The Linear Algebra of the Pascal Matrix

Robert Brawer and Magnus Pirovino
Seminar für angewandte Mathematik
ETH-Zentrum
CH-8092 Zürich, Switzerland

Submitted by Ludwig Elsner

Abstract

Pascal's triangle can be represented as a square matrix in two basically different ways: as a lower triangular matrix P_{n} or as a full, symmetric matrix Q_{n}. It has been found that the $P_{n} P_{n}^{T}$ is the Cholesky factorization of $Q_{n} . P_{n}$ can be factorized by special summation matrices. It can be shown that the inverses of these matrices are the operators which perform the Gaussian elimination steps for calculating Cholesky's factorization. By applying linear algebra we produce combinatorial identities and an existence theorem for diophantine equation systems. Finally, an explicit formula for the sum of the k th powers is given.

Definition. The $(n+1) \times(n+1)$ Pascal matrix [1] P_{n} is defined by

$$
P_{n}(i, j):=\binom{i}{j}, \quad i, j=0, \ldots, n, \quad \text { with } \quad\binom{i}{j}:=0 \quad \text { if } j>i .
$$

Further we define the $(n+1) \times(n+1)$ matrices I_{n}, S_{n}, and D_{n} by

$$
\begin{aligned}
I_{n} & :=\operatorname{diag}(1,1, \ldots, 1) . \\
S_{n}(i, j) & :=\left\{\begin{array}{lll}
1 & \text { if } & j \leqslant i, \\
0 & \text { if } & j>i,
\end{array}\right. \\
D_{n}(i, i) & :=1 \quad \text { for } \quad i=0, \ldots, n, \\
D_{n}(i+1, i) & :=-1 \quad \text { for } \quad i=0, \ldots, n-1, \\
D_{n}(i, j) & :=0 \quad \text { if } \quad j>i \text { or } j<i-1 .
\end{aligned}
$$

The Pascal matrix P_{n} is characterized by its construction rule:

$$
\begin{array}{ll}
P_{n}(i, i):=P_{n}(i, 0):=1 \quad \text { for } i=0, \ldots, n, & P_{n}(i, j):=\text { if } j>i, \\
P_{n}(i, j):=P_{n}(i-1, j)+P_{n}(i-1, j-1) & \text { for } \quad i, j=1, \ldots, n .
\end{array}
$$

It is easy to see that

$$
S_{n}=D_{n}{ }^{1}
$$

Example.

$$
S_{2} D_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]=I_{2}
$$

Furthermore we need the matrices

$$
\bar{P}_{k}:=\left[\begin{array}{cc}
1 & 0^{r} \\
0 & P_{k}
\end{array}\right] \in \mathbb{R}^{(k+2) \times(k+2)}, \quad k \geqslant 0,
$$

$G_{k}:=\left[\begin{array}{cc}I_{n-k-1} & 0 \\ 0 & S_{k}\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}, \quad k=1, \ldots, n-1, \quad$ and $\quad G_{n}:=S_{n}$
Lemma 1.

$$
S_{k} \bar{P}_{k-1}=P_{k} \quad \text { for } \quad k \geqslant 1
$$

Proof. For $k=1$ we have $\bar{P}_{k-1}=I_{k}$ and $S_{k}=P_{k}$. Let $k>1$. With the definition of the matrix product and a familiar combinatorial identity we find (see [3, p. 7]) for $j \geqslant 1$

$$
S_{k} \bar{P}_{k-1}(i, j)=\sum_{l=1}^{i}\binom{l-1}{j-1}=\sum_{l=j-1}^{i-1}\binom{l}{j-1}=\binom{i}{j}=P_{k}(i, j)
$$

and for $j=0$ it follows that $S_{k} \bar{P}_{k-1}(i, j)=1=P_{k}(i, j)$.

Example.

$$
S_{3} \bar{P}_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right] .
$$

An immediate consequence of Lemma 1 and the definition of the G_{k} 's is
Theorem 1. The Pascal matrix P_{n} can be factorized by the summation matrices G_{k} :

$$
\begin{equation*}
P_{n}=G_{n} G_{n-1} \cdots G_{1} \tag{1}
\end{equation*}
$$

Example.

