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ussed that generalize the real J -fra
tions, and whi
h have the samerelationship to orthogonal rational fun
tions, multipoint Pad�e approximants and rational moment problems asreal J -fra
tions have to orthogonal polynomials, onepoint Pad�e approximants and 
lassi
al moment problems.The setting is as follows. A sequen
e f�ng of interpolation points in R̂n f0g is given. The spa
e L
onsists of all rational fun
tions of the form p(z)=!n(z) for some n where p(z) is a polynomial of degree atmost n and !n(z) = (1 � z=�1)(1 � z=�2) � � � (1 � z=�n). A positive linear fun
tional M on the produ
tspa
e L � L is given and de�nes an inner produ
t on L. A positive measure � on R is a solution of themoment problem on L (on L � L) if R1�1 R(t)d�(t) = M [R℄ for all R in L (for all R in L � L). The innerprodu
t on L, de�nes an orthogonal sequen
e f'n(z)g of fun
tions asso
iated with the basis fzn=!n(z)g.The sequen
e f'n(z)g satis�es a three-term re
urren
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ontinued fra
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ontinued fra
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Bultheel et al. / Orthogonal rational fun
tions and 
ontinued fra
tions 2By orthogonalization of the (ordered) basis f1; t; t2; : : :g an orthogonal sequen
e fPng is obtained.The sequen
e fPng satis�es a three-term re
urren
e relation of a spe
ial form, and any polynomialsequen
e satisfying su
h a re
urren
e formula is a sequen
e of orthogonal polynomials determinedby a positive linear fun
tional on �. Asso
iated polynomials fQng are de�ned through the formulaQn(z) =M [(Pn(t)�Pn(z))=(t� z)℄. The quotients Qn(z)=Pn(z) are the approximants of a 
ontinuedfra
tion of the type real J-fra
tion. These approximants are Pad�e approximants to the Stieltjestransform S(z; �) = RR(z � t)�1d�(t) for any solution � of the moment problem for M whi
h meansthat Qn(z)=Pn(z)� S(z; �) = O(z�(2n+1)) at z =1.The 
ontinued fra
tion determines for ea
h z 2 C n R a sequen
e of linear fra
tional transfor-mations whi
h map the upper half-plane (in
luding the real line) onto a nested sequen
e of (
losed)disks (for a pre
ise de�nition see Se
tion 6). The interse
tions �1(z) of these disks have an invarian
eproperty: �1(z) is either a single point for every z (the limit point 
ase) or a proper 
losed disk forevery z (the limit 
ir
le 
ase). The set fw 2 C : w = S(z; �) for some solution � of the momentproblem g equals �1(z), and the moment problem has a unique solution if and only if the limit point
ase o

urs.For details of this 
lassi
al theory we refer to [1,13,16,24,30,35,37,40,41℄.The aim of this paper is to present the basi
 theory of a rational extension of the polynomial sit-uation sket
hed above. The interpolation (Pad�e approximation) at z =1 is repla
ed by interpolationat arbitrary points on the extended real line, the orthogonal polynomials be
ome orthogonal ratio-nal fun
tions, a 
ontinued fra
tion generalizing the real J-fra
tion is asso
iated with the orthogonalfun
tions, the approximants of the 
ontinued fra
tion are multipoint Pad�e approximants to Stieltjestransforms at 
ertain tables determined by the interpolation points. Furthermore the 
ontinued fra
-tion again determines sequen
es of nested disks, the interse
tions again have the invarian
e property,and the interse
tions are related to Stieltjes transforms of measures solving two in general di�erentmoment problems for the fun
tional determining the orthogonal fun
tions.For details 
on
erning this rational theory whi
h will be presented here, we refer espe
ially to [9℄,and also to [3{8,17,18,26,31,34℄. In these publi
ations are also treated problems where the interpolationpoints are situated outside the real axis. Su
h problems are not 
onsidered in this paper. Also we donot treat expli
itly the (equivalent) situation of orthogonality on the unit 
ir
le, with interpolationpoints on or within the 
ir
le.Other approa
hes to a study of orthogonality and biorthogonality of rational fun
tions withappli
ations to spe
ial fun
tions have been studied by various authors, in parti
ular Ismail, Masson,Ra
hmanov, Spiridonov, and Zhedanov, and 
an be found e.g., in [15,20,36,38,42℄.It should also be mentioned that orthogonality of rational fun
tions is 
losely related to orthogo-nality of polynomials with respe
t to varying weights, see espe
ially work by Lopez, Stahl, Totik andothers [14,27{29,39℄A theory of orthogonal rational fun
tions was initiated by Djrbashian in 1969, see the surveypaper in [12℄ and independently by Bultheel, Dewilde and Dym, see [2,11℄. A study of orthogonalLaurent polynomials (i.e., interpolation points at z = 0 and z = 1) and 
orresponding 
ontinuedfra
tions was initiated by Jones and Thron, see [25℄. For spe
ial developments in this dire
tion werefer to the survey arti
le [21℄, and also to the papers [19,22,23,33℄.



