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Bultheel et al. / Orthogonal rational funtions and ontinued frations 2By orthogonalization of the (ordered) basis f1; t; t2; : : :g an orthogonal sequene fPng is obtained.The sequene fPng satis�es a three-term reurrene relation of a speial form, and any polynomialsequene satisfying suh a reurrene formula is a sequene of orthogonal polynomials determinedby a positive linear funtional on �. Assoiated polynomials fQng are de�ned through the formulaQn(z) =M [(Pn(t)�Pn(z))=(t� z)℄. The quotients Qn(z)=Pn(z) are the approximants of a ontinuedfration of the type real J-fration. These approximants are Pad�e approximants to the Stieltjestransform S(z; �) = RR(z � t)�1d�(t) for any solution � of the moment problem for M whih meansthat Qn(z)=Pn(z)� S(z; �) = O(z�(2n+1)) at z =1.The ontinued fration determines for eah z 2 C n R a sequene of linear frational transfor-mations whih map the upper half-plane (inluding the real line) onto a nested sequene of (losed)disks (for a preise de�nition see Setion 6). The intersetions �1(z) of these disks have an invarianeproperty: �1(z) is either a single point for every z (the limit point ase) or a proper losed disk forevery z (the limit irle ase). The set fw 2 C : w = S(z; �) for some solution � of the momentproblem g equals �1(z), and the moment problem has a unique solution if and only if the limit pointase ours.For details of this lassial theory we refer to [1,13,16,24,30,35,37,40,41℄.The aim of this paper is to present the basi theory of a rational extension of the polynomial sit-uation skethed above. The interpolation (Pad�e approximation) at z =1 is replaed by interpolationat arbitrary points on the extended real line, the orthogonal polynomials beome orthogonal ratio-nal funtions, a ontinued fration generalizing the real J-fration is assoiated with the orthogonalfuntions, the approximants of the ontinued fration are multipoint Pad�e approximants to Stieltjestransforms at ertain tables determined by the interpolation points. Furthermore the ontinued fra-tion again determines sequenes of nested disks, the intersetions again have the invariane property,and the intersetions are related to Stieltjes transforms of measures solving two in general di�erentmoment problems for the funtional determining the orthogonal funtions.For details onerning this rational theory whih will be presented here, we refer espeially to [9℄,and also to [3{8,17,18,26,31,34℄. In these publiations are also treated problems where the interpolationpoints are situated outside the real axis. Suh problems are not onsidered in this paper. Also we donot treat expliitly the (equivalent) situation of orthogonality on the unit irle, with interpolationpoints on or within the irle.Other approahes to a study of orthogonality and biorthogonality of rational funtions withappliations to speial funtions have been studied by various authors, in partiular Ismail, Masson,Rahmanov, Spiridonov, and Zhedanov, and an be found e.g., in [15,20,36,38,42℄.It should also be mentioned that orthogonality of rational funtions is losely related to orthogo-nality of polynomials with respet to varying weights, see espeially work by Lopez, Stahl, Totik andothers [14,27{29,39℄A theory of orthogonal rational funtions was initiated by Djrbashian in 1969, see the surveypaper in [12℄ and independently by Bultheel, Dewilde and Dym, see [2,11℄. A study of orthogonalLaurent polynomials (i.e., interpolation points at z = 0 and z = 1) and orresponding ontinuedfrations was initiated by Jones and Thron, see [25℄. For speial developments in this diretion werefer to the survey artile [21℄, and also to the papers [19,22,23,33℄.



