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Abstract

The Aztec diamond of ordaris a certain configuration ofi2n + 1) unit squares. We give a new
proof of the fact that the numbéf,, of tilings of the Aztec diamond of orderwith dominoes equals
21(+1)/2 e determine a sign-nonsingular matrix of ordeér + 1) whose determinant give3,,.
We reduce the calculation of this determinant to that of a Hankel matrix of ardéose entries are
large Schréder numbers. To calculate that determinant we make useldf#tgion expansion of the
generating function of the Schréder numbers.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Letn be a positive integer. Thiztec diamond of order is the unionAD, of all the unit
squares with integral verticés, y) satisfying|x|+|y| <n+ 1. The Aztec diamond of order
1 consists of the 4 unit squares which have the ori@i®) as one of their vertices. The Aztec
diamonds of orders 2 and 4 are shown in Figs. 1 and 2, respectively. Aztec diamonds are
invariant under rotation by 90 and by reflections in the horizontal and vertical axes. The
part of the Aztec diamond of ordarthat lies in the positive quadrant consists of a staircase
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Fig. 1. Aztec Diamond of order 2.

pattern ofz, n — 1, ..., 1 unit squares. Thus the Aztec diamond of ondeontains

4(21') =2n(n+1)

i=1

unit squares.

The numbedl, of tilings of the Aztec diamond of order with dominoes is 2+1/2
and this was first calculated [6,7], with four proofs given. Other calculations of these
tilings are given in [2,4,12]. Ciucu [4] derives the recursive relafibn= 2"11,,_1,n>2
which, with7; = 2, immediately givesI, = 2*+1/2 Kuo [12] used a method he called
graphical condensation (inspired by a classical determinant technique of Dodgson [5] called
condensation), to derive the recursion

I, =205 ; (1>3),

from which, withI1; = 2 andIl, = 8, the formula forl1, also follows immediately. 18]
the number of tilings of Aztec diamonds with defects are counted. Additional references on
these and related questions can be found in the references cited here.

Tilings of Aztec diamonds are in one-to-one correspondence with the perfect matchings
of Aztec graphs. First recall thatgerfect matchingn a graph is a collectio® of edges
such that each vertex of the graph is a vertex of exactly one ed@e The Aztec graph
AG, corresponding to the Aztec diamoAd,, is the graph whose vertices are the squares
of the Aztec diamond with two squares joined by an edge if and only if they share a side
(and so can be covered by one domino). The number of vertick§péquals the number
of squares 2(n + 1) of AD,, and thusAG, is a graph of order2(n + 1). A drawing of the
graphAG, can be obtained from a drawing AD,, by taking the centers of the squares of
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Fig. 2. Aztec diamond of order 4.

AD, as the vertices and joining two centers by a line segment provided the corresponding
squares share a side. The gra&hy, is obtained fromAD; in this way in Fig.3.

Using the black—white checkerboard coloringAdd,,, we see that the Aztec gragi,
is a bipartite graph (let the vertex take the color of the square containing it). A bi-adjacency
matrix B,, of AG, (formed by choosing an ordering of the black vertices and an ordering of
the white vertices) is an(n + 1) by n(n + 1) (0, 1)-matrix and completely characterizes
AG, andAD,. The perfect matchings &G, are in one-to-one correspondence with the
permutation matrice® satisfying P < B,, where the inequality is entrywise. Thus the
numberll, of tilings of AD,, equals thepermanendf B, defined by

n(n+1)
perB) => " [] bicw:
a i=1
where the summation extends over all permutatiensf {1,2,...,n(n + 1)}. Hence

per(Bn) — 2}1(n+1)/2_

LetGbe a bipartite graph with bipartitioirX, Y} having a perfect matching. Associated
with G and each choice a® is a digraphD(G, ©). Let @ = {m1,mp, ..., m,}, where
m; = {x;, 5}, (i =12...,p)andX = {x1,x2,...,x,} andY = {y1,y2,...,¥p}.
The vertices ofD(G, ©) aremy, mp, ..., m,, and there is an arc from, = {x,, y,} to
my = {x5, ys} in D(G, O©) if and onlyr # s and there is an edde;, y;} in G joining
x, andy,. Let B be the bi-adjacency matrix @& with rows corresponding, in order, to
X1, x2, ..., xp and columns corresponding, in orderyto yo, ..., y,. The elements on the
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Fig. 3. Aztec graph of order 4 from Aztec diamond of order 4.