Bultheel et al. / Orthogonal rational fun
tions and 
ontinued fra
tions 32. Spa
es of rational fun
tionsLet f�ng1n=1 be a sequen
e of not ne
essarily distin
t points on R̂ n f0g where R̂ denotes theextended real line R[ f1g. (For te
hni
al reasons, it is 
onvenient to sele
t a distinguished �xedpoint in R̂ whi
h is di�erent from all the �n, and there is no loss of generality in pla
ing this point atthe origin.) We shall 
onsistently use the notation �n = ��1n .We de�ne b0 = 1; bn(z) = nYk=1 z1� �kz ; for n=1,2,. . . (2.1)and set !0 = 1; !n(z) = nYk=1(1� �kz); for n=1,2,. . . : (2.2)Thus we may write bn(z) = zn!n(z) ; for n=1,2,. . . : (2.3)The linear spa
es Ln and L are de�ned byLn = spanfb0; b1; : : : ; bng; for n=1,2,. . . (2.4)(the spa
e is over the 
omplex s
alars) and L = 1[n=0Ln: (2.5)A fun
tion f belongs to Ln if and only of it is of the formf(z) = p(z)!n(z) (2.6)where p is a polynomial of degree at most n.If �k =1 for all k, then !n(z) = 1, bn(z) = zn for all n, and Ln is the spa
e �n of all polynomialsof degree at most n, L is the spa
e � of all polynomials.Instead of fb0; b1; : : : ; bn; : : :g, we 
ould work with other simple bases f
0; 
1; : : : ; 
n; : : :g for Lwith the property that Ln = spanf
0; 
1; : : : ; 
ng for all n. For example, if all the points �k are�nite, then f1; 1=!1; : : : ; 1=!n; : : :g is su
h a basis, and if all the points �k are �nite and distin
t, thenf1; 1=(1� �1z); : : : ; 1=(1� �nz); : : :g is su
h a basis.Every fun
tion f in Ln has a unique representation f = Pnk=0 �kbk. We 
all �n the leading
oeÆ
ient of f (with respe
t to the basis fb0; b1; : : : ; bng). When �n = 1, the rational fun
tion f issaid to be moni
.We shall also deal with the spa
es Lm � Ln 
onsisting of all fun
tions h = f � g, with f 2 Lm andg 2 Ln. It follows from (2.6) and the fa
torization theorem for polynomials that a fun
tion h belongsto Lm � Ln if and only if it is of the formh(z) = r(z)!m(z)!n(z) ; (2.7)where r is a polynomial of degree at mostm+n. Thus Lm �Ln is a linear spa
e of dimension m+n+1.We use the notation L � L for the spa
e fh = f � g : f 2 L; g 2 Lg = S1m;n=0 Lm � Ln.
