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A class of continued fractions is discussed that generalize the real J-fractions, and which have the same
relationship to orthogonal rational functions, multipoint Padé approximants and rational moment problems as
real J-fractions have to orthogonal polynomials, onepoint Padé approximants and classical moment problems.

The setting is as follows. A sequence {an} of interpolation points in R \ {0} is given. The space £
consists of all rational functions of the form p(z)/wn(z) for some n where p(z) is a polynomial of degree at
most n and wy(z) = (1 — z/a1)(1 — z/az) - (1 — z/ay). A positive linear functional M on the product
space L - L 1s given and defines an inner product on £. A positive measure u on R is a solution of the
moment problem on £ (on £ - L) if [T R(t)du(t) = M[R] for all R in £ (for all R in £ - £). The inner
product on £, defines an orthogonal sequence {¢n(2)} of functions associated with the basis {z"/w,(2)}.
The sequence {¢n,(z)} satisfies a three-term recurrence relation associated with a continued fraction. The
approximants o,(z)/¢n(z) of that continued fraction are multipoint Padé approximants to the Stieltjes
transform F(z,pu) = ffooo (z — )" 'du(t) of solutions p of the moment problem on £ - £. Like in the case of
J-fractions, a theory of nested disks can be developed.
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1. Introduction

It is well known that there is a close relationship between orthogonal polynomials, special con-
tinued fractions, Padé approximants and the classical moment problems. This relationship can very
briefly be described as follows.

Let a positive linear functional M on the space Il of all polynomials be given. (Equivalently:
A positive definite sequence {¢,}°2, may be given, and a positive linear functional is then defined
by setting M[t"] = ¢,, n = 0,1,2,....) A solution of the (Hamburger) moment problem for M
is a positive measure p on R with infinite support such that [, P(t)du(t) = M[P] for all P € II.

The functional M gives rise to an inner product {(-,-) on Il through the formula (P, Q) = M[P - Q].
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By orthogonalization of the (ordered) basis {1,¢,¢?,...} an orthogonal sequence {P,} is obtained.
The sequence {P,} satisfies a three-term recurrence relation of a special form, and any polynomial
sequence satisfying such a recurrence formula is a sequence of orthogonal polynomials determined
by a positive linear functional on Il. Associated polynomials {@,} are defined through the formula
Qn(z) = M[(P.(t) — P.(2))/(t — 2)]. The quotients Q,(z)/P,(z) are the approximants of a continued
fraction of the type real J-fraction. These approximants are Padé approximants to the Stieltjes
transform S(z, ) = [p(z — )~ du(t) for any solution x of the moment problem for A which means
that Q,(2)/P.(2) — S(z, 1) = Oz~ at 2 = .

The continued fraction determines for each z € C\ R a sequence of linear fractional transfor-
mations which map the upper half-plane (including the real line) onto a nested sequence of (closed)
disks (for a precise definition see Section 6). The intersections A, (2) of these disks have an invariance
property: A, (z) is either a single point for every z (the limit point case) or a proper closed disk for
every z (the limit circle case). The set {w € C : w = S(z, ) for some solution p of the moment
problem } equals A, (z), and the moment problem has a unique solution if and only if the limit point
case OCcurs.

For details of this classical theory we refer to [1,13,16,24,30,35,37,40,41].

The aim of this paper is to present the basic theory of a rational extension of the polynomial sit-
uation sketched above. The interpolation (Padé approximation) at z = oo is replaced by interpolation
at arbitrary points on the extended real line, the orthogonal polynomials become orthogonal ratio-
nal functions, a continued fraction generalizing the real J-fraction is associated with the orthogonal
functions, the approximants of the continued fraction are multipoint Padé approximants to Stieltjes
transforms at certain tables determined by the interpolation points. Furthermore the continued frac-
tion again determines sequences of nested disks, the intersections again have the invariance property,
and the intersections are related to Stieltjes transforms of measures solving two in general different
moment problems for the functional determining the orthogonal functions.