main diagonal oB all equal 1, and the matri® — I, is the adjacency matrix of the digraph
D(G, ©).1 The number of perfect matchings 6 the permanent oB, is the same as
the number of collections of pairwise vertex disjoint directed cycle®@f, @).2 This
follows since any collection of pairwise disjoint directed cyclediG, ®) corresponds
to a permutation matri¥’ contained in some principal submat#X of B, and P’ can be
uniquely extended to a permutation matfxusing the 1's on the main diagonal of the
complementary submatri®” of B’ in B.

A square(0, 1, —1)-matrix issign-nonsingularabbreviated aSNS provided there is a
nonzeroterminits standard determinant expansion and all nonzero terms have the same sign.
Let B = [bj] be a(0, 1)-matrix of orderp with a nonzero term in its standard determinant
expansion, and suppose it is possible to replace some of its 1's\dithin order to obtain
an SNS-matrix@ = [b.,] We call B anSNS- -signingf B. It follows that

| det(B)| = per(B).

Thus pe(B) can be computed using a determinant calculation. The advantage is that, unlike
the permanent, there are efficient algorithms to calculate the determinant. This idea was used
by Kastelyn9,10]—now sometimes called the permanent-determinant method—in solving
the dimer problem of statistical mechanics (see [3] for history and a thorough development

1we emphasize thad (G, @) andB depend on the choice of perfect matchiflg

2We include here the empty collection of directed cycles which corresponds to the perfect mélckingjv-
alently, in the permanent calculation, kp< B.
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of SNS-matrices). Assume thas < B and, without loss of generality, that has all-1's
on its main diagonaf Since the product of the main diagonal elements equals?, B
is an SNS-matrix if and only if all the nonzero terms in its standard determinant expansion
have sign(—1)”. LetD(B) be thesigned digraptof B with vertices{1, 2, ..., p} and an
arc fromi to j of sign b., providedi # j andbIJ # 0. Define thesign of a directed cycle
to be the product of the signs of its arcs. The theorem of Bassett et al. [1] asserts, and an
elementary calculation shows [3], thatis an SNS-matrix if and only if the sign of every
directed cycle ofD(B) is —1.

In this paper we consider a specific perfect matchihgf the bipartite graptAG,
leading to a digraph which we call setec digraphWe then determine an SNS-signing
B of the associated bi-adjacency matix. We evaluate the determinant B;‘l by using
the technique of the Schur complement, with respect to a strategically chosen principal
submatrix. This leads to a matrix whose elements are the (large) Schroder numbers, and
then to the computation of a Hankel determinant of ord@n contrast to the order(n + 1)
of 73;). We then use &-fraction expansion to calculate the Hankel determinant. The result
is a new and interesting proof that the number of tilings of the Aztec diamAdpdequals
2(+D/2 Fyrther, the proof’s technique is, we think, potentially transferable to similar
combinatorial problems.

2. The Aztec digraph and SNS-matrix

Let n be a positive integer. We define tiaal-Aztec diamondf ordern to be the union
AD;f of allthe unit squares with vertic€$/2) (x, y) wherexandy areoddintegers satisfying
|x| + |y| <2n. The centers of the squares of the Aztec diamond of ardee the vertices
of the squares of the dual-Aztec diamond of omdefhe Aztec grapthG, of ordern can
be identified as the vertex-edge graph of the dual-Aztec diam’@{dthat is, the vertices
of AG, are the vertices of the squaresAiD? and the edges are the sides of its squares.
ThusII, equals the number of perfect matchings of the bipartite gfgphas realized in
this way. We may further identify the vertices A6, as the set

