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ABSTRACT 

Pascal’s triangle can be represented as a square matrix in two basically different 
ways: as a lower triangular matrix P, or as a full, symmetric matrix Q”. It has been 
found that the P, P,’ is the Cholesky factorization of Q,,. P, can be factorized by 
special summation matrices. It can be shown that the inverses of these matrices are 
the operators which perform the Gaussian elimination steps for calculating Gholesky’s 
factorization. By applying linear algebra we produce combinatorial identities and an 
existence theorem for diophantine equation systems. Finally, an explicit formula for 
the sum of the kth powers is given. 

DEFINITION. The (n + 1) X (n + 1) P asctzl matrix [l] I’, is defined by 

i,j = 0 ,..., 72, with 
i 

0 j 
:=0 ifj>i. 

Further we define the (n + 1) x (n + 1) matrices I,,, S,!, and D,, by 

I, := diag(l, 1,. . ., 1). 

S,(i, j):= 
i 

1 if j<i, 
0 if j>i, 

D,(i, i):= 1 for i =O,...,n, 

Dn(i + l,i):= -1 for i =O,...,n - 1, 

D,(i,j):= 0 if j>iorj<i-1. 
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The Pascal matrix p,, is characterized by its constnlction rule: 

P,,(i, i):= P,,(i,O):== 1 for i = 0,. , xi, P,,( i. j) := if j > I. 

P,,(i,j):= P,,(i - l,.j) + P,,(i -- 1.j - 1) for i,.i = 1, , YI, 

It is easy to see that 

s,, = u,,- ’ 

EXAMPLE. 

Furthermore we need the matrices 

- 1 o7 
pk := 0 p, I 1 E [W(k+;)x(k+n) k > 0, 

G, := [‘“$-I :.I E R(n+l)x(n+l), k = I,...,n - I, and G,, := S,, 

LEMMA 1. 

ski?;,, = P, for k>l. 

Proof. For k = 1 we have pk _ , = I, and Sk = Pk. Let k > 1. With the 
definition of the matrix product and a familiar combinatorial identity we find 
(see 13, p. 71) for j > 1 

!$&](i,j) = k ’ 1 ’ ,_,(j ,)=/;<,(j!l)= (;)=pk(id> 

andforj = Oit follows that skpk&,(i,j) = 1 = Pk(i,j). 

EXAMPLE 
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An immediate consequence of Lemma 1 and the definition of the Gp’s is 

THEOREM 1. The Pascal matrix P,, can be factorized by the summation 
matrices G,: 

P, = G,G,_, ... G,. (1) 

EXAMPLE. 

1 

p=l i 

0 0 0 

1 

3 1 2 

oo= 1 1 0 
1 3 3 1 

[; ; i ;][; ; ; ;I[; i ; i]. 

For the inverse of the Pascal matrix we get 

with 

I’,-’ = G;‘G,’ s.0 G,’ = F,F, .** F,, (2) 

Fk :=G;‘-[“;-1 ;,1, k=l,..., n-l, 

and 

F,, = G,-’ = D,. 

Let P,* be defined by P,*(i,j) := (- l)‘+jP,,(i, j) and 

1 0’ 
Fk* := o p* 

[ 1 E [W(k+Z)x(f+:!) k > 0. 
k 

LEMMA 2. 

&Dk = P; for k>l. 

Proof. For k = 1 we have Ff_l = Ik and Dk = Pl. Let k > 1. By the 
Pascal matrix construction rule we get for i > 1 and j > 1 

= (_l)i-l+j-l Pk_l(i - l,j - 1) - ( -l)i-l+iPk_l(i - l,j) 

= (-l)i+‘[Pk_l(i - 1,j - 1) + Pk_l(i - l,j)] 

= (-l)‘+‘Pk_,(i,j) = (-l)‘+‘Pk(i,J) = Pf(i,j). 
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Forj = 0 we have (i;,*_,D,)(i,j) = (-1)’ = P,*(i,,j), and for i = 0. j > 1 
we have (pT_ ,D,xi,j> = 0 = P,*(i, j). ??