For details concerning this rational theory which will be presented here, we refer especially to [9],
and also to [3-8,17,18,26,31,34]. In these publications are also treated problems where the interpolation
points are situated outside the real axis. Such problems are not considered in this paper. Also we do
not treat explicitly the (equivalent) situation of orthogonality on the unit circle, with interpolation
points on or within the circle.

Other approaches to a study of orthogonality and biorthogonality of rational functions with
applications to special functions have been studied by various authors, in particular Ismail, Masson,
Rachmanov, Spiridonov, and Zhedanov, and can be found e.g., in [15,20,36,38,42].

It should also be mentioned that orthogonality of rational functions is closely related to orthogo-
nality of polynomials with respect to varying weights, see especially work by Lopez, Stahl, Totik and
others [14,27-29,39]

A theory of orthogonal rational functions was initiated by Djrbashian in 1969, see the survey
paper in [12] and independently by Bultheel, Dewilde and Dym, see [2,11]. A study of orthogonal
Laurent polynomials (i.e., interpolation points at z = 0 and z = oo) and corresponding continued
fractions was initiated by Jones and Thron, see [25]. For special developments in this direction we
refer to the survey article [21], and also to the papers [19,22,23,33].
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2. Spaces of rational functions

Let {a,}°2, be a sequence of not necessarily distinct points on R\ {0} where R denotes the
extended real line RU {oco}. (For technical reasons, it is convenient to select a distinguished fixed
point in R which is different from all the a,, and there is no loss of generality in placing this point at

the origin.) We shall consistently use the notation 3, = a!.

We define
bo=1, by(z)= 115 _Zﬁkz, for n=1,2,... (2.1)
=1
and set
wo =1, wy(z)= H(l — Brz), forn=12,.... (2.2)
k=1
Thus we may write
bu(z) = wf(z)’ for n=1,2,.... (2.3)
The linear spaces L, and £ are defined by
L, =span{by, by,...,b,}, forn=1.2,... (2.4)
(the space is over the complex scalars) and
L= L. (2.5)
n=0
A function f belongs to L, if and only of it is of the form
(%)
f(2) (2.6)

where p is a polynomial of degree at most n.

If o, = oo for all k, then w,(z) = 1, b,(z) = 2" for all n, and L, is the space II,, of all polynomials
of degree at most n, £ is the space II of all polynomials.

Instead of {bg,by,...,b,,...}, we could work with other simple bases {cop,c1,...,¢,,...} for L
with the property that £, = span{cp,cy,...,¢,} for all n. For example, if all the points «ay are
finite, then {1,1/wy,...,1/w,,...} is such a basis, and if all the points oy, are finite and distinct, then
{1,1/(1 = p12),...,1/(1 = Bnz),...} is such a basis.

Every function f in £, has a unique representation f = Y j7_, Arbr. We call A, the leading
coefficient of f (with respect to the basis {bg, b1,...,b,}). When A, = 1, the rational function f is
said to be monic.

We shall also deal with the spaces £,, - £,, consisting of all functions h = f-g¢, with f € £,, and
g € L,,. It follows from (2.6) and the factorization theorem for polynomials that a function A belongs
to L,, - L, if and only if it is of the form

r(z)
h(z) = ————— 2.
(2) Wi (2)wn(2) (2.7)
where r is a polynomial of degree at most m+n. Thus £,, - L, is a linear space of dimension m+mn+1.

We use the notation £ - £ for the space {h=f-g: feLige L} =U. —oLm Ln.

m,n=0
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Trivially £ C £ - £. If all the points in the sequence {ay} are repeated an infinite number of
times, then we have £ - £ = £. This is e.g., the case in the cyclic situation, where the sequence {ay}
consists of a finite number of finite points cyclically repeated. In particular, when a; = oo for all n

(the polynomial situation), we have £ - £ = L =1I.

