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Abstract

The Aztec diamond of ordern is a certain configuration of 2n(n+ 1) unit squares. We give a new
proof of the fact that the number�n of tilings of theAztec diamond of ordernwith dominoes equals
2n(n+1)/2. We determine a sign-nonsingular matrix of ordern(n+ 1) whose determinant gives�n.
We reduce the calculation of this determinant to that of a Hankel matrix of ordernwhose entries are
large Schröder numbers. To calculate that determinant we make use of theJ-fraction expansion of the
generating function of the Schröder numbers.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let n be a positive integer. TheAztec diamond of order nis the unionADn of all the unit
squares with integral vertices(x, y) satisfying|x|+|y|�n+1. TheAztec diamond of order
1 consists of the 4 unit squareswhich have the origin(0,0)as oneof their vertices.TheAztec
diamonds of orders 2 and 4 are shown in Figs. 1 and 2, respectively. Aztec diamonds are
invariant under rotation by 90◦, and by reflections in the horizontal and vertical axes. The
part of theAztec diamond of ordern that lies in the positive quadrant consists of a staircase
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Fig. 1. Aztec Diamond of order 2.

pattern ofn, n− 1, . . . ,1 unit squares. Thus the Aztec diamond of ordern contains

4

(
n∑
i=1
i

)
= 2n(n+ 1)

unit squares.
The number�n of tilings of the Aztec diamond of ordern with dominoes is 2n(n+1)/2

and this was first calculated in[6,7], with four proofs given. Other calculations of these
tilings are given in [2,4,12]. Ciucu [4] derives the recursive relation�n = 2n�n−1, n�2
which, with�1 = 2, immediately gives�n = 2n(n+1)/2. Kuo [12] used a method he called
graphical condensation (inspired by a classical determinant technique of Dodgson [5] called
condensation), to derive the recursion

�n�n−2 = 2�2
n−1 (n�3),

from which, with�1 = 2 and�2 = 8, the formula for�n also follows immediately. In[8]
the number of tilings of Aztec diamonds with defects are counted. Additional references on
these and related questions can be found in the references cited here.
Tilings of Aztec diamonds are in one-to-one correspondence with the perfect matchings

of Aztec graphs. First recall that aperfect matchingin a graph is a collection� of edges
such that each vertex of the graph is a vertex of exactly one edge in�. TheAztec graph
AGn corresponding to the Aztec diamondADn is the graph whose vertices are the squares
of the Aztec diamond with two squares joined by an edge if and only if they share a side
(and so can be covered by one domino). The number of vertices ofAGn equals the number
of squares 2n(n+ 1) of ADn, and thusAGn is a graph of order 2n(n+ 1). A drawing of the
graphAGn can be obtained from a drawing ofADn by taking the centers of the squares of
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Fig. 2. Aztec diamond of order 4.

ADn as the vertices and joining two centers by a line segment provided the corresponding
squares share a side. The graphAG4 is obtained fromAD4 in this way in Fig.3.
Using the black–white checkerboard coloring ofADn, we see that the Aztec graphAGn

is a bipartite graph (let the vertex take the color of the square containing it). A bi-adjacency
matrixBn of AGn (formed by choosing an ordering of the black vertices and an ordering of
the white vertices) is ann(n + 1) by n(n + 1) (0,1)-matrix and completely characterizes
AGn andADn. The perfect matchings ofAGn are in one-to-one correspondence with the
permutation matricesP satisfyingP �Bn, where the inequality is entrywise. Thus the
number�n of tilings ofADn equals thepermanentof Bn defined by

per(Bn) =
∑
�

n(n+1)∏
i=1

bi�(i),

where the summation extends over all permutations� of {1,2, . . . , n(n + 1)}. Hence
per(Bn) = 2n(n+1)/2.
LetGbeabipartite graphwith bipartition{X, Y }havingaperfectmatching�.Associated

with G and each choice of� is a digraphD(G,�). Let� = {m1,m2, . . . , mp}, where
mi = {xi, yi}, (i = 1,2, . . . , p) andX = {x1, x2, . . . , xp} andY = {y1, y2, . . . , yp}.
The vertices ofD(G,�) arem1,m2, . . . , mp, and there is an arc frommr = {xr , yr} to
ms = {xs, ys} in D(G,�) if and only r �= s and there is an edge{xr , ys} in G joining
xr andys . Let B be the bi-adjacency matrix ofG with rows corresponding, in order, to
x1, x2, . . . , xp and columns corresponding, in order, toy1, y2, . . . , yp. The elements on the
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Fig. 3. Aztec graph of order 4 fromAztec diamond of order 4.