Bultheel et al. / Orthogonal rational funtions and ontinued frations 32. Spaes of rational funtionsLet f�ng1n=1 be a sequene of not neessarily distint points on R̂ n f0g where R̂ denotes theextended real line R[ f1g. (For tehnial reasons, it is onvenient to selet a distinguished �xedpoint in R̂ whih is di�erent from all the �n, and there is no loss of generality in plaing this point atthe origin.) We shall onsistently use the notation �n = ��1n .We de�ne b0 = 1; bn(z) = nYk=1 z1� �kz ; for n=1,2,. . . (2.1)and set !0 = 1; !n(z) = nYk=1(1� �kz); for n=1,2,. . . : (2.2)Thus we may write bn(z) = zn!n(z) ; for n=1,2,. . . : (2.3)The linear spaes Ln and L are de�ned byLn = spanfb0; b1; : : : ; bng; for n=1,2,. . . (2.4)(the spae is over the omplex salars) and L = 1[n=0Ln: (2.5)A funtion f belongs to Ln if and only of it is of the formf(z) = p(z)!n(z) (2.6)where p is a polynomial of degree at most n.If �k =1 for all k, then !n(z) = 1, bn(z) = zn for all n, and Ln is the spae �n of all polynomialsof degree at most n, L is the spae � of all polynomials.Instead of fb0; b1; : : : ; bn; : : :g, we ould work with other simple bases f0; 1; : : : ; n; : : :g for Lwith the property that Ln = spanf0; 1; : : : ; ng for all n. For example, if all the points �k are�nite, then f1; 1=!1; : : : ; 1=!n; : : :g is suh a basis, and if all the points �k are �nite and distint, thenf1; 1=(1� �1z); : : : ; 1=(1� �nz); : : :g is suh a basis.Every funtion f in Ln has a unique representation f = Pnk=0 �kbk. We all �n the leadingoeÆient of f (with respet to the basis fb0; b1; : : : ; bng). When �n = 1, the rational funtion f issaid to be moni.We shall also deal with the spaes Lm � Ln onsisting of all funtions h = f � g, with f 2 Lm andg 2 Ln. It follows from (2.6) and the fatorization theorem for polynomials that a funtion h belongsto Lm � Ln if and only if it is of the formh(z) = r(z)!m(z)!n(z) ; (2.7)where r is a polynomial of degree at mostm+n. Thus Lm �Ln is a linear spae of dimension m+n+1.We use the notation L � L for the spae fh = f � g : f 2 L; g 2 Lg = S1m;n=0 Lm � Ln.



Bultheel et al. / Orthogonal rational funtions and ontinued frations 4Trivially L � L � L. If all the points in the sequene f�kg are repeated an in�nite number oftimes, then we have L � L = L. This is e.g., the ase in the yli situation, where the sequene f�kgonsists of a �nite number of �nite points ylially repeated. In partiular, when �k = 1 for all n(the polynomial situation), we have L � L = L = �.3. Moment problemsThe substar transform h� of the funtion h is de�ned byh�(z) = h(z): (3.1)We note that h� 2 L � L if h 2 L � L, and that h� = h if h belongs to L � L and if h = fg with f; g 2 Lhaving real oeÆients with respet to a basis f0; 1; : : : ; n; : : :g for L suh that k� = k for all k, soin partiular if we use the basis fb0; b1; : : : ; bn; : : :g.A linear funtional M on L � L is said to be positive if it satis�esM [h�℄ =M [h℄; for all h 2 L � L (3.2)and M [f � f�℄ > 0; for all f 2 L, f 6= 0. (3.3)It follows from (3.2) that M [h℄ is real when h = fg with f; g 2 L having real oeÆients with respetto the basis fb0; b1; : : : ; bn; : : :g. For simpliity we shall in the following assume M to be normalizedsuh that M [1℄ = 1.A probability measure � on R with in�nite support is said to solve the moment problem on L ifM [f ℄ = ZRf(t)d�(t); for all f 2 L (3.4)and to solve the moment problem on L � L ifM [h℄ = ZRh(t)d�(t); for all h 2 L � L: (3.5)A measure whih solves the moment problem on L � L learly also solves the moment problem on L.In the polynomial situation (�k = 0 for all k) and more generally in the yli situation, the momentproblems are equivalent.The moment problem on L is always solvable when the linear funtional M is positive (see [9℄),and [7℄ for the equivalent problem on the unit irle. Clearly it is suÆient for � to be a solution ofthe moment problem on L or on L � L that (3.4) or (3.5) is satis�ed for some generating system for Lor L � L. In partiular, (3.4) is equivalent toM [bn℄ = ZRbn(t)d�(t); for n = 0; 1; 2; : : : (3.6)and (3.5) is equivalent toM [bm � bn℄ = ZRbm(t)bn(t)d�(t); for m;n = 0; 1; 2; : : :: (3.7)The onstants M [bm℄ and M [bm � bn℄ are alled moments. The moments are real numbers sine(bn)� = bn.