EXAMPLE. 

Lemma 2 makes it possible to factorize I’,* by the difference matrices Fk , 
and with (2), it follows that 

THEOREM 2. One has 

in particular, 

where 

p,-’ = F1F2 . . . F, = p*. n ’ 

p,_ ’ = 1” p”ln 1 

(3) 

(4) 

Jn := diag(1, -1,. . . , (-1)“) E [W(n+l)x(n+l). 

EXAMPLE. 
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Equation (4) represents the well-known inverse relation [3] 

%k = j$-l)“L(;)(Jkj. 
We define the symmetric Pascal matrix Q,, as 

Qn(i.j):= ii;‘), i,j := 0 ,..., 72. 

Similarly to the Pascal matrix P,, the elements of Q,, obey the following 
construction rule: 

Q,(O,j) = Qn(j,O) = 1, j = O,...,n, 

Q,,(i, j) = Q,,(i - I, j) + Q”(i, j - I), i,j = 1 , . , n. (5) 

THEOREM 3. One has 

and the Cholesky factorization [4] of Qn is given by 

Q,, = P,,P,‘. (7) 

EXAMPLE. 

Proof. We define the matrices Qik), k = 0, . . , n, by 

i <k, 

Q,(i,j -k), i >k. 

It is easily verified that Qk”) = Qn, Q(n”) = P,’ ad 

Q,(i,j-k) =P,,(j,i) if i=k. (8) 
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We show Fn_kQik) = Q,, (k+l). For i < k the definition of F,, k yields 

(Fn_kQf;4’)(i,j) = P,,(j, i) = Q;,"+"(i,j). 

Let i > k + 1. By (5) we have 

(F,-kQkk))(i,j) =Q,(i,j-k) -Q,(i-l,j--k) =Q,,(d,j-(k + 1)). 

(9) 

Let i = k + 1. From (8) and (5), again we obtain (9) as well as 

(Fn_kQ’,k’)(k + l,j) = Q,(k + 1,j - (k + 1)) = P,,(j, k + 1). 

Thus (6) is proven. The Cholesky factorization (7) now follows from (3). ??

REMARK. The matrix F,_(k_lj p erforms the k th Gaussian elimination 
step for the matrix Q,,. 

EXAMPLE. 

LEMMA 3. 

Q, ’ = ( Pn P,“ ) = Jn C,%J,, (10) 

and 

Q: = UQk- kJnP:T k E Z. 

Proof. By (4), it follows that 

(Pn’)-lP,-’ = (J .P, n)*LPnln =I PTl J PI =JnP,TP,J,r J n n “” “” 

(11) 

whereby (10) is proven. If k = 1, (11) reduces to (7). With (10) and (7) in 
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mind, we perform the induction steps: 

QnQ,” = UJJ’,TQ,k = P~J,(l,P,~P~l,)Q~-kJ,P,T 

= P,,JnQ;-(k+l)]n P,’ 

and 

Q;‘Qn” = Q,‘P,],,Q~lQ~-(k.-‘)lnP~ 

= QRIP,J,J,P~P,l,Qf,-‘k-l)J,P,T 

= P,]nQfi-(k-l)Jn P,;. 8 

By carrying out the multiplication of the matrix equation (7) we get an 
identity for the binomial coefficients: 

(i:k)=&(qi;)y i,k =O ,..., n. 

Corollary I can also be derived from the Vundermonde convolution 
formuZu [31 

REMARK. The diagonal entries of the matrix Q, are essentially the 
Catalan numbers [3], which are defined as 

.= - 
ck . 

Therefore we have 

Q.(k.k)=i(;)‘= (2kk)=(k+l)ck, k2.o. 

If we look at the elements of the matrix equation I, = Q”(J” P,TP,J,,), we 
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find 

COROLLARY2. 

k~olgo(-l)k+(’ ;“)(:)(j) = aij, i.j =O,...,n. 