main diagonal ofBall equal 1, and the matrixB− In is the adjacency matrix of the digraph
D(G,�). 1 The number of perfect matchings ofG, the permanent ofB, is the same as
the number of collections of pairwise vertex disjoint directed cycles ofD(G,�). 2 This
follows since any collection of pairwise disjoint directed cycles ofD(G,�) corresponds
to a permutation matrixP ′ contained in some principal submatrixB ′ of B, andP ′ can be
uniquely extended to a permutation matrixP using the 1’s on the main diagonal of the
complementary submatrixB ′′ of B ′ in B.
A square(0,1,−1)-matrix issign-nonsingular, abbreviated asSNS, provided there is a

nonzero term in its standarddeterminant expansionandall nonzero termshave thesamesign.
LetB = [bij ] be a(0,1)-matrix of orderpwith a nonzero term in its standard determinant
expansion, and suppose it is possible to replace some of its 1’s with−1’s in order to obtain
an SNS-matrix̂B = [b̂ij ]. We callB̂ anSNS-signingof B. It follows that

|det(B̂)| = per(B).

Thus per(B) can be computed using a determinant calculation. The advantage is that, unlike
the permanent, there are efficient algorithms to calculate the determinant. This ideawas used
byKastelyn[9,10]—now sometimes called the permanent-determinantmethod—in solving
the dimer problem of statistical mechanics (see [3] for history and a thorough development

1We emphasize thatD(G,�) andB depend on the choice of perfect matching�.
2We include here the empty collection of directed cycles which corresponds to the perfect matching�, equiv-

alently, in the permanent calculation, toIn�B.
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of SNS-matrices). Assume thatIp�B and, without loss of generality, that̂B has all−1’s
on its main diagonal.3 Since the product of the main diagonal elements equals(−1)p, B̂
is an SNS-matrix if and only if all the nonzero terms in its standard determinant expansion
have sign(−1)p. LetD(B̂) be thesigned digraphof B̂ with vertices{1,2, . . . , p} and an
arc fromi to j of sign b̂ij providedi �= j andb̂ij �= 0. Define thesign of a directed cycle
to be the product of the signs of its arcs. The theorem of Bassett et al. [1] asserts, and an
elementary calculation shows [3], that̂B is an SNS-matrix if and only if the sign of every
directed cycle ofD(B̂) is−1.
In this paper we consider a specific perfect matching� of the bipartite graphAGn

leading to a digraph which we call anAztec digraph. We then determine an SNS-signing
B̂n of the associated bi-adjacency matrixBn. We evaluate the determinant of̂Bn by using
the technique of the Schur complement, with respect to a strategically chosen principal
submatrix. This leads to a matrix whose elements are the (large) Schröder numbers, and
then to the computation of a Hankel determinant of ordern (in contrast to the ordern(n+1)
of B̂n). We then use aJ-fraction expansion to calculate the Hankel determinant. The result
is a new and interesting proof that the number of tilings of the Aztec diamondADn equals
2n(n+1)/2. Further, the proof’s technique is, we think, potentially transferable to similar
combinatorial problems.

2. The Aztec digraph and SNS-matrix

Let n be a positive integer. We define thedual-Aztec diamondof ordern to be the union
ADdn of all the unit squareswith vertices(1/2)(x, y)wherexandyareoddintegers satisfying
|x| + |y|�2n. The centers of the squares of the Aztec diamond of ordern are the vertices
of the squares of the dual-Aztec diamond of ordern. The Aztec graphAGn of ordern can
be identified as the vertex-edge graph of the dual-Aztec diamondAGdn, that is, the vertices
of AGn are the vertices of the squares ofADdn and the edges are the sides of its squares.
Thus�n equals the number of perfect matchings of the bipartite graphAGn as realized in
this way. We may further identify the vertices ofAGn as the set

Vn = {(x, y) : x andy odd integers satisfying|x| + |y|�2n},
and the edges as the set

En = E′
n ∪ E′′

n,

where

E′
n = {{(x, y), (x, v)} : (x, y), (x, v) ∈ Vn, |y − v| = 2}

and

E′′
n = {{(x, y), (u, y)} : (x, y), (u, y) ∈ Vn, |x − u| = 2}.