V, = {(x, y) : x andy odd integers satisfying| + |y| < 2n},
and the edges as the set
E,=E,UE),

where

E, = {(x,»), x,0)}: (x, ), (x,v) € Vp, [y —v| = 2}

and

E;[ = {{(.X, )’), (M, Y)} : ()C, y)7 (M7 )’) € Vna |.X - M| = 2}

3 This can be accomplished first by multiplication on the left by a permutation matrix and then by multiplication
by a diagonal matrix whose main diagonal elements are-lowithout affecting the sign-nonsingularity property.
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Consider the subs@'® of E/ defined by
0% =[O :y=+1,43, ..., +@2n — 1)}, (1)
where fory = £1, £3, ..., £(2n — 1),
0 ={{(x, ), (x + 2.9} : x = —(2n = |y]),

—(2n =yl =4),....2n—|y| = 6), (2n - [y| = 2} 2

Then the edges a®'* constitute a perfect matching 8iG,, and we call®* the Aztec
matching of order nWe partition@'* into three sets

@(il) @(l) U @( 1)
3 5 2n—1
@(+) @()U@()U U@fz )’

0 =0{Fuedu...ue 2D,

TheAztec digraplof ordern is defined to be the digraph(AG,, @,(1*)) with vertex set
@fl*). The Aztec digraph of order 4 is pictured in F@§.as it is obtained from the Aztec

graph of order 4 and the Aztec matchi@é*). In constructing this figure, we have taken the

rightmost vertex of the matching edge labeled 1 as belonging to tiveo$éihe bipartition

{X, Y} of the bipartite grapiAGy; this uniquely determineX andY. There is a natural

partition of the arcs oAD, which is clear from the picture ADg4 given in Fig. 4. There

aren two-way arcs (so 2 arcs) which are pictured vertically; we refer to these arcs as the

north—south arcsand sometimes distinguish themrasrth andsouth Above these there

are arcs which go east, northeast, and southeast; we refer to these arosaassat arcs

Below are the arcs which go west, northwest, and southwest; we refer to these arcs as the

westerly arcsThere are no directed cycles made up entirely of easterly arcs and none made

up entirely of westerly arcs. Thus every directed cycle uses at least two north—south arcs. In

fact, itis easy to see that each directed cycle uses exactly one north arc and exactly one south

arc. Hence if we give the signl to the north arcs and the sigii to every other arc, then the

sign of each directed cycle 8D, is —1. This gives an SNS-signing, of the bi-adjacency

matrix B, of the Aztec diamond of ordercorresponding to the Aztec matchify,. Hence

B, is an SNS-matrix which we call theh-order Aztec SNS-matrik Corresponding to the

partltlon@(*) OFVUEM U, there are three induced subdigragh®\G,, O+

D(AG,, @,(j)) D(AG,, M@; )y, with the latter two subdigraphs acyclic and isomorphic.
Using our notation, we partially summarize as follows.

Theorem 2.1. For eachn >1, IT,, = (—1)""+D det(B,) = det(B,).

4 B,, is a matrix of orden (n + 1).
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Fig. 4. Aztec digraptD (AGy4, ©*) superimposed on the Aztec grapis,.

To determine the value d1,,, we evaluate the determinant in Theor2rh by reducing its
calculation to the determinant of a Hankel matrix of ordenade up of the large Schréder
numbers that count certain planar lattice paths.

While our definition determines the Aztec digraph, we need to choose a particular ordering
of the matching edges i@'") in order to uniquely specify its bi-adjacency maty,. ©

We now specify an ordering of the matching edge@lffi). We first take the edges in
@;1 in the order reverse of that specified by (2) and then the edgé# again in the order
reverse of that specified by (2). The edgesﬂfp‘) come next followed by the edges in
@,(f). It remains to specify an ordering for the edges in these two sets, and we do this next.
First considet@fl_). We consider the natural order of the edges in eé@gtas specified in
(2) by increasing values of The edges ir@,([) are in a triangular formation according to
the values ofy = —3, -5, ..., —(2n — 1). We select them in the order: last edg@;f,

5As areferee has pointed out, a similar reduction in order is obtained when one applies the so-called Gessel—
Vienott method to this domino tiling problem.

6 Otherwise, the bi-adjacency matrix is only determined up to permutation similarity, tiatisP” whereP
is a permutation matrix.