$P_{3}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$.
For the inverse of the Pascal matrix we get

$$
\begin{equation*}
P_{n}^{-1}=G_{1}^{-1} G_{2}^{-1} \cdots G_{n}^{-1}=F_{1} F_{2} \cdots F_{n} \tag{2}
\end{equation*}
$$

with

$$
F_{k}:=G_{k}^{-1}=\left[\begin{array}{cc}
I_{n-k-1} & 0 \\
0 & D_{k}
\end{array}\right], \quad k=1, \ldots, n-1
$$

and

$$
F_{n}=G_{n}^{-1}=D_{n} .
$$

Let P_{n}^{*} be defined by $P_{n}^{*}(i, j):=(-1)^{i+j} P_{n}(i, j)$ and

$$
\bar{P}_{k}^{*}:=\left[\begin{array}{cc}
1 & 0^{T} \\
0 & P_{k}^{*}
\end{array}\right] \in \mathbb{R}^{(k+2) \times(k+2)}, \quad k \geqslant 0
$$

Lemma 2.

$$
\bar{P}_{k-1}^{*} D_{k}=P_{k}^{*} \quad \text { for } \quad k \geqslant 1
$$

Proof. For $k=1$ we have $\bar{P}_{k-1}^{*}=I_{k}$ and $D_{k}=P_{k}^{*}$. Let $k>1$. By the Pascal matrix construction rule we get for $i \geqslant 1$ and $j \geqslant 1$

$$
\begin{aligned}
& \left(\bar{P}_{k-1}^{*} D_{k}\right)(i, j) \\
& \quad=(-1)^{i-1+j-1} P_{k-1}(i-1, j-1)-(-1)^{i-1+j} P_{k-1}(i-1, j) \\
& \quad=(-1)^{i+j}\left[P_{k-1}(i-1, j-1)+P_{k-1}(i-1, j)\right] \\
& \quad=(-1)^{i+j} P_{k-1}(i, j)=(-1)^{i+j} P_{k}(i, j)-P_{k}^{*}(i, j)
\end{aligned}
$$

For $j=0$ we have $\left(\bar{P}_{k-1}^{*} D_{k}\right)(i, j)=(-1)^{i}=P_{k}^{*}(i, j)$, and for $i=0, j \geqslant 1$ we have $\left(\bar{P}_{k-1}^{*} D_{k}\right)(i, j)=0=P_{k}^{*}(i, j)$.

Example.

$$
\begin{aligned}
\bar{P}_{2}^{*} D_{3} & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & -2 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right] .
\end{aligned}
$$

Lemma 2 makes it possible to factorize P_{n}^{*} by the difference matrices F_{k}, and with (2), it follows that

Theorem 2. One has

$$
\begin{equation*}
P_{n}^{-1}=F_{1} F_{2} \cdots F_{n}=P_{n}^{*} ; \tag{3}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
P_{n}^{-1}=J_{n} P_{n} J_{n} \tag{4}
\end{equation*}
$$

where

$$
J_{n}:=\operatorname{diag}\left(1,-1, \ldots,(-1)^{n}\right) \in \mathbb{R}^{(n+1) \times(n+1)}
$$

Example.

$$
\begin{aligned}
P_{3}^{-1} & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

Equation (4) represents the well-known inverse relation [3]

$$
\delta_{n k}=\sum_{j=k}^{n}(-1)^{j+k}\binom{n}{j}\binom{j}{k}
$$

We define the symmetric Pascal matrix Q_{n} as

$$
Q_{n}(i, j):=\binom{i+j}{j}, \quad i, j=0, \ldots, n
$$

Similarly to the Pascal matrix P_{n}, the elements of Q_{n} obey the following construction rule:

$$
\begin{align*}
& Q_{n}(0, j)=Q_{n}(j, 0)=1, \quad j=0, \ldots, n \\
& Q_{n}(i, j)=Q_{n}(i-1, j)+Q_{n}(i, j-1), \quad i, j=1, \ldots, n \tag{5}
\end{align*}
$$

Theorem 3. One has

$$
\begin{equation*}
F_{1} F_{2} \cdots F_{n} Q_{n}=P_{n}^{T} \tag{6}
\end{equation*}
$$

and the Cholesky factorization [4] of Q_{n} is given by

$$
\begin{equation*}
Q_{n}=P_{n} P_{n}^{T} \tag{7}
\end{equation*}
$$

Example.

$$
Q_{3}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Proof. We define the matrices $Q_{n}^{(k)}, k=0, \ldots, n$, by

$$
Q_{n}^{(k)}(i, j):= \begin{cases}P_{n}(j, i), & i \leqslant k \\ Q_{n}(i, j-k), & i \geqslant k\end{cases}
$$