3. Moment problems

The substar transform h, of the function h is defined by

h«(z) = h(Z). (3.1)
We note that h, € L-Lif h € £ L, and that h, = h if h belongs to £ - £ and if h = fg with f,g € £
having real coefficients with respect to a basis {cg, ¢y, ..., ¢p, ...} for £ such that ¢z, = ¢ for all &, so
in particular if we use the basis {bg, b1,...,b,,...}.

A linear functional M on £ - £ is said to be positive if it satisfies
M[h,) = M[h], forallhe Ll L (3.2)
and
M[f-f] >0, forall feL, f#£0. (3.3)

It follows from (3.2) that M[h] is real when h = fg with f, ¢ € £ having real coefficients with respect
to the basis {bg,by,...,b,,...}. For simplicity we shall in the following assume M to be normalized
such that M[1] = 1.

A probability measure p on R with infinite support is said to solve the moment problem on L if

M[f] :/Rf(t)du(t), forall f €L (3.4)

and to solve the moment problem on L - L if
M[h] = / h(t)du(t), forall he L -L. (3.5)
R

A measure which solves the moment problem on £ - £ clearly also solves the moment problem on L.
In the polynomial situation (ay = 0 for all k) and more generally in the cyclic situation, the moment
problems are equivalent.

The moment problem on £ is always solvable when the linear functional M is positive (see [9]),
and [7] for the equivalent problem on the unit circle. Clearly it is sufficient for u to be a solution of
the moment problem on £ or on £ - £ that (3.4) or (3.5) is satisfied for some generating system for £
or £ - L. In particular, (3.4) is equivalent to

M[b,] = / bo()du(t), forn=0,1,2,... (3.6)
R
and (3.5) is equivalent to
MTby, - by] = / b (Db (D) dpa(t), for myn=10,1,2, ... (3.7)
R

The constants M[b,,] and M][b,, - b,] are called moments. The moments are real numbers since

() = b.



Bultheel et al. / Orthogonal rational functions and continued fractions 5

4. Orthogonal rational functions

Let M be a positive linear functional on £ - £. An inner product {-,-) on £ can then be defined
by the formula

Let {¢,}n2, be the orthonormal basis of £ associated with the basis {b,} and with positive leading
coeflicients. Thus £,, = span{¢o, ¢1,,..., .} for all n, {(p;, pry = 6; for all j, k, and ¢, = Ab, +
Ap—1bp_1 4 -+ Aobg with A, > 0. The function ¢,, may be written in the form
Pa(?)
(2) = 4.2
ule) = 23 (1.2

where p,, is a polynomial of degree at most n.
For each n we may define the linear functional M,, and the (in general not positive definite) inner

product (-, -}, on the space Il of polynomials by

Mylp) = MIp(2)/(1 = Boz)wn—1(2)"] (4.3)

and
(Pr @), = Mn[p - g.]- (4.4)
Since ¢, is orthogonal to all functions of the form 2™ /w,_1(z) for m = 0,1,...,n — 1, we see that

M, [pn(z) - 2™] = 0 for m = 0,1,...,n — 1. Thus the polynomial sequence {p,} is orthogonal with
respect to the sequence of varying (in general not positive definite) inner products {(:,-),}. For
treatment of orthogonality with respect to varying measures, we refer to [28,29,39].

We note that by construction we always have p,(a,) # 0. We call ¢, regular if p,(o,—1) # 0,
completely reqular if p,(ay) # 0 for k = 1,2,...,n — 1. We say that the sequence {¢,} is regular
(completely regular) if all ¢,, are regular (completely regular).

A regular sequence {¢,} satisfies a three-term recurrence relation. For a proof of the following
theorem see [9] and [17] (the last for the situation that a finite number of finite interpolation points
are cyclically repeated). See also the treatment of the equivalent situation concerning orthogonality

on the unit circle in [3].