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tions and 
ontinued fra
tions 4Trivially L � L � L. If all the points in the sequen
e f�kg are repeated an in�nite number oftimes, then we have L � L = L. This is e.g., the 
ase in the 
y
li
 situation, where the sequen
e f�kg
onsists of a �nite number of �nite points 
y
li
ally repeated. In parti
ular, when �k = 1 for all n(the polynomial situation), we have L � L = L = �.3. Moment problemsThe substar transform h� of the fun
tion h is de�ned byh�(z) = h(z): (3.1)We note that h� 2 L � L if h 2 L � L, and that h� = h if h belongs to L � L and if h = fg with f; g 2 Lhaving real 
oeÆ
ients with respe
t to a basis f
0; 
1; : : : ; 
n; : : :g for L su
h that 
k� = 
k for all k, soin parti
ular if we use the basis fb0; b1; : : : ; bn; : : :g.A linear fun
tional M on L � L is said to be positive if it satis�esM [h�℄ =M [h℄; for all h 2 L � L (3.2)and M [f � f�℄ > 0; for all f 2 L, f 6= 0. (3.3)It follows from (3.2) that M [h℄ is real when h = fg with f; g 2 L having real 
oeÆ
ients with respe
tto the basis fb0; b1; : : : ; bn; : : :g. For simpli
ity we shall in the following assume M to be normalizedsu
h that M [1℄ = 1.A probability measure � on R with in�nite support is said to solve the moment problem on L ifM [f ℄ = ZRf(t)d�(t); for all f 2 L (3.4)and to solve the moment problem on L � L ifM [h℄ = ZRh(t)d�(t); for all h 2 L � L: (3.5)A measure whi
h solves the moment problem on L � L 
learly also solves the moment problem on L.In the polynomial situation (�k = 0 for all k) and more generally in the 
y
li
 situation, the momentproblems are equivalent.The moment problem on L is always solvable when the linear fun
tional M is positive (see [9℄),and [7℄ for the equivalent problem on the unit 
ir
le. Clearly it is suÆ
ient for � to be a solution ofthe moment problem on L or on L � L that (3.4) or (3.5) is satis�ed for some generating system for Lor L � L. In parti
ular, (3.4) is equivalent toM [bn℄ = ZRbn(t)d�(t); for n = 0; 1; 2; : : : (3.6)and (3.5) is equivalent toM [bm � bn℄ = ZRbm(t)bn(t)d�(t); for m;n = 0; 1; 2; : : :: (3.7)The 
onstants M [bm℄ and M [bm � bn℄ are 
alled moments. The moments are real numbers sin
e(bn)� = bn.



Bultheel et al. / Orthogonal rational fun
tions and 
ontinued fra
tions 54. Orthogonal rational fun
tionsLet M be a positive linear fun
tional on L � L. An inner produ
t h�; �i on L 
an then be de�nedby the formula hf; gi =M [f � g�℄; for f; g 2 L: (4.1)Let f'ng1n=0 be the orthonormal basis of L asso
iated with the basis fbng and with positive leading
oeÆ
ients. Thus Ln = spanf'0; '1; ; : : : ; 'ng for all n, h'j ; 'ki = Æj;k for all j; k, and 'n = �nbn +�n�1bn�1 + � � �+ �0b0 with �n > 0. The fun
tion 'n may be written in the form'n(z) = pn(z)!n(z) (4.2)where pn is a polynomial of degree at most n.For ea
h n we may de�ne the linear fun
tional Mn and the (in general not positive de�nite) innerprodu
t h�; �in on the spa
e � of polynomials byMn[p℄ =M [p(z)=(1� �nz)!n�1(z)2℄ (4.3)and hp; qin =Mn[p � q�℄: (4.4)Sin
e 'n is orthogonal to all fun
tions of the form zm=!n�1(z) for m = 0; 1; : : : ; n � 1, we see thatMn[pn(z) � zm℄ = 0 for m = 0; 1; : : : ; n � 1. Thus the polynomial sequen
e fpng is orthogonal withrespe
t to the sequen
e of varying (in general not positive de�nite) inner produ
ts fh�; �ing. Fortreatment of orthogonality with respe
t to varying measures, we refer to [28,29,39℄.We note that by 
onstru
tion we always have pn(�n) 6= 0. We 
all 'n regular if pn(�n�1) 6= 0,
ompletely regular if pn(�k) 6= 0 for k = 1; 2; : : : ; n � 1. We say that the sequen
e f'ng is regular(
ompletely regular) if all 'n are regular (