It is easily verified that $Q_{n}^{(0)}=Q_{n}, Q_{n}^{(n)}=R_{n}^{T}$, and

$$
\begin{equation*}
Q_{n}(i, j-k)=P_{n}(j, i) \quad \text { if } \quad i=k \tag{8}
\end{equation*}
$$

We show $F_{n-k} Q_{n}^{(k)}=Q_{n}^{(k+1)}$: For $i \leqslant k$ the definition of F_{n-k} yields

$$
\left(F_{n-k} Q_{n}^{(k)}\right)(i, j)=P_{n}(j, i)=Q_{n}^{(k+i)}(i, j)
$$

Let $i>k+1$. By (5) we have

$$
\begin{equation*}
\left(F_{n-k} Q_{n}^{(k)}\right)(i, j)=Q_{n}(i, j-k)-Q_{n}(i-1, j-k)=Q_{n}(i, j-(k+1)) \tag{9}
\end{equation*}
$$

Let $i=k+1$. From (8) and (5), again we obtain (9) as well as

$$
\left(F_{n-k} Q_{n}^{(k)}\right)(k+1, j)=Q_{n}(k+1, j-(k+1))=P_{n}(j, k+1)
$$

Thus (6) is proven. The Cholesky factorization (7) now follows from (3).

Remark. The matrix $F_{n-(k-1)}$ performs the k th Gaussian elimination step for the matrix Q_{n}.

Example.

$$
F_{3} Q_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 1 & 3 & 6 \\
0 & 1 & 4 & 10
\end{array}\right] .
$$

Lemma 3.

$$
\begin{equation*}
Q_{n}^{-1}=\left(P_{n} P_{n}^{T}\right)=J_{n} P_{n}^{T} P_{n} J_{n} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}^{k}=P_{n} J_{n} Q_{n}^{1-k} J_{n} P_{n}^{T}, \quad k \in \mathbb{Z} \tag{11}
\end{equation*}
$$

Proof. By (4), it follows that

$$
\left(P_{n}^{T}\right)^{-1} P_{n}^{-1}=\left(J_{n} P_{n} J_{n}\right)^{T} J_{n} P_{n} J_{n}=J_{n} P_{n}^{T} J_{n} J_{n} P_{n} J_{n}=J_{n} P_{n}^{T} P_{n} J_{n}
$$

whereby (10) is proven. If $k=1$, (11) reduces to (7). With (10) and (7) in
mind, we perform the induction steps:

$$
\begin{aligned}
Q_{n} Q_{n}^{k} & =P_{n} J_{n} J_{n} P_{n}^{T} Q_{n}^{k}=P_{n} J_{n}\left(J_{n} P_{n}^{T} P_{n} J_{n}\right) Q_{n}^{1-k} J_{n} P_{n}^{T} \\
& =P_{n} J_{n} Q_{n}^{1-(k+1)} J_{n} P_{n}^{T}
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{n}^{-1} Q_{n}^{k} & =Q_{n}^{-1} P_{n} J_{n} Q_{n}^{-1} Q_{n}^{1-(k-1)} J_{n} P_{n}^{T} \\
& =Q_{n}^{-1} P_{n} J_{n} J_{n} P_{n}^{T} P_{n} J_{n} Q_{n}^{1-(k-1)} J_{n} P_{n}^{T} \\
& =P_{n} J_{n} Q_{n}^{1-(k-1)} J_{n} P_{n}^{T}
\end{aligned}
$$

By carrying out the multiplication of the matrix equation (7) we get an identity for the binomial coefficients:

Corollary 1.

$$
\binom{i+k}{k}=\sum_{l=0}^{n}\binom{i}{l}\binom{k}{l}, \quad i, k=0, \ldots, n
$$

Corollary 1 can also be derived from the Vandermonde convolution formula [3]

$$
\binom{n}{m}=\sum_{k=0}\binom{n-p}{m-k}\binom{p}{k}
$$

Remark. The diagonal entries of the matrix Q_{n} are essentially the Catalan numbers [3], which are defined as

$$
c_{k}:=\frac{1}{k+1}\binom{2 k}{k}
$$

Therefore we have

$$
Q_{n}(k, k)=\sum_{l=0}^{k}\binom{k}{l}^{2}=\binom{2 k}{k}=(k+1) c_{k}, \quad k \geqslant 0
$$