3 This can be accomplished first by multiplication on the left by a permutationmatrix and then bymultiplication
by a diagonalmatrix whosemain diagonal elements are 1 or−1,without affecting the sign-nonsingularity property.
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Consider the subset�(∗)
n of E′′

n defined by

�(∗)
n = ∪{�(y)

n : y = ±1,±3, . . . ,±(2n− 1)}, (1)

where fory = ±1,±3, . . . ,±(2n− 1),

�(y)
n = {{(x, y), (x + 2, y)} : x = −(2n− |y|),

−(2n− |y| − 4), . . . , (2n− |y| − 6), (2n− |y| − 2)}. (2)

Then the edges of�(∗)
n constitute a perfect matching ofAGn, and we call�(∗)

n theAztec
matching of order n. We partition�(∗)

n into three sets

�(±1)
n = �(1)

n ∪ �(−1)
n ,

�(+)
n = �(3)

n ∪ �(5)
n ∪ · · · ∪ �(2n−1)

n ,

�(−)
n = �(−3)

n ∪ �(−5)
n ∪ · · · ∪ �(−2n+1)

n .

TheAztec digraphof ordern is defined to be the digraphD(AGn,�(∗)
n ) with vertex set

�(∗)
n . The Aztec digraph of order 4 is pictured in Fig.4, as it is obtained from the Aztec

graph of order 4 and theAztec matching�(∗)
4 . In constructing this figure, we have taken the

rightmost vertex of the matching edge labeled 1 as belonging to the setYof the bipartition
{X, Y } of the bipartite graphAG4; this uniquely determinesX andY. There is a natural
partition of the arcs ofADn which is clear from the picture ofAD4 given in Fig. 4. There
aren two-way arcs (so 2n arcs) which are pictured vertically; we refer to these arcs as the
north–south arcs, and sometimes distinguish them asnorth andsouth. Above these there
are arcs which go east, northeast, and southeast; we refer to these arcs as theeasterly arcs.
Below are the arcs which go west, northwest, and southwest; we refer to these arcs as the
westerly arcs. There are no directed cycles made up entirely of easterly arcs and none made
up entirely of westerly arcs. Thus every directed cycle uses at least two north–south arcs. In
fact, it is easy to see that each directed cycle uses exactly one north arc and exactly one south
arc. Hence if we give the sign−1 to the north arcs and the sign+1 to every other arc, then the
sign of each directed cycle ofADn is−1. This gives an SNS-signinĝBn of the bi-adjacency
matrixBn of theAztec diamond of ordern corresponding to theAztec matching�∗

n. Hence
B̂n is an SNS-matrix which we call thenth-order Aztec SNS-matrix. 4 Corresponding to the
partition�(∗)

n = �(±1)
n ∪�(+)

n ∪�(−)
n , there are three induced subdigraphsD(AGn,�(±1)

n )

D(AGn,�(+)
n ) D(AGn,M�(−)

n ), with the latter two subdigraphs acyclic and isomorphic.
Using our notation, we partially summarize as follows.

Theorem 2.1. For eachn�1,�n = (−1)n(n+1) det(B̂n) = det(B̂n).

4 B̂n is a matrix of ordern(n+ 1).



340 R. A. Brualdi, S. Kirkland / Journal of Combinatorial Theory, Series B 94 (2005) 334–351

5

18

34 2

6

10

11

12

13

19

2015

16

17

78

14 9

1

Fig. 4. Aztec digraphD(AG4,�
∗) superimposed on the Aztec graphAG4.

To determine the value of�n, we evaluate the determinant in Theorem2.1 by reducing its
calculation to the determinant of a Hankel matrix of ordernmade up of the large Schröder
numbers that count certain planar lattice paths.5

While our definitiondetermines theAztecdigraph,weneed to chooseaparticular ordering
of the matching edges in�(∗)

n in order to uniquely specify its bi-adjacency matrixAn. 6
We now specify an ordering of the matching edges in�(∗)

n . We first take the edges in
�−1
n in the order reverse of that specified by (2) and then the edges in�1

n again in the order
reverse of that specified by (2). The edges in�(−)

n come next followed by the edges in
�(+)
n . It remains to specify an ordering for the edges in these two sets, and we do this next.