ompletely regular).A regular sequen
e f'ng satis�es a three-term re
urren
e relation. For a proof of the followingtheorem see [9℄ and [17℄ (the last for the situation that a �nite number of �nite interpolation pointsare 
y
li
ally repeated). See also the treatment of the equivalent situation 
on
erning orthogonalityon the unit 
ir
le in [3℄.Theorem 4.1. Assume that the sequen
e f'ng is regular. Then f'ng satis�es a three-term re
urren
erelation of the form'n(z) = �En z1� �nz +Bn 1� �n�1z1� �nz �'n�1(z)� EnEn�1 1� �n�2z1� �nz 'n�2(z); n = 1; 2; : : : (4.5)where Bn and En are real 
onstants, En 6= 0; for all n (4.6)and by 
onvention �0 = 0; ��1 = 0; (i.e., �0 =1; ��1 =1); '�1 = 0: (4.7)Re
all that '0 = 1. Also note that E0 
an be arbitrarily 
hosen, sin
e '�1 = 0.We de�ne a new orthogonal sequen
e f�ng1n=0 by the normalization�0 = '0; �n(z) = (E1E2 � � �En)�1'n(z); for n = 1; 2; : : :: (4.8)
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tions and 
ontinued fra
tions 6The re
urren
e relation of Theorem 4.1 
an then be written�n(z) = � z1� �nz + BnEn 1� �n�1z1� �nz ��n�1(z)� 1E2n�1 1� �n�2z1� �nz �n�2(z); n = 1; 2; : : : (4.9)with initial values �0 = 1; ��1 = 0; and �0 =1; ��1 =1: (4.10)In the polynomial 
ase (�k =1 for all k) this re
urren
e relation takes the form�n(z) = �z + BnEn��n�1(z)� 1E2n�1�n�2(z); n = 1; 2; : : : : (4.11)We observe that the polynomials �n are moni
 and that (4.11) is the 
lassi
al re
urren
e relation formoni
 orthogonal polynomials.A proof of the following Favard-type theorem 
an be found in [9℄. See also [6℄ where the equivalentunit 
ir
le situation is treated.Theorem 4.2. Let sequen
es fBng1n=1 and fEng1n=0 of real 
onstants be given su
h that (4.6) issatis�ed, and let the fun
tions f'ng be de�ned re
ursively by '0 = 1 and by (4.5), (4.7) for n = 1; 2; : : :.Then 'n 2 LnnLn�1 for n = 1; 2; : : :, 'n is regular for all n, and there exists a positive linear fun
tionalM on L � L su
h that the sequen
e f'ng is orthonormal with respe
t to the asso
iated inner produ
t.The situation here is more 
ompli
ated than the 
lassi
al (polynomial) situation. This is partly sobe
ause for a given re
ursion in L, we need to de�ne a fun
tional M on L � L with respe
t to whi
hthe sequen
e f'ng is to be orthonormal.5. Continued fra
tionsWe de�ne the asso
iated orthogonal fun
tions �n and �n by�n(z) =M �'n(t)� 'n(z)t� z � ; for n = 0; 1; 2; : : : (5.1)�n(z) =M ��n(t)� �n(z)t� z � ; for n = 0; 1; 2; : : :; (5.2)(where M operates on its argument as a fun
tion of t). Note that we may write�n(z) = qn(z)!n(z) (5.3)where qn is a polynomial of degree at most n � 1. Clearly�0 = �0 = 0; �n(z) = (E1E2 � � �En)�1�n(z); for n = 1; 2; : : :: (5.4)In [9℄ are 
onsidered fun
tions of the se
ond kind de�ned by 0(z) = iz;  n(z) = �iM �1 + tzt� z ('n(t)� 'n(z))� ; for n = 1; 2; : : :: (5.5)The fun
tions �n and  n are related through the formula n(z) = �i(1 + z2)�n(z) + iz'n(z); for n = 0; 1; 2; : : :: (5.6)



Bultheel et al. / Orthogonal rational fun
tions and 
ontinued fra
tions 7From [9℄, (5.4) and (5.6) we �nd that the sequen
e f�ng satis�es the re
urren
e relation�n(z) = � z1� �nz + BnEn 1� �n�1z1� �nz ��n�1(z)� 1E2n�1 1� �n�2z1� �nz �n�2(z); n = 1; 2; : : : (5.7)where Bn and En for n = 1; 2; : : : are the 
oeÆ
ients appearing in Theorem 4.1, and initial values aregiven by �0 = 0; ��1 = 1; E0 = �1; and �0 =1; ��1 =1: (5.8)(Note that a similar re
urren
e is obtained in Proposition 2.1 of [10℄.) From this followsTheorem 5.1. Assume that the sequen
e f'ng is regular. Then �n(z) and �n(z) are the 
anoni
alnumerators and denominators of a 
ontinued fra