R. A. Brualdi, S. Kirkland / Journal of Combinatorial Theory, Series B 94 (2005) 334—-351 341
last edge o@;s, second-from-last edge @;3, last edge ir@,f, second-from-last edge
in ©;°, third-from-last edge i@ 3, last edge ir@; °, etc. We specify an ordering for the
edgesinthe se@,(f) in a similar way. In Fig4, the edges of the Aztec matching are labeled
from 1 to 20 according to the prescription given. With this labeling, the SNS-majrig
given by:

OO0OO0O0O0O0 OO0 OO OFrRr OO OkFRFrO

O OO0

OO0 O00O00 POOOOOY| POoOOol PFkroo

P OOO0OO0O0O OO0OO0OO0OO0OO0O OORRKER OO0

OO O0ORFrRPROO0O OO0OO0OO0OO0OO0O OFr PO OORFRO

OO0OO0OO0O0OKR OO0 RPRFRPROO o OO
[leNoNo)

OO0 0000 O000Oo0Q POoOoo RO oo

OO 0000 OO0OO0OO0OO0OR OOO0OO OOOFR

OO0 0000 OO0OO0OORFR PR OOOO OOOO
|
OO0 0000 OO0OORFRPRFRPRR OOOO OORKRO

OO0OO0O00O0 OOFRPORrRO OO0 OOOO

Ooocoooo oFFRrRErO 0000 ocoOO
Froro

OO0 OO0k OO0OO0OO0OO0OO0O POOO OOOO

OO O0OO0ORFR R OO0OO0OO0OO0OO0O OO0OO0OO0O OOOCO

OO0OORFRPRRPRPRPRP OO0OO0ODO0OO0OO0 OFRP OO OO0OO0OO0O

OOPFPORO O0OO0ODO0DO0O0O OO0OO0OO OO0OOoOo

oFPFPRrRro cooo0co0oo0o o000 coooO

PrRroroo coooocoocool coro ocooo

OO O0OO0O0O0 OO0OO0OO0ODO0OO0O OOOKrR OO0k
OO0 0000 OO0OO0OO0OOR OOFRO OOREk

lolNoNeoNeoNo]

Let N = (}). Forn>2, let P, be the(0, 1)-matrix of ordern which has 1's on its
superdiagonal and 0's elsewhere, &t be the back-diagonal permutation matrix of order
n (with 1's in positions(1, n), (2,n — 1), ..., (n, 1) and 0’s elsewhere), and l&ty denote
an upper-triangulao, 1, —1)-matrix of orderN with —1's on the diagonal and O’s and 1's
off the main diagonal in certain positions. Also €t y andYy_, denote certairfO, 1)-
matrices of sizea by N andN by n, respectively. Then theth-order Aztec SNS-matrix has
the form

_In + Pn _In Xn,N On,N

E; _ In _In + PnT On,N Qan,N ' (3)

Yy OnNn My On

OnN,n YN Qun | ON | My

Here P, corresponds to the east arcs in the subdigraphG,, ©'*Y) while P! corre-
sponds to the west arcs in this subdigraph. The third diagonal Bigckquals— Iy + Uy
whereUy is the adjacency matrix ab(AG,, @fj)), and the fourth diagonal blocks
equals—Iy + U, whereUy is also the adjacency matrix @i(AG,, @f,“). The matrices
X,y andYy, correspond to the arcs fro®. Y to ) and from@ ™) to @Y, respec-
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tively. The matricex, X, x andYy_, Q, correspond in a similar way to the arcs between
oY ande(P.

3. Schur complements and Schroder numbers

We begin by recalling the idea of a Schur complement and the resulting Schur determinant
formula.
Let A be a matrix of orden partitioned as in

[ A1 Alz}

A=
| A21 A2

whereA; is a nonsingular matrix of ordée Let

[ Iy 0
C = _ .
| —A21A7 Y Lk }
Then
A A12 ]
CA = _ .
[ 0 Az— AznA7" A

Since detC) = 1, it follows that
det(A) = det(A1) det(Ay — Ap1AT A1p). (4)

The matrixA, — A21A51A12 is called theschur complementf A1 in A, and the determinant
formula @) is Schur’s formulaAs seen by our calculation, the Schur complement results
by adding linear combinations of the fitstows of A to the last: — k rows.