Theorem 4.1. Assume that the sequence {p,} is reqular. Then {y,} satisfies a three-term recurrence

relation of the form

en(z) = (Enl _Zﬁnz +B, 11__52222) no1(z) — E]f: 11__527:22%_2(2), n=1,2,... (4.5)
where B, and E, are real constants,
E,#0, foraln (4.6)
and by convention
Bo=0, f_1 =0, (ie,apg=00, a_1=00), ¢_1=0. (4.7)

Recall that ¢g = 1. Also note that Fy can be arbitrarily chosen, since ¢_; = 0.

We define a new orthogonal sequence {®,,}°2 by the normalization

Do = o, D,(2) = (E1Ey-F,) lon(z), forn=1,2,... (4.8)
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The recurrence relation of Theorem 4.1 can then be written

z B,1- ﬁn_lz) 1 1- 08,92
D, = — | P,_ — D, _ , =1,2,... 4.9
(Z) (1 - ﬁnz —I_ En 1- ﬁnz 1(2) Ez_l 1- ﬁnz 2(2) " ( )
with initial values
dy=1, ®_;=0, and og=o0, a_;=o00. (4.10)

In the polynomial case (o = oo for all k) this recurrence relation takes the form

B, 1
B, (2) = (z—l— E—n) Bins(2) = g ucald), n= 12 (4.11)

We observe that the polynomials ®,, are monic and that (4.11) is the classical recurrence relation for
monic orthogonal polynomials.
A proof of the following Favard-type theorem can be found in [9]. See also [6] where the equivalent

unit circle situation is treated.

Theorem 4.2. Let sequences {B,}o2, and {E,}o2, of real constants be given such that (4.6) is
satisfied, and let the functions {¢, } be defined recursively by oo = 1 and by (4.5), (4.7) forn=1,2,....
Then ¢, € L,\Lp—1 forn=1,2,..., ¢, is reqular for all n, and there exists a positive linear functional

M on L - L such that the sequence {¢,} is orthonormal with respect to the associated inner product.

The situation here is more complicated than the classical (polynomial) situation. This is partly so
because for a given recursion in £, we need to define a functional M on L - £ with respect to which
the sequence {¢,} is to be orthonormal.

5. Continued fractions

We define the associated orthogonal functions o, and X, by

n t) — n
UAZ):M[M] , forn=0,1,2,... (5.1)
-z
¢, (1) — P,
S, (2) :M[M], forn=0,1,2,... (5.2)
-z
(where M operates on its argument as a function of ¢). Note that we may write
_ (%)
o.(z) = on () (5.3)

where ¢, is a polynomial of degree at most n — 1. Clearly
o0=%0=0, 3.(2)=(FE1Ey---FE,) " o,(z), forn=1,2,... (5.4)

In [9] are considered functions of the second kind defined by

Vo) = iz, tha(2) = —iM ?F—”(%(t) —on(2)], forn=1,2,... (5.5)

-z

The functions o,, and 1, are related through the formula

U, (2) = —i(1 4+ 2%)0,(2) +izpn(2), forn=0,1,2,... (5.6)
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From [9], (5.4) and (5.6) we find that the sequence {X,} satisfies the recurrence relation
< Bn 1- ﬁn—lz 1 1 - 571—22

Yalz) = — pI. - pI. , n=1,2,... 5.7
(Z) (1 - ﬁnz + En 1- ﬁnz ) 1(2) Eg_l 1- ﬁnz 2(2) " ( )
where B,, and F,, for n = 1,2,... are the coefficients appearing in Theorem 4.1, and initial values are
given by

0=0, X_1=1, FEy=-1, and ag=o0, a_;=o0. (5.8)

(Note that a similar recurrence is obtained in Proposition 2.1 of [10].) From this follows

Theorem 5.1. Assume that the sequence {¢,} is reqular. Then %, (z) and ®,(z) are the canonical

rn(2)

numerators and denominators of a continued fraction K;_ - B where
n

I 1-p5, 92
rn(z):—E2 15 forn=1,2,..., (5.9)
< Bn 1- ﬁn—lz

+ — forn=1,2,... (5.10)

Sn(Z): 1_5712 En 1_5712 7

We shall call a continued fraction of this form a Multipoint Padé continued fraction or an MP-fraction.