tion K1n=1 rn(z)sn(z) , wherern(z) = � 1E2n�1 1� �n�2z1� �nz ; for n = 1; 2; : : :; (5.9)sn(z) = z1� �nz + BnEn 1� �n�1z1� �nz ; for n = 1; 2; : : :: (5.10)We shall 
all a 
ontinued fra
tion of this form aMultipoint Pad�e 
ontinued fra
tion or an MP-fra
tion.A motivation for this terminology is given in Theorem 5.2. Clearly �n(z) and 'n(z) are the 
anoni
alnumerators and denominators of a 
ontinued fra
tionK1n=1 un(z)vn(z) equivalent toK1n=1 rn(z)sn(z) , with elementsun(z) = � EnE2n�1 1� �n�2z1� �nz ; for n = 1; 2; : : :; (5.11)vn(z) = En z1� �nz + Bn 1� �n�1z1� �nz ; for n = 1; 2; : : :: (5.12)We also note that in the polynomial situation (�k =1 for all k) we havern(z) = �E�2n�1z; sn(z) = z +E�1n Bn; for n = 1; 2; : : :; (5.13)and the MP-fra
tion thus be
omes the real J-fra
tion asso
iated with the 
lassi
al Hamburger momentproblem.We shall here de�ne the Stieltjes transform S(z; �) of a �nite measure � on R by the formulaS(z; �) = ZRd�(t)z � t : (5.14)In [9℄ the Nevanlinna transform 
�(z) = i ZR1 + tzz � t d�(t) (5.15)is worked with. The two transforms are related through the formula
�(z) = i(1 + z2)S(z; �)� iz: (5.16)We shall 
onsider interpolation tables of the form f1; �1; �1; : : : ; �n�1; �n�1; �ng. We denote by�# the multipli
ity of � as an entry in the table in question. By the limit at a point � of the table, weshall mean the one-sided limit in the upper half-plane along the normal to the real axis at the point�, when � 6=1 and along the imaginary axis when � =1.The following result 
an be dedu
ed from [8,9℄.
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tions and 
ontinued fra
tions 8Theorem 5.2. Let the positive linear fun
tional M on L�L give rise to a 
ompletely regular sequen
ef'ng and let � be an arbitrary solution of the moment problem on L � L. Then the approximants�n(z)='n(z) = �n(z)=�n(z) of the MP-fra
tion determined by M are [n � 1=n℄ multipoint Pad�eapproximants to S(z; �) at the table f1; �1; �1; : : : ; �n�1; �n�1; �ng in the following sense:limz!� ��n(z)'n(z) � S(z; �)�(k) = 0; for k = 0; 1; : : : ; �# � 1; (5.17)where � 2 f�1; �1; : : : ; �n�1; �n�1; �ng, � 6=1 andlimz!1 ��n(z)'n(z) � S(z; �)�z1# = 0: (5.18)In the polynomial 
ase (�n = 1 for all n) the interpolation property (5.17)-(5.18) of Theorem 5.2takes the form limz!1 ��n(z)'n(z) � S(z; �)� z2n = 0: (5.19)In this 
ase the slightly more general property holds:�n(z)'n(z) � S(z; �) = O(1=z2n+1) as z !1: (5.20)See e.g., [1℄. In the rational 
ase when L � L = L, a similar strengthening of the limiting properties(5.17)-(5.18) is true at all the interpolation points. (See [4℄.)6. Modi�ed approximants and nested disksIn all of this se
tion, we assume that the sequen
e f'ng determined by the fun
tional M isregular.We de�ne the linear fra
tional transformations w ! tn(z; w) and w! Tn(z; w) byt0(z; w) = w; tn(z; w) = rn(z)sn(z) + w; for n = 1; 2; : : :; (6.1)T0(z; w) = w; Tn(z; w) = Tn�1(z; tn(z; w)); for n = 1; 2; : : :; (6.2)where rn(z) and sn(z) are as de�ned in (5.9)-(5.10). (Re
all that by 
onvention �0 = ��1 = 1.)Then Tn(z; 0) = �n(z)=�n(z) = �n(z)='n(z) and in generalTn(z; w) = �n(z) + w�n�1(z)�n(z) + w�n�1(z) = �n(z) + wEn�n�1(z)'n(z) + wEn'n�1(z) ; n = 0; 1; 2; : : : : (6.3)See e.g., [24,30,35℄. We shall 
all the expressions Tn(z; w) modi�ed approximants of the MP-fra
tionK1n=1 rn(z)sn(z) when w is of the form w = [(1� �n�1z)=(1� �nz)℄� , � 2 R̂. Thus modi�ed approximantsRn(z; �) are the expressionsRn(z; �) = Tn�z; � 1� �n�1z1� �nz � = �n(z) + �(1� �n�1z)(1� �nz)�1�n�1(z)�n(z) + �(1� �n�1z)(1� �nz)�1�n�1(z) ; (6.4)with � 2 R̂. We note that in the polynomial 
ase the 
on
ept of modi�ed approximants redu
e to thetraditional 
on
ept of modi�ed approximants to 
ontinued fra
tions.