Next, we recall the sequence tdige) Schroder numberg-(n) : n > 0) which begins as

1,2,6,22 90,394 1806 ....

The Schréder numbexn) is defined to be the number of lattice paths inxtitgplane which
startat(0, 0), end af(n, n), and use horizontal stepg 0), vertical stepg0, 1), and diagonal
stepg1, 1), and never pass above the lime= x. Such paths are often call&throder paths
The sequencé (n) : n>1) of (smal) Schroder numbersegins as

1,1,3,11,45 197,903 ....
We have

r(n) = 2s(n + L)for n>1 with r(0) = 1. (5)
The generating function for the small Schréder numbéts is

o0
1 —4/1-6 2
ZS(")xnz i 4 e )

n=1
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and they satisfy the recursive formula

m+1Dsn+1)—32n —Ds(n)+ (n—2)s(n — 1)
=0n=2), s(1) =152 =1

The large Schroder numbers then satisfy
(n+JIr(n+2) —32n +Jhr(n +1) +nr(n) =0(n=0), r(0) =1,r1) =2,

and it follows from §) that their generating function is

o0

1—x—+1—6x+4x2
n __

E r(n)x" = > )

n=0

For these relationships and other combinatorial interpretations of Schréder numbers, one
may consul{13-15].

4. Schur complementation of the Aztec SNS-matrix

Consider thenth-order Aztec SNS-matris, and its principal, nonsingular submatrix
My @ My . Taking the Schur complement &y & My in B, and using Schur’s determinant
formula, we get that

det(B,) = det(MN)Zdet[’f: _F’] - det[f: _F’ ] , ©)
where
Ep=—I,+ Py — Xy NM Yy 7
and
Fyp=—Iy+ P — QuXu NMy Yy, Q0. ®)
Recall that aloeplitz matrixl’ (c_,—1), ..., c-1, €0, €1, . . ., cp—1) IS @ Matrix? = [t;j]
of ordern such thatj = c;_; fori, j =1,2,..., n. For example,

cog c1 C2 c3
c_1 co €1 €2
c_2cCc_1 co C1
c_3C_2 Cc_1Co

T(c—3,c_2,c_1,c0,C1,C2,C3) =

Lemma 4.1. For n >0, the matrixF), is the lower triangular Toeplitz matrix
Trn—2),...,r2,r1,r0+1, -1,0,0,...,0

of order n wherer(0), r(1),...,r(n — 1) are large Schréder numberhe matrixE,
equals

FI'=7(0,0,...,0,-1,7(0) +1,7(1),7(2),...,r(n —2)).
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Proof. First, we consider the matri¥y = —Iy + Uy = —(Iy — Uy) whereUy is the
adjacency matrix oD (AG,, @,(1‘)). SinceUy is a strictly upper triangular matrix (so a
nilpotent matrix) that records the arcs fra@j~ to ., we have

Myt =y —Uy) 7 =—(Ux+Uy+ U+ + Uy,

Hence the element df/y in position(k, 1) is 0 if k > I, —1if k = [, and the number of
paths inD (AG,, @,(1_)) from its kth vertex to itdth vertex ifk < [. SinceX,, y records the
arcs from@ Y to ) andyy, records the arcs that go the other way, it follows that

Xu My Yy,

records the number of paths from ftitle vertex of@f[l) to itsjth vertex. This numberis O
if j <i and equals thkth Schréder numbet(k) if j > i andk = j —i — 1. Multiplying on
the left and right by the back-diagonal matii, reorders the rows and columns from last
to first. The matrixP! has 1's in the subdiagonal and 0's elsewhere. Addifig+ P, we
get the Toeplitz matrixt, = T(r(n — 2),...,r(2),r(1),r0) +1,-1,0,0,...,0). That
E, = F! follows by symmetry. O