Bultheel et al. / Orthogonal rational funtions and ontinued frations 54. Orthogonal rational funtionsLet M be a positive linear funtional on L � L. An inner produt h�; �i on L an then be de�nedby the formula hf; gi =M [f � g�℄; for f; g 2 L: (4.1)Let f'ng1n=0 be the orthonormal basis of L assoiated with the basis fbng and with positive leadingoeÆients. Thus Ln = spanf'0; '1; ; : : : ; 'ng for all n, h'j ; 'ki = Æj;k for all j; k, and 'n = �nbn +�n�1bn�1 + � � �+ �0b0 with �n > 0. The funtion 'n may be written in the form'n(z) = pn(z)!n(z) (4.2)where pn is a polynomial of degree at most n.For eah n we may de�ne the linear funtional Mn and the (in general not positive de�nite) innerprodut h�; �in on the spae � of polynomials byMn[p℄ =M [p(z)=(1� �nz)!n�1(z)2℄ (4.3)and hp; qin =Mn[p � q�℄: (4.4)Sine 'n is orthogonal to all funtions of the form zm=!n�1(z) for m = 0; 1; : : : ; n � 1, we see thatMn[pn(z) � zm℄ = 0 for m = 0; 1; : : : ; n � 1. Thus the polynomial sequene fpng is orthogonal withrespet to the sequene of varying (in general not positive de�nite) inner produts fh�; �ing. Fortreatment of orthogonality with respet to varying measures, we refer to [28,29,39℄.We note that by onstrution we always have pn(�n) 6= 0. We all 'n regular if pn(�n�1) 6= 0,ompletely regular if pn(�k) 6= 0 for k = 1; 2; : : : ; n � 1. We say that the sequene f'ng is regular(ompletely regular) if all 'n are regular (ompletely regular).A regular sequene f'ng satis�es a three-term reurrene relation. For a proof of the followingtheorem see [9℄ and [17℄ (the last for the situation that a �nite number of �nite interpolation pointsare ylially repeated). See also the treatment of the equivalent situation onerning orthogonalityon the unit irle in [3℄.Theorem 4.1. Assume that the sequene f'ng is regular. Then f'ng satis�es a three-term reurrenerelation of the form'n(z) = �En z1� �nz +Bn 1� �n�1z1� �nz �'n�1(z)� EnEn�1 1� �n�2z1� �nz 'n�2(z); n = 1; 2; : : : (4.5)where Bn and En are real onstants, En 6= 0; for all n (4.6)and by onvention �0 = 0; ��1 = 0; (i.e., �0 =1; ��1 =1); '�1 = 0: (4.7)Reall that '0 = 1. Also note that E0 an be arbitrarily hosen, sine '�1 = 0.We de�ne a new orthogonal sequene f�ng1n=0 by the normalization�0 = '0; �n(z) = (E1E2 � � �En)�1'n(z); for n = 1; 2; : : :: (4.8)



Bultheel et al. / Orthogonal rational funtions and ontinued frations 6The reurrene relation of Theorem 4.1 an then be written�n(z) = � z1� �nz + BnEn 1� �n�1z1� �nz ��n�1(z)� 1E2n�1 1� �n�2z1� �nz �n�2(z); n = 1; 2; : : : (4.9)with initial values �0 = 1; ��1 = 0; and �0 =1; ��1 =1: (4.10)In the polynomial ase (�k =1 for all k) this reurrene relation takes the form�n(z) = �z + BnEn��n�1(z)� 1E2n�1�n�2(z); n = 1; 2; : : : : (4.11)We observe that the polynomials �n are moni and that (4.11) is the lassial reurrene relation formoni orthogonal polynomials.A proof of the following Favard-type theorem an be found in [9℄. See also [6℄ where the equivalentunit irle situation is treated.Theorem 4.2. Let sequenes fBng1n=1 and fEng1n=0 of real onstants be given suh that (4.6) issatis�ed, and let the funtions f'ng be de�ned reursively by '0 = 1 and by (4.5), (4.7) for n = 1; 2; : : :.Then 'n 2 LnnLn�1 for n = 1; 2; : : :, 'n