First consider�(−)
n . We consider the natural order of the edges in each�y

n as specified in
(2) by increasing values ofx. The edges in�(−)

n are in a triangular formation according to
the values ofy = −3,−5, . . . ,−(2n− 1). We select them in the order: last edge in�−3

n ,

5As a referee has pointed out, a similar reduction in order is obtained when one applies the so-called Gessel–
Vienott method to this domino tiling problem.
6Otherwise, the bi-adjacency matrix is only determined up to permutation similarity, that is,PAnPT whereP

is a permutation matrix.
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last edge of�−5
n , second-from-last edge in�

−3
n , last edge in�

−7
n , second-from-last edge

in�−5
n , third-from-last edge in�

−3
n , last edge in�

−9
n , etc. We specify an ordering for the

edges in the set�(+)
n in a similar way. In Fig.4, the edges of theAztec matching are labeled

from 1 to 20 according to the prescription given. With this labeling, the SNS-matrixB̂4 is
given by:

−1 1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 −1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0−1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0−1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1



.

Let N = (
n
2

)
. For n�2, let Pn be the(0,1)-matrix of ordern which has 1’s on its

superdiagonal and 0’s elsewhere, letQn be the back-diagonal permutation matrix of order
n (with 1’s in positions(1, n), (2, n−1), . . . , (n,1) and 0’s elsewhere), and letMN denote
an upper-triangular(0,1,−1)-matrix of orderN with−1’s on the diagonal and 0’s and 1’s
off the main diagonal in certain positions. Also letXn,N andYN,n denote certain(0,1)-
matrices of sizesnbyNandNbyn, respectively. Then thenth-orderAztec SNS-matrix has
the form

B̂n =



−In + Pn −In Xn,N On,N

In −In + PTn On,N QnXn,N

YN,n ON,n MN ON

ON,n YN,nQn ON MN

 . (3)

HerePn corresponds to the east arcs in the subdigraphD(AGn,�(±1)
n ) while PTn corre-

sponds to the west arcs in this subdigraph. The third diagonal blockMN equals−IN +UN
whereUN is the adjacency matrix ofD(AGn,�(−)

n ), and the fourth diagonal blockMN
equals−IN + Un whereUN is also the adjacency matrix ofD(AGn,�(+)

n ). The matrices
Xn,N andYN,n correspond to the arcs from�(−1)

n to�(−)
n and from�(−)

n to�(−1)
n , respec-
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tively. The matricesQnXn,N andYN,nQn correspond in a similar way to the arcs between
�(1)
n and�(+)

n .

3. Schur complements and Schröder numbers

Webegin by recalling the idea of aSchur complement and the resultingSchur determinant
formula.
LetA be a matrix of ordern partitioned as in

A =
[
A1 A12
A21 A2

]
,

whereA1 is a nonsingular matrix of orderk. Let

C =
[

Ik O

−A21A−1
1 In−k

]
.

Then

CA =
[
A1 A12

O A2 − A21A−1
1 A12

]
.

Since det(C) = 1, it follows that

det(A) = det(A1)det(A2 − A21A−1
1 A12). (4)

ThematrixA2−A21A−1
1 A12 is called theSchur complementofA1 inA, and the determinant

formula (4) isSchur’s formula. As seen by our calculation, the Schur complement results
by adding linear combinations of the firstk rows ofA to the lastn− k rows.
Next, we recall the sequence of (large) Schröder numbers(r(n) : n�0) which begins as

1,2,6,22,90,394,1806, . . . .

The Schröder numberr(n) is defined to be the number of lattice paths in thexy-plane which
start at(0,0), end at(n, n), and use horizontal steps(1,0), vertical steps(0,1), and diagonal
steps(1,1), and never pass above the liney = x. Such paths are often calledSchröder paths.
The sequence(s(n) : n�1) of (small) Schröder numbersbegins as

1,1,3,11,45,197,903, . . . .

We have

r(n) = 2s(n+ 1)for n�1 with r(0) = 1. (5)

The generating function for the small Schröder numberss(n) is

∞∑
n=1

s(n)xn = 1+ x − √
1− 6x + x2
4

,
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and they satisfy the recursive formula

(n+ 1)s(n+ 1)− 3(2n− 1)s(n)+ (n− 2)s(n− 1)

= 0 (n�2), s(1) = 1, s(2) = 1.