If we look at the elements of the matrix equation $I_{n}=Q_{n}\left(J_{n} P_{n}^{T} P_{n} J_{n}\right)$, we
find

Corollary 2.

$$
\sum_{k=0}^{n} \sum_{l=0}^{n}(-1)^{k+j}\binom{i+k}{k}\binom{l}{k}\binom{l}{j}=\delta_{i j}, \quad i, j=0, \ldots, n
$$

Corollaries 1 and 2 yield

Corollary 3.

$$
\sum_{k=0}^{n} \sum_{l=0}^{n} \sum_{m=0}^{n}(-1)^{k+j}\binom{i}{m}\binom{k}{m}\binom{l}{m}\binom{l}{j}=\delta_{i j}, \quad i, j=0, \ldots, n
$$

From the definition of P_{n} we know that det $P_{n}-1$ and, utilizing (7), that also $\operatorname{det} Q_{n}=1$. Thus P_{n} and Q_{n} are elements of $\operatorname{SL}(n+1, \mathbb{Z})$, the group of matrices in $\mathbb{Z}^{(n+1) \times(n+1)}$ with determinant 1 . Furthermore, all eigenvalues of Q_{n} are positive by the Cholesky factorization (7). For the spectrum σ of Q_{n}, we have

$$
\sigma\left(Q_{n}\right)=\sigma\left(P_{n} P_{n}^{T}\right)=\sigma\left(P_{n}^{T} P_{n}\right)=\sigma\left(J_{n} P_{n}^{T} P_{n} J_{n}\right)=\sigma\left(Q_{n}^{-1}\right)
$$

Thus, if λ is an eigenvalue of Q_{n}, then $1 / \lambda$ is one, too. It follows that 1 is an eigenvalue if the dimension of Q_{n} is odd. Because the eigenvectors are calculated through a finite number of rational operations and because $Q_{n} \in$ $\mathbb{Z}^{(n+1) \times(n+1)}$, the elements of the eigenvector corresponding to the eigenvalue 1 can be represented as integers. The eigenvalue equation $Q_{n} \xi=\xi, n$ even, yields

Theorem 4. If n is even, the diophantine system of equations

$$
\sum_{k=0}^{n}\binom{i+k}{k} \xi_{k}=\xi_{i}, \quad i=0, \ldots, n
$$

has nontrivial solutions in \mathbb{Z}.

The following table shows the nontrivial solutions, the components of which have no common divisors, for $n=2,4,6,8$, and 10 :

n	ξ
2	$(2,1,-1)^{T}$
4	$(14,7,-3,-8,4)^{T}$
6	$(6,3,-1,-3,-1,3,-1)^{T}$
8	$(2002,1001,-299,-949,-467,581,721,-784,196)^{T}$
10	$(156,78,-22,-72,-40,33,59,-6,-66,45,-9)^{T}$

Let us consider again the Pascal matrix P_{n}. It turns out that there is a short formula for the elements of all powers of P_{n}. If for convenience we set $0^{0}:=1$, then

Theorem 5. One has

$$
P_{n}^{k}(i, j)=\binom{i}{j} k^{i-j} \quad \text { for } \quad i, j=0, \ldots, n \text { and } k \in \mathbb{Z}
$$

or

$$
P_{n}^{k}=W_{k} P_{n} W_{n}^{-1} \quad \text { for } k \in \mathbb{Z} \backslash\{0\}
$$

where $W_{k}:=\operatorname{diag}\left(1, k, k^{2}, \ldots, k^{n}\right)$.
Proof. Since W_{k} is nonsingular for $k \neq 0$, the second statement follows immediately from the first one. For $k=0,1$, and -1 the first statement holds by the definition of P_{n} and (4). Let $\sigma \in\{1,-1\}$. Thus by (4) and the definition of the matrix product

$$
\begin{aligned}
P_{n}^{k+\sigma}(i, j) & =P_{n}^{\sigma} P_{n}^{k}(i, j)=\sum_{l=j}^{i} \sigma^{i+l}\binom{i}{l}\binom{l}{j} k^{l-j} \\
& =\sum_{r=0}^{i-j}\binom{i}{r+j}\binom{r+j}{j} \sigma^{i+j+r} k^{r}=\sum_{r=0}^{i-j}\binom{i}{j}\binom{i-j}{r} \sigma^{i-j-r} k^{r} \\
& =\binom{i}{j}(k+\sigma)^{i-j}
\end{aligned}
$$

Now the statement is obvious by induction.