A motivation for this terminology is given in Theorem 5.2. Clearly o,,(z) and ¢, (2) are the canonical

(Z) n

numerators and denominators of a continued fraction I~ % equivalent to K72, S—(?), with elements

En 1 _ﬁn—QZ
U (%) =~ 5 forn=1,2,.., (5.11)
< 1— B2
2 (2) = E, B,—— 712 o n=1,2,. .. 12
v, (2) 1—5n2+ 5.2 or n (5.12)

We also note that in the polynomial situation (aj = oo for all k) we have
ro(2) = —F. %2, s,(?) =2+ FE,;'B,, forn=12,.., (5.13)

and the MP-fraction thus becomes the real J-fraction associated with the classical Hamburger moment
problem.

We shall here define the Stieltjes transform S(z, ) of a finite measure p on R by the formula

du(t
S(zp) = / dut) (5.14)
R Z—1
In [9] the Nevanlinna transform
1+t
Q,(2) = Z/ ) (5.15)
R z—1
is worked with. The two transforms are related through the formula
Qu(2) = i(1+ 2%)S(z, p) — iz. (5.16)
We shall consider interpolation tables of the form {oo, ay, @y, ..., ap_y1, a1,y }. We denote by

a# the multiplicity of o as an entry in the table in question. By the limit at a point a of the table, we
shall mean the one-sided limit in the upper half-plane along the normal to the real axis at the point
a, when a # oo and along the imaginary axis when a = co.

The following result can be deduced from [8,9].
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Theorem 5.2. Let the positive linear functional M on L - L give rise to a completely regular sequence
{on} and let p be an arbitrary solution of the moment problem on L - L. Then the approximants
0, (2)/pn(z) = Eu(2)/Pn(2) of the MP-fraction determined by M are [n — 1/n] multipoint Padé

approzimants to S(z,p) at the table {oco, a1, 01, ..., 00p_1, p_1,,} in the following sense:
- [onl(2) *)
hm[ —Sz,,u] =0, fork=0,1,...,0% —1, 5.17
ti [ 245 = () (5.17)
where o € {ay, aq, ..., a1, 01,0}, @ # 00 and
lim [Un(z) — S(z,,u)] =% =. (5.18)

In the polynomial case (o, = oo for all n) the interpolation property (5.17)-(5.18) of Theorem 5.2

takes the form

. Onp (Z) 2
hm[ —Sz,,u]z”:O. 5.19
tim [ 245 - 5(m) (5.19)
In this case the slightly more general property holds:
o5 (2) 2n+1
—S(z,u)=0(1/z as 2 — 00. 5.20
o (?) (z,1) = O(1/z7"77) (5.20)

See e.g., [1]. In the rational case when £ - £ = £, a similar strengthening of the limiting properties
(5.17)-(5.18) is true at all the interpolation points. (See [4].)

6. Modified approximants and nested disks

In all of this section, we assume that the sequence {,} determined by the functional M is
regular.