For the cas@a = 4, corresponding to Figl, the Toeplitz matrixf, in Lemma 4.1 is

-1 0 O
2-1 0
2 2-1
6 2 2-

P O oo

By (6) and Lemma 4.1, we have reduced the calculation of the determinant of the SNS-
matrix B,, of ordern(n + 1) to the calculation of a determinant of a matrix of order 2

=~ [F' -1,
det(B,) = det I F

We further reduce the calculation to the determinant of a matrix of arder

=~ FI' —1,] I, 0, Fl' —1,
det(B,,) = det | _det[_(FnT)_l I, }det[ I F

_ FnT —1Iy
‘det[ Oy Fy + (F,frl}

=det(F7) det(Fn + (FnT)_l)

= (-1)" det(F,, + (Fn_l)T) .

In order to evaluate this last determinant, we need to compgife To do this we first
derive a recurrence relation for the Schréder numbérs
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Lemma 4.2. The Schréder numbers(n) : n > 0) satisfy

n—1
rm)=r(n—1+» rrm—1—k forn>1, withr() = 1.
k=0

Proof. The Schroder numbet(n) equals the number of lattice pathshat begin at0, 0)
and end atn, n) which use steps of the tygé, 0), (0, 1), and(1, 1), and never pass above
the liney = x. There are (n — 1) such pathg; that begin with the diagonal stép, 1). The
remaining pathsg, begin with the horizontal stefd, 0). There is a first value of between

1 andn such that a path, crosses the ling = x — 1, necessarily by a vertical sté, 1).
The number of such path§ that cross at = k equals(k — 1)r(n — 1 — (k — 1)). Hence

=1+ D 15}

k=1
:r(n—l)—{—z rtk—Dr(n—1— (k— 1)
k=1
n—1
=rm=D+Y rtrm—1-k. O
k=0

Lemma 4.3. For n > 2, the inverse of the Toeplitz matrix
F,=Trn—2),...,r(2,r(1),r0)+1,-100,...,0
of order n is the Toeplitz matrix

—Trmn—-21,...,r(2),r),r0),0,0,...,0)
=T(-rn-20,...,—r2,—-r@),—-r(0),0,0,...,0).

Proof. We prove the lemma by induction enThe relation is true for = 2 since

R

We now proceed by induction assuming the relation holds for som2. We have that

0

0

Fy .

Foy1= :
0
rmn—1) ---r() r(O+1(-1
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and also
_1 00.--0
r(0)+1
Fn+l: I”(l)
: Fy
r(n—1)

Computing the inverses df, 1 using each of these forms, we get

)

and

: (10)

wherex andy are vectors of size. Two applications of the inductive assumption now imply
that we need only show that the elemeaff Fn_+11 in position(n + 1, 1) equals the Schroder

numberr (n). SinceF, Y Fyi1 = Iipr andx” = (. r(n — 1), ..., r(1), 7(0)), we have
a=rn—DrO)+D)+ra—-2r()+---+r(LHrn—2)+rO)yrm —1)
n—1
=r(n—l)+2r(k)r(n—1—k). (11)
k=0

By Lemma4.2,00 = r(n). O

We now have that déB,) = (—1)" det(F, + (F, 1)) whereF, + (F; 1T equals the
sum of two Toeplitz matrices:
Torin—2),...,r(2,r(1),r(0+1,-1,0,0,...,0
+7(0,0,...,0,—r0), —r(D), —r@2),...,—r(n—121),
and hence equals the Toeplitz matrix
Tor(n—2),...,r(2,r),r0) +1,

—r0)—-1,-r), —r®2,...,—rn—1). (12)
For example, when = 4 matrix (12) whose determinant we need to calculate is
-2 -2-6-22
2-2-2 -6
2 2-2 =2}

6 2 2 -2
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which, upon reordering the rows from last to first, becomes the Hankel matrix