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tions and 
ontinued fra
tions 9We shall 
onsider mapping properties of the transformations w ! tn(z; w) and w ! Tn(z; w).Let z be a �xed point in the upper half-plane U= fz : Im z > 0g. We set �n = arg(1 � �nz) (notethat then �0 = 0) and de�ne 
0 = U= fw 2 C : Im w � 0g (6.5)
n = fw 2 C : �n�1 � �n � arg w � � + �n�1 � �ng; for n = 1; 2; : : :: (6.6)With Im z > 0 we have �n < arg z < �n + � for all n. It follows that W = z(1 � �nz)�1 +BnE�1n (1��n�1z)(1��nz)�1+w 2 
n when w 2 
n. Hen
e �E�2n (1��n�2z)(1��nz)�1W�1 2 
n�1when w 2 
n. Thus w 2 
n implies rn(z)=[sn(z) + w℄ 2 
n�1. This means that for n = 1; 2; : : : wehave tn(z;
n) � 
n�1: (6.7)(Cf. the analogous argument in [18℄.)For ea
h z in the open upper half-plane, U, we set �n(z) = Tn(z;
n). Clearly �n(z) is a
losed half-plane or a 
losed disk or a 
losed exterior of a disk. It follows from the de�nition thats1(z) + w vanishes at a point outside 
1 and hen
e t1(z;
1) is a bounded set. Formula (6.7) givest1(z;
1) � 
0 = U. Again by using (6.7) we 
on
lude that �n(z) = Tn(z;
n) = Tn�1(z; tn(z;
n)) �Tn�1(z;
n�1) = �n�1(z) for n = 2; 3; : : :. Thus �n(z) must be a 
losed disk 
ontained in 
0.Consequently the following result holds:Theorem 6.1. For n = 1; 2; : : : we have:A. �n(z) is a 
losed disk 
ontained in the 
losed upper half-plane U,B. �n(z) � �n�1(z).The transformation � ! �(1 � �n�1z)=(1� �nz) maps U onto 
n. Hen
e we �nd that the modi�edapproximants Rn(z; �) map the 
losed upper half-plane U onto �n(z) and the extended line R̂ ontothe 
ir
le periphery ��n(z).By solving the equation w = Rn(z; �) with respe
t to � and setting Im � = 0 we �nd that theequation for the 
ir
le ��n(z) may be written(1� �nz)(1� �n�1z)�n(z; w)�n�1(z; w)�(1� �nz)(1� �n�1z)�n�1(z; w)�n�1(z; w) = 0; (6.8)where �n(z; w) = �n(z)� w'n(z): (6.9)(Note that here w has a di�erent meaning from that in the �rst part of this se
tion.)In [9℄ is proved a general Green's formula involving arbitrary solutions of the re
urren
e relation ofthe 
ontinued fra
tion. By repla
ing w by z, and xn(z) and yn(z) by �n(z)�w'n(z) in Theorem 11.4.1of [9℄, we get 1En(z � z)[(1� �nz)(1� �n�1z)�n(z; w)�n�1(z; w)�(1� �nz)(1� �n�1z)�n(z; w)�n�1(z; w)℄= n�1Xk=0 j�k(z; w)j2� w� wz � z : (6.10)
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tions and 
ontinued fra
tions 10Combining (6.8) and (6.10) we �nd that the 
ir
le ��n(z) is given byn�1Xk=0 j�k(z)� w'k(z)j2 = w � wz � z (6.11)and the disk �n(z) is given by n�1Xk=0 j�k(z)� w'k(z)j2 � w � wz � z (6.12)(Note that the last term in Theorem 11.4.1 of [9℄ has wrong sign.)Sin
e the sequen
e f�n(z)gn is nested, i.e., �n+1(z) � �n(z) for all n, the interse
tion �1(z) =T1n=1�n(z) is either a single point or a proper 
losed disk. The following invarian
e result followsfrom [9℄. See also [7℄ for the equivalent unit 
ir
le problem and [32℄ for the 
y
li
 situation.Theorem 6.2. The interse
tion �1(z) 
onsists either of a single point for every z 2 U (the limitpoint 
ase) or is a proper 
losed disk for every z 2 U (the limit 
ir
le 
ase).The MP-fra