We define the linear fractional transformations w — ¢, (2, w) and w — T),(z, w) by

B o ra(?) B
to(z,w) =w, t,(z,w)= 7371(2) w forn=1,2,..., (6.1)
To(z,w)=w, T,(z,w)=T,_1(z,t.(z,w)), forn=1,2,.., (6.2)

where r,(z) and s,(z) are as defined in (5.9)-(5.10). (Recall that by convention ag = a_; = o0.)
z) and in general
z)  op(2) +whELo,-1(2)

(
Then T,,(z,0) = £, (2)/®n(2) = 0,,(2)/n(
En(z)+w2n_1E _ n=0,1,2,.... (6.3)

©,(2) + wPn_1(2)  @n(2) + wEnpn_1(2)’

Tn(z,w) =

See e.g., [24,30,35]. We shall call the expressions T},(z, w) modified approzimants of the MP-fraction

K>, 228 when w is of the form w = [(1 — Bo_12)/(1 = Bn2)]7, 7 € R. Thus modified approximants

R, (z,7) are the expressions

m@ﬂ:@(@#—%Aq_iMa+duw%@u—m@-&4@

1= Buz ) ®u(2) +7(1 = Bu12)(1 = Bnz) 1 ®ny(z)’ (6.4)

with 7 € R. We note that in the polynomial case the concept of modified approximants reduce to the

traditional concept of modified approximants to continued fractions.
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We shall consider mapping properties of the transformations w — t,(z, w) and w — T}, (z, w).
Let z be a fixed point in the upper half-plane U = {z : Im z > 0}. We set 0,, = arg(l — 3,z) (note
that then 6y = 0) and define

QW =U={weC:Imw >0} (6.5)

Q,={weC:0,_y-6,<argw<rwr+0,,—0,}, forn=1,2... (6.6)

With Im 2 > 0 we have ,, < arg z < 6, + 7 for all n. It follows that W = z(1 — 3,2)7! +
B,E-Y(1-B,_12)(1=B,2) ' +w € Q, when w € Q,,. Hence —F;2(1—,_22)(1-8,2) "W~ € Q,_,4
when w € Q,. Thus w € Q,, implies r,,(2)/[s.(z) + w] € Q,—1. This means that for n = 1,2,... we
have

tn(2,2) C Qpq. (6.7)
(Cf. the analogous argument in [18].)

For each z in the open upper half-plane, U, we set A, (z) = T,(z,Q,). Clearly A,(z) is a
closed half-plane or a closed disk or a closed exterior of a disk. It follows from the definition that
s1(z) + w vanishes at a point outside €2 and hence t;(z,€;) is a bounded set. Formula (6.7) gives
t1(2,1) C Qo = U. Again by using (6.7) we conclude that A,,(2) = T, (2, Q2,) = Tu_1(2,ta(2,2,)) C
Tho1(2,2,-1) = Ap_1(z) for n = 2,3,.... Thus A,(z) must be a closed disk contained in Q.
Consequently the following result holds:

Theorem 6.1. Forn=1,2,... we have:
A. A, (2) is a closed disk contained in the closed upper half-plane U,
B. A,(2) C Aui(2).

The transformation 7 — 7(1 — 8,-12)/(1 — 3,2) maps U onto ©,,. Hence we find that the modified
approximants R, (z,7) map the closed upper half-plane U onto A,(z) and the extended line R onto
the circle periphery dA,(z).

By solving the equation w = R, (z,7) with respect to 7 and setting Im 7 = 0 we find that the

equation for the circle dA,(z) may be written

(1 - ﬁnz)(l - ﬁn—lg)rn('zv w)rn—l('zv w)

_(1 - ﬁng)(l - 5n_1Z)Fn_1(Z7 w)rn—l('zv w) = 07 (6‘8)

where
Lp(z,w) = 0,(2) — wen(2). (6.9)
(Note that here w has a different meaning from that in the first part of this section.)
In [9] is proved a general Green’s formula involving arbitrary solutions of the recurrence relation of
the continued fraction. By replacing w by z, and z,,(z) and y,, () by 0,,(2) —we, () in Theorem 11.4.1
of [9], we get
[(1 - ﬁnz)(l - ﬁn—lz)rn (Zv w)Fn—l('Zv w)
—(1=3,2)(1 = Bp-12)ln(z, w)lyo (2, w)] (6.10)

n—1 _
= 5 e (2, 0) 2 = 22
k=0

E.(z-7%)

z—Z
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Combining (6.8) and (6.10) we find that the circle dA,(z) is given by

n—1 _
w—w
> lon(2) —wer(2)* = —— (6.11)
k=0
and the disk A, (z) is given by
n—1 W — T
- lok(z) —wer(2) < ——= (6.12)
k=0