6 2 2 -2

2 2-2 -2

2-2-2 -6

-2 -2 -6 -22

In general, a Hankel matrix results from a Toeplitz matrix by reordering the rows from last
to first. Specifically, theHankel matrixH (ay, az, . .., az,—1) is the matrixH = [h;j] of
ordern such thatij = a;4;_1 fori, j = 1,2, ..., n. Note thatH (ay, ap, . . ., az,—1) and
H(az,-1, .. .,az,ap) are related by a simultaneous permutation of rows and columns and
thus have equal determinants. The Hankel makfic_,—1). ..., c—1,co, c1, - .., Ch—1)
results from the Toeplitz matri¥ (c_-1), ..., c—1. co, c1, - .., cn—1) Dy reordering the

rows from last to first, and thus their determinants differ only by a factgrdf”—1/2,
Thus by Theoren2.1,

11, = det(B,) = (—1)" det(F,, n (F,;l)T)
= (="t D 2det(H(r(n — 2), ..., r(Q), r0) + 1,
—r0) -1, —r@),...,—r(n —1))). (13)

We now turn to the evaluation of the determinantif); First, we recall Dodgson’s rule
[5] for determinant calculation (see also [17])For a matrixA of ordern, A(i|j) denotes
the matrix obtained frormd by deleting rowi and columnj, and A(i, j|k, ) denotes the
matrix obtained fronA by deleting rows andj, and columngk andl.

Lemma 4.4. Let A = [aj;] be a matrix of order nThen

det(A) det(A(L, n|1, n)) = det(A(1]1)) det(A(n|n)) — det(A(1|n)) det(A(n|1)).

Applying Lemma4.4 to a Hankel determinant we get the following idenfity.

Corollary 4.5.
det(H (ay, ap, ..., az,—1)) det(H (az, as, . . ., az,—3))
= det(H (a3, aa, ..., az,—1)) det(H (ay, az, . . ., a2,—3))
—det(H(az, a3, . . ., az,—2))>.

In order to evaluate the determinant it3} we shall need to evaluate a more general
Hankel determinant of Schroder numbe(s). For j > 2, k > 1, we define a matri¥; ;. of
orderk + j by

Hiy=H(@r2k—1),r2k—2),...,r(1),r0) +1,
—r(0) =1, —r(), =r2), ..., —r2j — 2)).

7 As alluded to in the introduction, Kud 2] derived a formula for computing the number of perfect matchings
in a planar bipartite graph which bears a strong resemblance to Dodgson’s rule for determinants.

8We have been unable to find a reference to this Hankel determinant identity, but it is probably well known to
experts in the area.
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Similarly, for k > 1 we define the matri¥/1 x of order 1+ k by
Hiy=H@r2k—-1),r2k—-2),...,r(1),r(0)+1,—r0) —1).

In addition, we define matricep ; of orderk and H; o of orderj by
Hor=Hr(2k—-1),...,r(2),r@))and
Hio=H(=r(0) =1 —r),...,-r2j - 2).

To evaluate the determinants of the matri¢gs;, we require the following result (The-

orem 11 in[11] and Theorem 51.1 in [16]) which gives a method for computing Hankel
determinants if one can find a certain continued fraction knownJaaxction

Lemma 4.6. Let(y;; i >0) be a sequence of numbers with generating functigh,, ,,x"
which can be expanded as a J-fraction

n_ Ho
Z Hp X = b1x2

box
Itayx— Trapr——

Then
det(H (tg, ta, - - - » fipy_2)) = AP 1682 b2 5by_1.
We first evaluate the determinantsig r, andH; o.
Lemma 4.7. For positive integers j and,k
det(Ho ) = 28**Y/2 and det(H, o) = (-1)/2/U+D/2,

Proof. As previously mentioned, the generating function for the Schréoder nunb@ns
n>0)is

ad . l—x—+1-6x+x°
> rmx" = 5 .

n=0
Hence the generating function for the sequence of numbé&rs) : n > 0), wherer’(0) =
r(0)+1=2andr’'(n) =r(n)forn>1,is

0 _ _ 2
fo) =Y Pyt = TRV

n=0

Also the generating function for the sequence of numbeais+ 1) : n > 0) equals

> 1—3x —/1—6x +x2
gy = r(n+1x" = 22 :
n=0
We have detHp ) = det(H (r(1), 7 (2), ..., r(2k — 1))) and detH; o) = (—1)/ det(H
r©O) +1,r@),...,r(2j — 2))). Thus we seek a-fraction expansion of the generating
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functions f (x) andg(x). We first note thatv = g(x) is a solution of the equatiarfw? —
(1 —3x)w + 2 = 0 so thatw(1 — 3x — x?w) = 2. Therefore,

