
mt

i+j+2

)
0� i,j � n−1

= ∑n
k=0 [Sk(t)]2.

Proof. We assert that any member P of the set Gt,1
n , along with its sign, can be associated with a pair

of weighted tilings of a n × 1 board with squares of weight t and dominoes of weight −1. Given an

n-path P in Gt,1
n , observe that P is completely determined by the steps of the n-path used in the n × 2

rectangle between x = 0, x = 2, y = 0 and y = n. (All steps to the left of this rectangle are up steps and

those to the right are down steps.) Now, consider all paths in P from origin (−i, 0), where 0� i � n − 1,

which have the form Ui+1Di+1 and the property that its neighboring path from (−i − 1) has the form
Ui+2Di+2. Define the index of P to be the number of such paths that P contains. (So the index ranges

between0 andn.) See Fig. 6. Observe that if P has index k, then all steps in P in the (n − k) × 2 rectangle

between the lines x = 0, x = 2, y = 0 and y = n − k are configured as crosses or level steps. Using the

square–domino tiling interpretation described in the remarks preceding equation (5),we can associate

P uniquely to a pair of weighted tilings of a (n − k) × 1 board with squares of weight t and dominoes

ofweight−1. Hence, the total signedweight of all n-pathswith index k is the totalweight of all pairs of

tilings of a (n − k) × 1 board, which equals Sn−k(t)
2. Summing over all values of the index k produces

the result. �
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Fig. 6. An5-path inGt,1
5 with index 2 and its corresponding pair of tilings of a 3 × 1 boardwith squares ofweight t and dominoes

of weight −1.

Fig. 7. Four 5-paths in Ht,1
5 . The two on the left have 2 outer paths, while the two on the right have 1 outer path.

Notice that when t = 1, Theorem 4.1 implies the following result.

Corollary 4.2. det(mi+j+2)0� i,j � n−1 =
⎧⎨
⎩
n − j + 1, if n = 3j

n − j + 1, if n = 3j + 1

n − j, if n = 3j + 2.

To evaluate the desired determinant in (6), we now consider Ht,1
n with origin vertices (−n +

1, 0), (−n + 2, 0), . . . , (0, 0) and destination vertices (2,−1), (3,−1), . . . , (n + 1,−1). The determi-

nant we seek is
∑

P∈Ht,1
n

sgn(P)wgt(P). As a way of organizing the elements of Ht,1
n , we want to extend

the notion of index, as described in the proof of the previous theorem, to Ht,1
n . We make this precise

in the following definition.

Definition 4.3. Given an n-path P ∈ Ht,1
n , we say that the path p ∈ P leaving origin (−i, 0), where

0� i � n − 1, is an outer path if:

1. p goes from (−i, 0) to (i + 2,−1),
2. p has the form Ui+1Di+1S, where U represents an up step, D represents a down step and S

represents a south step, and

3. if 0� i < n − 1, then the path from (−i − 1, 0) to (i + 3,−1) is also an outer path.

In other words, any path located directly “above" an outer path is also an outer path. See Fig. 7. We

now present the main and final result of this section.

Theorem 4.4. det
(
mt

i+j+1 + mt
i+j+2

)
0� i,j � n−1

= n∑
k=0

Sk(t)Sk(t + 1).

Proof. Consider the set Ht,1
n . Any n-path P in Ht,1

n can be categorized according to the number of

outer paths P contains. Given P with k outer paths, we ignore the outer paths and consider just the

remaining (n − k)-path in P. We split this (n − k)-path into two sections X and Y at the line x = 1.

To the left of x = 1 is the section X of the (n − k)-path which corresponds to a unique element

of Gt
n−k . See Fig. 8. Similarly, the section Y located to the right of x = 1 corresponds to a unique
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Fig. 8. Top: A 5-path in Ht,1
5 with 1 outer path. The darkened section to the left of the line x = 1 is X and Y is the lighter section

to the right. Bottom: After removing the outer path, X and Y correspond to these unique 4-paths in Gt
4 and Ht

4, respectively.

(n − k)-path in Ht
n−k . So, by (5) and Theorem 3.2, the signed total weight of all n-paths with k outer

paths is |Gt
n−k||Ht

n−k| = Sn−k(t)Sn−k(t + 1). Hence, the signed total weight of all n-paths in Ht,1
n is

n∑
k=0

Sn−k(t)Sn−k(t + 1) =
n∑

k=0

Sk(t)Sk(t + 1). �

4.1. Conclusion

Having evaluated

det
(
mt

i+j+r + mt
i+j+r+1

)
0� i,j � n−1

(7)

for the case when r = 0, 1, we leave open the evaluation of this determinant for all r > 0. While the

methods presented here offer promising approaches to the cases where r � 2, it is not completely

obvious how they generalize. In particular, for the case where r = 2, it is unclear how to partition

Ht,2
n or, furthermore, how to interpret an n-path in Ht,2

n as a string of tilings of weighted dominos

and squares. Nonetheless, we offer the approaches used here as a potential basis for the successful

evaluation of (7) and other related determinants.

Acknowledgements

The authors wish to thank an anonymous referee for several necessary references and suggestions

to improve the paper. In addition, the authors thank Samuel Bock for providing his programming

expertise to the creation of many useful graphics for this research.

References

[1] M. Aigner, Motzkin numbers, European J. Combin. 19 (6) (1998) 663–675.
[2] M. Aigner, Catalan-like numbers and determinants, J. Combin. Theory Ser. A 87 (1999) 33–51.
[3] A.T. Benjamin, N.T. Cameron, J.J. Quinn, Fibonacci determinants—a combinatorial approach, Fibonacci Quart. 45 (1) (2007)

39–55.
[4] A.T. Benjamin, N.T. Cameron, J.J. Quinn, C. Yerger, Catalan determinants—a combinatorial approach, Congr. Numer. 200

(2010) 27–34.
[5] A.T. Benjamin, L. Ericksen, P. Jayawant, M. Shattuck, Combinatorial trigonometry with Chebyshev polynomials, in: Pro-

ceedings of the 6th International Conference on Lattice Path Combinatorics, J. Statist. Plann. Inference, 140 (2010)
2157–2160.

[6] M. Chamberland, C. French, Generalized Catalan numbers and generalized Hankel transformations, J. Integer Seq. 10 (1)
(2007), Article 07.1.1.

[7] J. Cigler, Some relations between generalized Fibonacci and Catalan numbers, Österreich Akad. Wiss. Math.-Natur. Kl.
Sitzungsber. II 211 (2002) 143–154.



722 N.T. Cameron, A.C.M. Yip / Linear Algebra and its Applications 434 (2011) 712–722

[8] J. Cigler, C. Krattenthaler, Some determinants of path generating functions, Adv. Appl. Math., in press. Article no. 0911.1737.
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