Corollaries 1 and 2 yield 

COROLLARY 3. 

~o~o~ow~k+~(~)(~)(~)(;) = a,,,, i,.j =o ) . . . )  II. 

From the definition of I’, we know that det I’,, = 1 and, utilizing (7), that 
also det Q,, = 1. Thus P,, and Q,, are elements of SL(n + 1, 29, the group of 
matrices in Z(” ’ I)’ (” + i) with determinant 1. Furthermore, all eigenvalues of 
Qn are positive by the Cholesky factorization (7). For the spectrum (T of Q,,, 
we have 

Thus, if A is an eigenvalue of Q”, then l/A is one, too. It follows that 1 is an 
eigenvalue if the dimension of Q,, is odd. Because the eigenvectors are 
calculated through a finite number of rational operations and because Qn E 
Z”’ + ‘jx(” + ‘), the elements of the eigenvector corresponding to the eigen- 
value 1 can be represented as integers. The eigenvalue equation Q,, 5 = &, n 
even, yields 

THEOREM 4. Zf n is even, the diophantine system of equations 

i=O ,..., n, 

has nontrivial solutions in R. 
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The following table shows the nontrivial solutions, the components of 
which have no common divisors, for n = 2, 4, 6, 8, and 10: 

n 5 
2 (2,1, -IF 
4 (14,7, -3, -8, 4jT 
6 (6,3, -1, -3, -1,3, -ljT 
8 (2002,1001, -299, -949, -467,581,721, -784, 196jT 

10 (156,78, -22, -72, -40,33,59, -6, -66,45, -9jT 

Let us consider again the Pascal matrix P,,. It turns out that there is a 
short formula for the elements of all powers of P,. If for convenience we set 
0’ := 1, then 

THEOREM 5. One has 

ki-j for i,j=O,...,n and kEZ 

or 

P,” = w, p,w,- l for k E z \ (0)) 

where W, := diag(l, k, k’,. . . , k”). 

Proof. Since W, is nonsingular for k # 0, the second statement follows 
immediately from the first one. For k = 0, 1, and - 1 the first statement 
holds by the definition of P, and (4). Let (T E (1, -1). Thus by (4) and the 
definition of the matrix product 

Now the statement is obvious bv induction. 
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From now on we let ei be the ith unit vector in IR” + ‘, i = 0. , n, and 
e := (1,. . ) ljT E R” + ’ the summation vector. It is well known that the 
sums of the rows of the Pascal matrix F’, are powers of 2. This fact can be 
generalized for all powers of the Pascal matrix (see also [l]). As a corollary to 
Theorem 5 we get 

LEMMA 4. (Swapping lemma). 

k’-.i=(k+l)’ for kgZ nndi=O,...,n. 

The swapping lemma states that the roles of the base and the exponent 
are interchangeable; thus the term “swapping.” 

As a first consequence we have 

COROLLARY 4. 

l$-l)Y’(;)(Z + l)k = 0 ij- p > k. 

Proof. First we state that, for any square matrix A having nonzero 
entries only beneath the diagonal, the first k rows of Ak are always zero. 
Thus, if k < p, the swapping lemma yields for every n > p 

0 = eg(P, - I,,)ke = ~$(l;)(l)“-‘e:P;e 

= liYowY( ‘l)u + ok. 

We are now able to give an explicit formula for the sum of the k th 
powers. 

THEOREM 6. For k a 0, n a 1 

i 
m=l 

mk = iJp: 1)&-I)y’($l+ ljk. 
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Proof. By the swapping lemma we have 

n n-l n-l 
c ,L = C e,TP,‘e = C ec( P, - I,, + Z,,)‘e 

I?,= 1 l=O I=0 

= k (p: 1)&-lY(‘;)V + 1)” 
p=o 

= i (p ?_ ,)$1)y’j ‘l)(Z + It 
p=o 

In the last step Corollary 4 enabled us to reduce the summation to k 
summands, the values of which depend only on n for f=ed k. ??
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