2
w=-——>"—,
1—3x —x2w
2
w =
N O G
1-3x 1-3x—x2w
2
w =
2 9
1ar— 22
1-8x— —2
1-3x—x4w
2
w = .
2
1-8r— —— &
l—3x—2+2
1*3)(71?%

Thus in theJ-fraction expansion as given in Lemmeb, we havayy = b1 = by = bz =
... =2, and hence

det(H (r(1), r(2). ..., r(2k — 1)) = 251t = kk+D/2

Now we note that

14+ x —+/1—6x 4 x2

2x
8x

T (1t x+VI—6x+x2)
2

14+x + V1—6x+x2
2 2

2
1+x _ .2 1-3x
> xXew + —>—
2

1—x—x2w’

fx) =

Inserting thel-fraction expansion ofv, we obtain thel-fraction expansion off (x), and
againug =2 =0b1 = by =b3z =---. Hence

det H(r(0) + 1, r(1), ..., r(2j — 2))) = 25t=1i = 2/(+D/2,
This completes the proof of the lemmal
We now evaluate the determinants of the matridies.

Lemma 4.8. For nonnegative integers k and j with+ j > 1, we have

det(H, ;) = (—1)/2k+Dk+j+D/2 1)
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Proof. We prove (4) by induction orl = j + k. If k = 0 or j = 0, (14) follows from
Lemma 4.7. We now assume thatj > 1. If k = j = 1, then

detHy; = det[g _5] =—8=(-1)'2%*72

Now assume thdt> 3. By Corollary4.5 we have that dét; ;) det(H;_1 1) equals
det(H; ;1) det(H;_1 ;) — det(H (r(2k — 2)),...,r(1),r(0)

+1,—r(0) = 1, ..., —r(2j — 3))? = det(H; 4_1) det(H;_1 1) — det(Hy ;_1)?,
the last since
detH(r(2k — 2)), ..., r(1),r(0)+1, —r(0) —1,..., —r(2j — 3))
=dettH(-r(2j = 3),...,—r(0)=1,r(0) +1,...,r(2k — 2))).

Using the induction assumption, we now get
= (=1)/ 2U=D/2(_q)i-1p0-Dl/2 _ ((_1)k21(l—1)/2)2

— _olU=D/2 _ ol(-1/2 _ _oli-D+1

Therefore detH; x) = (—1)/2/¢+D/2 completing the induction. [J
We now complete our proof thdl,, = 2#+1/2,

Theorem 4.9. Forn>1,

det(é;) — 2n(n+l)/2.

Proof. By (13)

det(B,) = (—1)" "D 2detHr(n — 2), ..., r(L), r(0) + 1,
—r0) -1, —-—r@Q),...,—r(n —1)).

Forn an odd integer,
Hrn—-2),...,r(),rO+1,-r©0) -1, —-r@),...,—r(n—-1)
= Hu-1)/2,0+1)/2

so that by Lemma 4.8, its determinant equals

(_1)(n+1)/22n(n+1)/2.
Forn an even integer,

detHG(n—2),...,r(1),r(0)+1, —r©0) -1, —r),...,—r(n — 1))
equals

(=D'detHor(n —1),...,r(1),r(0)+1, —r0) — 1, r),...,r(n — 2)),



R. A. Brualdi, S. Kirkland / Journal of Combinatorial Theory, Series B 94 (2005) 334—-351 351

which equals the determinant &f, 2 ,,,». Hence
detHer(n—2),...,r(1),r(O+1, —r©0) -1, —r@),...,—r(n —1)))

equals
(_1)}’1/22}’!(714*1)/2.

Therefore

Sincell, equals de(tl’?;), we get our desired evaluation.

Corollary 4.10. The numbelT, of tilings of the Aztec diamond of order n satisfies

I, = 2" +0/z,
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