The large Schröder numbers then satisfy

(n+ 3)r(n+ 2)− 3(2n+ 3)r(n+ 1)+ nr(n) = 0 (n�0), r(0) = 1, r(1) = 2,

and it follows from (5) that their generating function is

∞∑
n=0

r(n)xn = 1− x − √
1− 6x + x2
2x

.

For these relationships and other combinatorial interpretations of Schröder numbers, one
may consult[13–15].

4. Schur complementation of the Aztec SNS-matrix

Consider thenth-order Aztec SNS-matrix̂Bn and its principal, nonsingular submatrix
MN⊕MN . Taking the Schur complement ofMN⊕MN in B̂n and using Schur’s determinant
formula, we get that

det(B̂n) = det(MN)
2 det

[
En −In
In Fn

]
= det

[
En −In
In Fn

]
, (6)

where

En = −In + Pn −Xn,NM−1
N YN,n (7)

and

Fn = −In + PTn −QnXn,NM−1
N YN,nQn. (8)

Recall that aToeplitz matrixT (c−(n−1), . . . , c−1, c0, c1, . . . , cn−1) is a matrixT = [tij ]
of ordern such thattij = cj−i for i, j = 1,2, . . . , n. For example,

T (c−3, c−2, c−1, c0, c1, c2, c3) =


c0 c1 c2 c3
c−1 c0 c1 c2
c−2 c−1 c0 c1
c−3 c−2 c−1 c0

 .
Lemma 4.1. For n�0, the matrixFn is the lower triangular Toeplitz matrix

T (r(n− 2), . . . , r(2), r(1), r(0)+ 1,−1,0,0, . . . ,0)
of order n, wherer(0), r(1), . . . , r(n − 1) are large Schröder numbers. The matrixEn
equals

FTn = T (0,0, . . . ,0,−1, r(0)+ 1, r(1), r(2), . . . , r(n− 2)).
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Proof. First, we consider the matrixMN = −IN + UN = −(IN − UN) whereUN is the
adjacency matrix ofD(AGn,�(−)

n ). SinceUN is a strictly upper triangular matrix (so a
nilpotent matrix) that records the arcs from�(−)

n to�(−)
n , we have

M−1
N = (IN − UN)−1 = −(IN + UN + U2N + · · · + UN−1

N ).

Hence the element ofMN in position(k, l) is 0 if k > l, −1 if k = l, and the number of
paths inD(AGn,�(−)

n ) from itskth vertex to itslth vertex ifk < l. SinceXn,N records the
arcs from�(−1)

n to�(−)
n andYN,n records the arcs that go the other way, it follows that

Xn,NM
−1
N YN,n

records the number of paths from theith vertex of�(−1)
n to its jth vertex. This number is 0

if j� i and equals thekth Schröder numberr(k) if j > i andk = j − i−1. Multiplying on
the left and right by the back-diagonal matrixQn reorders the rows and columns from last
to first. The matrixPTn has 1’s in the subdiagonal and 0’s elsewhere. Adding−In+PTn , we
get the Toeplitz matrixFn = T (r(n− 2), . . . , r(2), r(1), r(0)+ 1,−1,0,0, . . . ,0). That
En = FTn follows by symmetry. �

For the casen = 4, corresponding to Fig.4, the Toeplitz matrixF4 in Lemma 4.1 is
−1 0 0 0
2 −1 0 0
2 2 −1 0
6 2 2 −1

 .
By (6) and Lemma 4.1, we have reduced the calculation of the determinant of the SNS-

matrix B̂n of ordern(n+ 1) to the calculation of a determinant of a matrix of order 2n:

det(B̂n) = det

[
FTn −In
In Fn

]
.

We further reduce the calculation to the determinant of a matrix of ordern:

det(B̂n) = det

[
FTn −In
In Fn

]
= det

[
In On

−(F Tn )−1 In
]
det

[
FTn −In
In Fn

]
= det

[
FTn −In
On Fn + (F Tn )−1

]
= det(F Tn )det

(
Fn + (F Tn )−1

)
= (−1)n det

(
Fn + (F−1

n )T
)
.

In order to evaluate this last determinant, we need to computeF−1
n . To do this we first

derive a recurrence relation for the Schröder numbersr(n).
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Lemma 4.2. The Schröder numbers(r(n) : n�0) satisfy

r(n) = r(n− 1)+
n−1∑
k=0

r(k)r(n− 1− k) for n�1, with r(0) = 1.