(Note that the last term in Theorem 11.4.1 of [9] has wrong sign.)
Since the sequence {A,,(2)}, is nested, i.e., Apy1(2) C Ay(2) for all n, the intersection A (2) =
N2y An(z) is either a single point or a proper closed disk. The following invariance result follows

from [9]. See also [7] for the equivalent unit circle problem and [32] for the cyclic situation.

Theorem 6.2. The intersection Ay (z) consists either of a single point for every =z € U (the limit

point case) or is a proper closed disk for every z € U (the limit circle case).

The MP-fraction K;_, Zz(; is said to converge completely for z if ', (2, 7(1 = Bo_12)/(1 — Bn2))
converges uniformly for 7 € R to a value independent of 7. (In the polynomial situation this definition
coincides with the usual definition of complete convergence of real J-fractions, see e.g., [16].) Thus
complete convergence occurs exactly in the limit point case, and the continued fraction converges

completely for all or no z in U.

7. Convergence and uniqueness

Also in this section we shall always assume that the sequence {¢,} is regular.
We introduce the notation ¥(z, £) and X(z, £ - £) for the set of Stieltjes transforms at z of all

solutions of the moment problem on £ and on £ - £ respectively:

Y(z, L) ={w € C:w=5(z,pn) for some solution p of the moment problem on L} (7.1)

Y(z,L-L)=H{w € C:w = S(z, p) for some solution p of the moment problem on £-L}  (7.2)

Let n be fixed. By using quadrature formulas determined by the modified approximants R,,(z,T)
it can be shown (see [9] and [3,7] for the circle and [32] for the cyclic situation on the real line) that
except for n values of the real parameter 7, there exists a discrete measure p,(-,7) on R with the
following properties: p, (-, 7) solves the truncated moment problem on £,y - £,_1, and R, (z,7) =
Jp(z = t)7'dp,(t, 7). A limiting argument involving convergent subsequences of sequences {yx, (-, 7)}
leads for every point w on the boundary circle dA. (z) to a measure p,, which solves the moment
problem on £ and such that S(z, p,) = w. Thus 0A(2) C X(2,£). (Note that although i, (-, 7)
solves the truncated moment problem on £,,_1-£,,_1, we can in general not conclude that the measures
fy solve the moment problem on £ - £, only on £.) The set ¥(z, £) is easily seen to be convex, and
hence A (2) C X(z, £).

A Hilbert space argument using Bessel’s inequality analogous to the proofin the classical situation
(see e.g., [1]) shows that X(z, £ - L) C A (2).

Thus the following result holds.
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Theorem 7.1. For every z € U we have

Y(z,L-L) C Ax(z) CX(2L). (7.3)

We call a moment problem determinate if it has exactly one solution, indeterminate if it has more

than one solution.

All the convergent subsequences of sequences {j,, (-, 7,) } have the same solution p as limit if and

only if the continued fraction is completely convergent.

The above considerations and the results of Section 6 lead to the following theorem.

Theorem 7.2. A. If the moment problem on L is determinate with solution p, then the MP-fraction

B.

C.

is completely convergent to S(z, ) for all z € U.

If the MP-fraction is completely convergent for some z € U, then it is completely convergent for

every z € U with limit S(z, u), where p is a certain solution of the moment problem on L.

If the moment problem on L - L is solvable and the MP-fraction is completely convergent for some
z € U, then the moment problem on L - L is determinate and the MP-fraction converges completely

for every z € U to S(z, ) where p is the unique solution of the moment problem on L - L.
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