From now on we let e_{i} be the i th unit vector in $\mathbb{R}^{n+1}, i=0, \ldots, n$, and $e:=(1, \ldots, 1)^{T} \in \mathbb{R}^{n+1}$ the summation vector. It is well known that the sums of the rows of the Pascal matrix P_{n} are powers of 2 . This fact can be generalized for all powers of the Pascal matrix (see also [1]). As a corollary to Theorem 5 we get

Lemma 4. (Swapping lemma).
$\left(P_{n}^{k} e\right)_{i}=e_{i}^{T} P_{n}^{k} e=\sum_{j=0}^{i}\binom{i}{j} k^{i-j}=(k+1)^{i} \quad$ for $\quad k \in \mathbb{Z}$ and $i=0, \ldots, n$.

The swapping lemma states that the roles of the base and the exponent are interchangeable; thus the term "swapping."

As a first consequence we have

Corollary 4.

$$
\sum_{l=0}^{p}(-1)^{p-1}\binom{p}{l}(l+1)^{k}=0 \quad \text { if } p>k
$$

Proof. First we state that, for any square matrix A having nonzero entries only beneath the diagonal, the first k rows of A^{k} are always zero. Thus, if $k<p$, the swapping lemma yields for every $n \geqslant p$

$$
\begin{aligned}
0 & =e_{p}^{T}\left(P_{n}-I_{n}\right)^{k} e=\sum_{l=0}^{p}\binom{p}{l}(-1)^{p-l} e_{i}^{T} P_{n}^{l} e \\
& =\sum_{l=0}^{p}(-1)^{p-l}\binom{p}{l}(l+1)^{k}
\end{aligned}
$$

We are now able to give an explicit formula for the sum of the k th powers.

Theorem 6. For $k \geqslant 0, n \geqslant 1$

$$
\sum_{m=1}^{n} m^{k}=\sum_{p=0}^{k}\binom{n}{p+1} \sum_{l=0}^{p}(-1)^{p-l}\binom{p}{l}(l+1)^{k}
$$

Proof. By the swapping lemma we have

$$
\begin{aligned}
\sum_{m=1}^{n} m^{k} & =\sum_{l=0}^{n-1} e_{k}^{T} P_{n}^{l} e=\sum_{l=0}^{n-1} e_{k}^{T}\left(P_{n}-I_{n}+I_{n}\right)^{l} e \\
& =\sum_{l=0}^{n-1} \sum_{p=0}^{l}\binom{l}{p} e_{k}^{T}\left(P_{n}-I_{n}\right)^{p} e=\sum_{l=0}^{n-1} \sum_{p=0}^{n}\binom{l}{p} e_{k}^{T}\left(P_{n}-I_{n}\right)^{p} e \\
& =\sum_{p=0}^{n}\left[\sum_{l=0}^{n-1}\binom{l}{p}\right] e_{k}^{T}\left(P_{n}-I_{n}\right)^{p} e=\sum_{p=0}^{n}\binom{n}{p+1} e_{k}^{T}\left(P_{n}-I_{n}\right)^{p} e \\
& =\sum_{p=0}^{n}\binom{n}{p+1} \sum_{l=0}^{p}(-1)^{p-l}\binom{p}{l} e_{k}^{T} P_{n}^{l} e \\
& =\sum_{p=0}^{n}\binom{n}{p+1} \sum_{l=0}^{p}(-1)^{p-l}\binom{p}{l}(l+1)^{k} \\
& =\sum_{p=0}^{k}\binom{n}{p+1} \sum_{l=0}^{p}(-1)^{p-l}\binom{p}{l}(l+1)^{k}
\end{aligned}
$$

In the last step Corollary 4 enabled us to reduce the summation to k summands, the values of which depend only on n for fixed k.

REFERENCES

1 R. Brawer, Potenzen der Pascalmatrix und eine Identität der Kombinatorik, Elem. der Math. 45:107-110 (1990).
2 R. A. Horn and C. A. Johnson, Matrix Analysis, Cambridge U. P., Cambridge, 1985.

3 J. Riordan, Combinatorial Identities, Wiley, New York, 1968.
4 J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.

Received 3 May 1991; final manuscript accepted 18 July 1991