Proof. The Schröder numberr(n) equals the number of lattice paths� that begin at(0,0)
and end at(n, n) which use steps of the type(1,0), (0,1), and(1,1), and never pass above
the liney = x. There arer(n−1) such paths�1 that begin with the diagonal step(1,1). The
remaining paths�2 begin with the horizontal step(1,0). There is a first value ofx between
1 andn such that a path�2 crosses the liney = x − 1, necessarily by a vertical step(0,1).
The number of such paths�k2 that cross atx = k equalsr(k− 1)r(n− 1− (k− 1)). Hence

|{�}| = |{�1}| +
n∑
k=1

|{�k2}|

= r(n− 1)+
n∑
k=1

r(k − 1)r(n− 1− (k − 1))

= r(n− 1)+
n−1∑
k=0

r(k)r(n− 1− k). �

Lemma 4.3. For n�2, the inverse of the Toeplitz matrix

Fn = T (r(n− 2), . . . , r(2), r(1), r(0)+ 1,−1,0,0, . . . ,0)

of order n is the Toeplitz matrix

−T (r(n− 1), . . . , r(2), r(1), r(0),0,0, . . . ,0)

= T (−r(n− 1), . . . ,−r(2),−r(1),−r(0),0,0, . . . ,0).

Proof. We prove the lemma by induction onn. The relation is true forn = 2 since

[−1 0
2 −1

]−1
=
[−1 0

−2 −1
]
.

We now proceed by induction assuming the relation holds for somen�2. We have that

Fn+1 =


Fn

0
0
...

0

r(n− 1) · · · r(1) r(0)+ 1 −1


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and also

Fn+1 =



−1 0 0 · · · 0
r(0)+ 1
r(1)
...

r(n− 1)

Fn

 .

Computing the inverses ofFn+1 using each of these forms, we get

F−1
n+1 =


F−1
n

0
0
...

0
xT −1

 (9)

and

F−1
n+1 =


−1 0 0 · · · 0

y F−1
n

 , (10)

wherexandyare vectors of sizen. Two applications of the inductive assumption now imply
that we need only show that the element� of F−1

n+1 in position(n+1,1) equals the Schröder
numberr(n). SinceF−1

n+1Fn+1 = In+1 andxT = (�, r(n− 1), . . . , r(1), r(0)), we have

� = r(n− 1)(r(0)+ 1)+ r(n− 2)r(1)+ · · · + r(1)r(n− 2)+ r(0)r(n− 1)

= r(n− 1)+
n−1∑
k=0
r(k)r(n− 1− k). (11)

By Lemma4.2,� = r(n). �

We now have that det(B̂n) = (−1)n det(Fn + (F−1
n )T ) whereFn + (F−1

n )T equals the
sum of two Toeplitz matrices:

T (r(n− 2), . . . , r(2), r(1), r(0)+ 1,−1,0,0, . . . ,0)
+T (0,0, . . . ,0,−r(0),−r(1),−r(2), . . . ,−r(n− 1)),

and hence equals the Toeplitz matrix

T (r(n− 2), . . . , r(2), r(1), r(0)+ 1,

−r(0)− 1,−r(1),−r(2), . . . ,−r(n− 1)). (12)

For example, whenn = 4 matrix (12) whose determinant we need to calculate is
−2 −2 −6 −22
2 −2 −2 −6
2 2 −2 −2
6 2 2 −2

 ,
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which, upon reordering the rows from last to first, becomes the Hankel matrix
6 2 2 −2
2 2 −2 −2
2 −2 −2 −6

−2 −2 −6 −22

 .
In general, a Hankel matrix results from a Toeplitz matrix by reordering the rows from last
to first. Specifically, theHankel matrixH(a1, a2, . . . , a2n−1) is the matrixH = [hij ] of
ordern such thathij = ai+j−1 for i, j = 1,2, . . . , n. Note thatH(a1, a2, . . . , a2n−1) and
H(a2n−1, . . . , a2, a1) are related by a simultaneous permutation of rows and columns and
thus have equal determinants. The Hankel matrixH(c−(n−1), . . . , c−1, c0, c1, . . . , cn−1)
results from the Toeplitz matrixT (c−(n−1), . . . , c−1, c0, c1, . . . , cn−1) by reordering the
rows from last to first, and thus their determinants differ only by a factor of(−1)n(n−1)/2.
Thus by Theorem2.1,

�n = det(B̂n) = (−1)n det
(
Fn + (F−1

n )T
)

= (−1)n(n+1)/2 det(H(r(n− 2), . . . , r(1), r(0)+ 1,

−r(0)− 1,−r(1), . . . ,−r(n− 1))) . (13)

We now turn to the evaluation of the determinant in (13). First, we recall Dodgson’s rule
[5] for determinant calculation (see also [17]).7 For a matrixA of ordern, A(i|j) denotes
the matrix obtained fromA by deleting rowi and columnj, andA(i, j |k, l) denotes the
matrix obtained fromA by deleting rowsi andj, and columnsk andl.