tion K1n=1 rn(z)sn(z) is said to 
onverge 
ompletely for z if �n(z; �(1� �n�1z)=(1� �nz))
onverges uniformly for � 2 R̂ to a value independent of � . (In the polynomial situation this de�nition
oin
ides with the usual de�nition of 
omplete 
onvergen
e of real J-fra
tions, see e.g., [16℄.) Thus
omplete 
onvergen
e o

urs exa
tly in the limit point 
ase, and the 
ontinued fra
tion 
onverges
ompletely for all or no z in U.7. Convergen
e and uniquenessAlso in this se
tion we shall always assume that the sequen
e f'ng is regular.We introdu
e the notation �(z;L) and �(z;L � L) for the set of Stieltjes transforms at z of allsolutions of the moment problem on L and on L � L respe
tively:�(z;L) = fw 2 C : w = S(z; �) for some solution � of the moment problem on Lg (7.1)�(z;L � L) = fw 2 C : w = S(z; �) for some solution � of the moment problem on L � Lg (7.2)Let n be �xed. By using quadrature formulas determined by the modi�ed approximants Rn(z; �)it 
an be shown (see [9℄ and [3,7℄ for the 
ir
le and [32℄ for the 
y
li
 situation on the real line) thatex
ept for n values of the real parameter � , there exists a dis
rete measure �n(�; �) on R with thefollowing properties: �n(�; �) solves the trun
ated moment problem on Ln�1 � Ln�1, and Rn(z; �) =RR(z � t)�1d�n(t; �). A limiting argument involving 
onvergent subsequen
es of sequen
es f�n(�; �)gleads for every point w on the boundary 
ir
le ��1(z) to a measure �w whi
h solves the momentproblem on L and su
h that S(z; �w) = w. Thus ��1(z) � �(z;L). (Note that although �n(�; �)solves the trun
ated moment problem on Ln�1 �Ln�1, we 
an in general not 
on
lude that the measures�w solve the moment problem on L � L, only on L.) The set �(z;L) is easily seen to be 
onvex, andhen
e �1(z) � �(z;L).A Hilbert spa
e argument using Bessel's inequality analogous to the proof in the 
lassi
al situation(see e.g., [1℄) shows that �(z;L � L) � �1(z).Thus the following result holds.
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tions and 
ontinued fra
tions 11Theorem 7.1. For every z 2 Uwe have�(z;L � L) � �1(z) � �(z;L): (7.3)We 
all a moment problem determinate if it has exa
tly one solution, indeterminate if it has morethan one solution.All the 
onvergent subsequen
es of sequen
es f�n(�; �n)g have the same solution � as limit if andonly if the 
ontinued fra
tion is 
ompletely 
onvergent.The above 
onsiderations and the results of Se
tion 6 lead to the following theorem.Theorem 7.2. A. If the moment problem on L is determinate with solution �, then the MP-fra
tionis 
ompletely 
onvergent to S(z; �) for all z 2 U.B. If the MP-fra
tion is 
ompletely 
onvergent for some z 2 U, then it is 
ompletely 
onvergent forevery z 2Uwith limit S(z; �), where � is a 
ertain solution of the moment problem on L.C. If the moment problem on L �L is solvable and the MP-fra
tion is 
ompletely 
onvergent for somez 2 U, then the moment problem on L �L is determinate and the MP-fra
tion 
onverges 
ompletelyfor every z 2 U to S(z; �) where � is the unique solution of the moment problem on L � L.Referen
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