is regular for all n, and there exists a positive linear funtionalM on L � L suh that the sequene f'ng is orthonormal with respet to the assoiated inner produt.The situation here is more ompliated than the lassial (polynomial) situation. This is partly sobeause for a given reursion in L, we need to de�ne a funtional M on L � L with respet to whihthe sequene f'ng is to be orthonormal.5. Continued frationsWe de�ne the assoiated orthogonal funtions �n and �n by�n(z) =M �'n(t)� 'n(z)t� z � ; for n = 0; 1; 2; : : : (5.1)�n(z) =M ��n(t)� �n(z)t� z � ; for n = 0; 1; 2; : : :; (5.2)(where M operates on its argument as a funtion of t). Note that we may write�n(z) = qn(z)!n(z) (5.3)where qn is a polynomial of degree at most n � 1. Clearly�0 = �0 = 0; �n(z) = (E1E2 � � �En)�1�n(z); for n = 1; 2; : : :: (5.4)In [9℄ are onsidered funtions of the seond kind de�ned by 0(z) = iz;  n(z) = �iM �1 + tzt� z ('n(t)� 'n(z))� ; for n = 1; 2; : : :: (5.5)The funtions �n and  n are related through the formula n(z) = �i(1 + z2)�n(z) + iz'n(z); for n = 0; 1; 2; : : :: (5.6)



Bultheel et al. / Orthogonal rational funtions and ontinued frations 7From [9℄, (5.4) and (5.6) we �nd that the sequene f�ng satis�es the reurrene relation�n(z) = � z1� �nz + BnEn 1� �n�1z1� �nz ��n�1(z)� 1E2n�1 1� �n�2z1� �nz �n�2(z); n = 1; 2; : : : (5.7)where Bn and En for n = 1; 2; : : : are the oeÆients appearing in Theorem 4.1, and initial values aregiven by �0 = 0; ��1 = 1; E0 = �1; and �0 =1; ��1 =1: (5.8)(Note that a similar reurrene is obtained in Proposition 2.1 of [10℄.) From this followsTheorem 5.1. Assume that the sequene f'ng is regular. Then �n(z) and �n(z) are the anonialnumerators and denominators of a ontinued fration K1n=1 rn(z)sn(z) , wherern(z) = � 1E2n�1 1� �n�2z1� �nz ; for n = 1; 2; : : :; (5.9)sn(z) = z1� �nz + BnEn 1� �n�1z1� �nz ; for n = 1; 2; : : :: (5.10)We shall all a ontinued fration of this form aMultipoint Pad�e ontinued fration or an MP-fration.A motivation for this terminology is given in Theorem 5.2. Clearly �n(z) and 'n(z) are the anonialnumerators and denominators of a ontinued frationK1n=1 un(z)vn(z) equivalent toK1n=1 rn(z)sn(z) , with elementsun(z) = � EnE2n�1 1� �n�2z1� �nz ; for n = 1; 2; : : :; (5.11)vn(z) = En z1� �nz + Bn 1� �n�1z1� �nz ; for n = 1; 2; : : :: (5.12)We also note that in the polynomial situation (�k =1 for all k) we havern(z) = �E�2n�1z; sn(z) = z +E�1n Bn; for n = 1; 2; : : :; (5.13)and the MP-fration thus beomes the real J-fration assoiated with the lassial Hamburger momentproblem.We shall here de�ne the Stieltjes transform S(z; �) of a �nite measure � on R by the formulaS(z; �) = ZRd�(t)z � t : (5.14)In [9℄ the Nevanlinna transform 
�(z) = i ZR1 + tzz � t d�(t) (5.15)is worked with. The two transforms are related through the formula
�(z) = i(1 + z2)S(z; �)� iz: (5.16)We shall onsider interpolation tables of the form f1; �1; �1; : : : ; �n�1; �n�1; �ng. We denote by�# the multipliity of � as an entry in the table in question. By the limit at a point � of the table, weshall mean the one-sided limit in the upper half-plane along the normal to the real axis at the point�, when � 6=1 and along the imaginary axis when � =1.The following result an be dedued from [8,9℄.