Lemma 4.4. LetA = [aij ] be a matrix of order n. Then
det(A)det(A(1, n|1, n)) = det(A(1|1))det(A(n|n))− det(A(1|n))det(A(n|1)).

Applying Lemma4.4 to a Hankel determinant we get the following identity.8

Corollary 4.5.

det(H(a1, a2, . . . , a2n−1))det(H(a3, a4, . . . , a2n−3))
= det(H(a3, a4, . . . , a2n−1))det(H(a1, a2, . . . , a2n−3))
−det(H(a2, a3, . . . , a2n−2))2.

In order to evaluate the determinant in (13) we shall need to evaluate a more general
Hankel determinant of Schröder numbersr(n). Forj�2, k�1, we define a matrixHj,k of
orderk + j by

Hj,k =H(r(2k − 1), r(2k − 2), . . . , r(1), r(0)+ 1,

−r(0)− 1,−r(1),−r(2), . . . ,−r(2j − 2)).

7As alluded to in the introduction, Kuo[12] derived a formula for computing the number of perfect matchings
in a planar bipartite graph which bears a strong resemblance to Dodgson’s rule for determinants.
8We have been unable to find a reference to this Hankel determinant identity, but it is probably well known to

experts in the area.
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Similarly, for k�1 we define the matrixH1,k of order 1+ k by
H1,k = H(r(2k − 1), r(2k − 2), . . . , r(1), r(0)+ 1,−r(0)− 1).

In addition, we define matricesH0,k of orderk andHj,0 of orderj by

H0,k =H(r(2k − 1), . . . , r(2), r(1)) and

Hj,0=H(−r(0)− 1,−r(1), . . . ,−r(2j − 2)).

To evaluate the determinants of the matricesHk,j , we require the following result (The-
orem 11 in[11] and Theorem 51.1 in [16]) which gives a method for computing Hankel
determinants if one can find a certain continued fraction known as aJ-fraction.

Lemma 4.6. Let(�i; i�0)bea sequenceof numberswith generating function
∑∞
n=0 �nx

n

which can be expanded as a J-fraction:

∞∑
n=0

�nx
n = �0

1+ a0x − b1x2

1+a1x− b2x
2

1+a2x−···

.

Then

det(H(�0,�1, . . . ,�2n−2)) = �n0b
n−1
1 bn−22 · · · b2n−2bn−1.

We first evaluate the determinants ofH0,k, andHj,0.

Lemma 4.7. For positive integers j and k,

det(H0,k) = 2k(k+1)/2 and det(Hj,0) = (−1)j2j (j+1)/2.

Proof. As previously mentioned, the generating function for the Schröder numbers(r(n);
n�0) is

∞∑
n=0

r(n)xn = 1− x − √
1− 6x + x2
2x

.

Hence the generating function for the sequence of numbers(r ′(n) : n�0), wherer ′(0) =
r(0)+ 1= 2 andr ′(n) = r(n) for n�1, is

f (x) =
∞∑
n=0

r ′(n)xn = 1+ x − √
1− 6x + x2
2x

.

Also the generating function for the sequence of numbers(r(n+ 1) : n�0) equals

g(x) =
∞∑
n=0

r(n+ 1)xn = 1− 3x − √
1− 6x + x2
2x2

.

We have det(H0,k) = det(H(r(1), r(2), . . . , r(2k − 1))) and det(Hj,0) = (−1)j det(H
(r(0) + 1, r(1), . . . , r(2j − 2))). Thus we seek aJ-fraction expansion of the generating
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functionsf (x) andg(x). We first note thatw = g(x) is a solution of the equationx2w2 −
(1− 3x)w + 2= 0 so thatw(1− 3x − x2w) = 2. Therefore,

w = 2

1− 3x − x2w,

w = 2

1− 3x − 2x2
1−3x−x2w

,

w = 2

1− 3x − 2x2

1−3x− 2x2

1−3x−x2w

,

· · ·
w = 2

1− 3x − 2x2

1−3x− 2x2

1−3x− 2x2
1−3x−···

.