Bultheel et al. / Orthogonal rational funtions and ontinued frations 8Theorem 5.2. Let the positive linear funtional M on L�L give rise to a ompletely regular sequenef'ng and let � be an arbitrary solution of the moment problem on L � L. Then the approximants�n(z)='n(z) = �n(z)=�n(z) of the MP-fration determined by M are [n � 1=n℄ multipoint Pad�eapproximants to S(z; �) at the table f1; �1; �1; : : : ; �n�1; �n�1; �ng in the following sense:limz!� ��n(z)'n(z) � S(z; �)�(k) = 0; for k = 0; 1; : : : ; �# � 1; (5.17)where � 2 f�1; �1; : : : ; �n�1; �n�1; �ng, � 6=1 andlimz!1 ��n(z)'n(z) � S(z; �)�z1# = 0: (5.18)In the polynomial ase (�n = 1 for all n) the interpolation property (5.17)-(5.18) of Theorem 5.2takes the form limz!1 ��n(z)'n(z) � S(z; �)� z2n = 0: (5.19)In this ase the slightly more general property holds:�n(z)'n(z) � S(z; �) = O(1=z2n+1) as z !1: (5.20)See e.g., [1℄. In the rational ase when L � L = L, a similar strengthening of the limiting properties(5.17)-(5.18) is true at all the interpolation points. (See [4℄.)6. Modi�ed approximants and nested disksIn all of this setion, we assume that the sequene f'ng determined by the funtional M isregular.We de�ne the linear frational transformations w ! tn(z; w) and w! Tn(z; w) byt0(z; w) = w; tn(z; w) = rn(z)sn(z) + w; for n = 1; 2; : : :; (6.1)T0(z; w) = w; Tn(z; w) = Tn�1(z; tn(z; w)); for n = 1; 2; : : :; (6.2)where rn(z) and sn(z) are as de�ned in (5.9)-(5.10). (Reall that by onvention �0 = ��1 = 1.)Then Tn(z; 0) = �n(z)=�n(z) = �n(z)='n(z) and in generalTn(z; w) = �n(z) + w�n�1(z)�n(z) + w�n�1(z) = �n(z) + wEn�n�1(z)'n(z) + wEn'n�1(z) ; n = 0; 1; 2; : : : : (6.3)See e.g., [24,30,35℄. We shall all the expressions Tn(z; w) modi�ed approximants of the MP-frationK1n=1 rn(z)sn(z) when w is of the form w = [(1� �n�1z)=(1� �nz)℄� , � 2 R̂. Thus modi�ed approximantsRn(z; �) are the expressionsRn(z; �) = Tn�z; � 1� �n�1z1� �nz � = �n(z) + �(1� �n�1z)(1� �nz)�1�n�1(z)�n(z) + �(1� �n�1z)(1� �nz)�1�n�1(z) ; (6.4)with � 2 R̂. We note that in the polynomial ase the onept of modi�ed approximants redue to thetraditional onept of modi�ed approximants to ontinued frations.



Bultheel et al. / Orthogonal rational funtions and ontinued frations 9We shall onsider mapping properties of the transformations w ! tn(z; w) and w ! Tn(z; w).Let z be a �xed point in the upper half-plane U= fz : Im z > 0g. We set �n = arg(1 � �nz) (notethat then �0 = 0) and de�ne 
0 = U= fw 2 C : Im w � 0g (6.5)
n = fw 2 C : �n�1 � �n � arg w � � + �n�1 � �ng; for n = 1; 2; : : :: (6.6)With Im z > 0 we have �n < arg z < �n + � for all n. It follows that W = z(1 � �nz)�1 +BnE�1n (1��n�1z)(1��nz)�1+w 2 
n when w 2 
n. Hene �E�2n (1��n�2z)(1��nz)�1W�1 2 
n�1when w 2 
n. Thus w 2 
n implies rn(z)=[sn(z) + w℄ 2 
n�1. This means that for n = 1; 2; : : : wehave tn(z;
n) � 
n�1: (6.7)(Cf. the analogous argument in [18℄.)For eah z in the open upper half-plane, U, we set �n(z) = Tn(z;
n). Clearly �n(z) is alosed half-plane or a losed disk or a losed exterior of a disk. It follows from the de�nition thats1(z) + w vanishes at a point outside 
1 and hene t1(z;
1) is a bounded set. Formula (6.7) givest1(z;
1) � 
0 = U. Again by using (6.7) we onlude that �n(z) = Tn(z;
n) = Tn�1(z; tn(z;
n)) �Tn�1(z;
n�1) = �n�1(z) for n = 2; 3; : : :. Thus �n(z) must be a losed disk ontained in 
0.Consequently the following result holds:Theorem 6.1. For n = 1; 2; : : : we have:A. �n(z) is a losed disk ontained in the losed upper half-plane U,B. �n(z) � �n�1(z).The transformation � ! �(1 � �n�1z)=(1� �nz) maps U onto 