Thus in theJ-fraction expansion as given in Lemma4.6, we have�0 = b1 = b2 = b3 =
· · · = 2, and hence

det(H(r(1), r(2), . . . , r(2k − 1))) = 2
∑k
i=1 i = 2k(k+1)/2.

Now we note that

f (x)= 1+ x − √
1− 6x + x2
2x

= 8x

2x(1+ x + √
1− 6x + x2)

= 2
1+x
2 +

√
1−6x+x2
2

= 2
1+x
2 − x2w + 1−3x

2

= 2

1− x − x2w.

Inserting theJ-fraction expansion ofw, we obtain theJ-fraction expansion off (x), and
again�0 = 2= b1 = b2 = b3 = · · ·. Hence

det(H(r(0)+ 1, r(1), . . . , r(2j − 2))) = 2
∑j
i=1 i = 2j (j+1)/2.

This completes the proof of the lemma.�

We now evaluate the determinants of the matricesHj,k.

Lemma 4.8. For nonnegative integers k and j withk + j�1,we have

det(Hj,k) = (−1)j2(k+j)(k+j+1)/2. (14)



350 R. A. Brualdi, S. Kirkland / Journal of Combinatorial Theory, Series B 94 (2005) 334–351

Proof. We prove (14) by induction onl = j + k. If k = 0 or j = 0, (14) follows from
Lemma 4.7. We now assume thatk, j�1. If k = j = 1, then

detH1,1 = det

[
2 2
2 −2

]
= −8= (−1)122(2+1)/2.

Now assume thatl�3. By Corollary4.5 we have that det(Hj,k)det(Hj−1,k−1) equals
det(Hj,k−1)det(Hj−1,k)− det(H(r(2k − 2)), . . . , r(1), r(0)

+1,−r(0)− 1, . . . ,−r(2j − 3))2 = det(Hj,k−1)det(Hj−1,k)− det(Hk,j−1)2,

the last since

det(H(r(2k − 2)), . . . , r(1), r(0)+ 1,−r(0)− 1, . . . ,−r(2j − 3))

= det(H(−r(2j − 3), . . . ,−r(0)− 1, r(0)+ 1, . . . , r(2k − 2))).

Using the induction assumption, we now get

det(Hj,k)(−1)j−12(l−2)(l−1)/2

= (−1)j2l(l−1)/2(−1)j−12(l−1)l/2 −
(
(−1)k2l(l−1)/2

)2
= −2l(l−1)/2 − 2l(l−1)/2 = −2l(l−1)+1.

Therefore det(Hj,k) = (−1)j2l(l+1)/2 completing the induction. �

We now complete our proof that�n = 2n(n+1)/2.

Theorem 4.9. For n�1,

det(B̂n) = 2n(n+1)/2.

Proof. By (13)

det(B̂n)= (−1)n(n+1)/2 det(H(r(n− 2), . . . , r(1), r(0)+ 1,

−r(0)− 1,−r(1), . . . ,−r(n− 1))).

Forn an odd integer,

H(r(n− 2), . . . , r(1), r(0)+ 1,−r(0)− 1,−r(1), . . . ,−r(n− 1))

= H(n−1)/2,(n+1)/2
so that by Lemma 4.8, its determinant equals

(−1)(n+1)/22n(n+1)/2.
Forn an even integer,

det(H(r(n− 2), . . . , r(1), r(0)+ 1,−r(0)− 1,−r(1), . . . ,−r(n− 1)))

equals

(−1)n det(H(r(n− 1), . . . , r(1), r(0)+ 1,−r(0)− 1, r(1), . . . , r(n− 2))),
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which equals the determinant ofHn/2,n/2. Hence

det(H(r(n− 2), . . . , r(1), r(0)+ 1,−r(0)− 1,−r(1), . . . ,−r(n− 1)))

equals

(−1)n/22n(n+1)/2.
Therefore

det(B̂n) = (−1)n(n+1)/2(−1)�n/2�2n(n+1)/2 = 2n(n+1)/2. �

Since�n equals det(B̂n), we get our desired evaluation.

Corollary 4.10. The number�n of tilings of the Aztec diamond of order n satisfies

�n = 2n(n+1)/2.
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