n. Hene we �nd that the modi�edapproximants Rn(z; �) map the losed upper half-plane U onto �n(z) and the extended line R̂ ontothe irle periphery ��n(z).By solving the equation w = Rn(z; �) with respet to � and setting Im � = 0 we �nd that theequation for the irle ��n(z) may be written(1� �nz)(1� �n�1z)�n(z; w)�n�1(z; w)�(1� �nz)(1� �n�1z)�n�1(z; w)�n�1(z; w) = 0; (6.8)where �n(z; w) = �n(z)� w'n(z): (6.9)(Note that here w has a di�erent meaning from that in the �rst part of this setion.)In [9℄ is proved a general Green's formula involving arbitrary solutions of the reurrene relation ofthe ontinued fration. By replaing w by z, and xn(z) and yn(z) by �n(z)�w'n(z) in Theorem 11.4.1of [9℄, we get 1En(z � z)[(1� �nz)(1� �n�1z)�n(z; w)�n�1(z; w)�(1� �nz)(1� �n�1z)�n(z; w)�n�1(z; w)℄= n�1Xk=0 j�k(z; w)j2� w� wz � z : (6.10)



Bultheel et al. / Orthogonal rational funtions and ontinued frations 10Combining (6.8) and (6.10) we �nd that the irle ��n(z) is given byn�1Xk=0 j�k(z)� w'k(z)j2 = w � wz � z (6.11)and the disk �n(z) is given by n�1Xk=0 j�k(z)� w'k(z)j2 � w � wz � z (6.12)(Note that the last term in Theorem 11.4.1 of [9℄ has wrong sign.)Sine the sequene f�n(z)gn is nested, i.e., �n+1(z) � �n(z) for all n, the intersetion �1(z) =T1n=1�n(z) is either a single point or a proper losed disk. The following invariane result followsfrom [9℄. See also [7℄ for the equivalent unit irle problem and [32℄ for the yli situation.Theorem 6.2. The intersetion �1(z) onsists either of a single point for every z 2 U (the limitpoint ase) or is a proper losed disk for every z 2 U (the limit irle ase).The MP-fration K1n=1 rn(z)sn(z) is said to onverge ompletely for z if �n(z; �(1� �n�1z)=(1� �nz))onverges uniformly for � 2 R̂ to a value independent of � . (In the polynomial situation this de�nitionoinides with the usual de�nition of omplete onvergene of real J-frations, see e.g., [16℄.) Thusomplete onvergene ours exatly in the limit point ase, and the ontinued fration onvergesompletely for all or no z in U.7. Convergene and uniquenessAlso in this setion we shall always assume that the sequene f'ng is regular.We introdue the notation �(z;L) and �(z;L � L) for the set of Stieltjes transforms at z of allsolutions of the moment problem on L and on L � L respetively:�(z;L) = fw 2 C : w = S(z; �) for some solution � of the moment problem on Lg (7.1)�(z;L � L) = fw 2 C : w = S(z; �) for some solution � of the moment problem on L � Lg (7.2)Let n be �xed. By using quadrature formulas determined by the modi�ed approximants Rn(z; �)it an be shown (see [9℄ and [3,7℄ for the irle and [32℄ for the yli situation on the real line) thatexept for n values of the real parameter � , there exists a disrete measure �n(�; �) on R with thefollowing properties: �n(�; �) solves the trunated moment problem on Ln�1 � Ln�1, and Rn(z; �) =RR(z � t)�1d�n(t; �). A limiting argument involving onvergent subsequenes of sequenes f�n(�; �)gleads for every point w on the boundary irle ��1(z) to a measure �w whih solves the momentproblem on L and suh that S(z; �w) = w. Thus ��1(z) � �(z;L). (Note that although �n(�; �)solves the trunated moment problem on Ln�1 �Ln�1, we an in general not onlude that the measures�w solve the moment problem on L � L, only on L.) The set �(z;L) is easily seen to be onvex, andhene �1(z) � �(z;L).A Hilbert spae argument using Bessel's inequality analogous to the proof in the lassial situation(see e.g., [1℄) shows that �(z;L � L) � �1(z).Thus the following result holds.
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