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In this paper we discuss a Schur-type algorithm for solving indefinite Hankel
systems of linear equations. The algorithm is derived using the language of linear
algebra. © 1994 Academic Press, Inc.

1. INTRODUCTION

Algorithms for inversion and triangularization of strongly nonsingular
Hankel matrices were developed by Berlekamp (1968) and Massey (1967),
Phillips (1971), Rissanen (1973), Trench (1965), and others. Generaliza-
tions to Hankel matrices with singular principal minors (singular sections)
were considered by Heinig (1984), Deisarte et al. (1985), Pal and Kailath
(1990), Rissanen (1973), Zarowski (1991), and others. However, these
algorithms may produce very inaccurate numerical results even if the
matrix is well-conditioned and strongly nonsingular. Hence they require
exact arithmetics in order to obtain reliable results. The reason for the
instabilities can be explained as follows. All the algorithms compute cer-
tain quantities corresponding to the principal submatrices of the matrix
recursively, and ill-conditioned sections produce an instable evolution of
roundoft errors.
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Recently there have been many attempts to stabilize algorithms for
solving systems of Hankel and Toeplitz linear equations (Bojanczyk et
al., 1991; Chan and Hanson, 1990; Cabay and Meleshko, 1991; Freund
and Zha, 1992; Gukknecht, 1992). All approaches presented (so far) in the
literature are based on a ‘‘look-ahead’’ strategy, which is common in
other fields of numerical linear algebra, especially in Lanczos methods for
nonsymmetric matrices. ‘‘Look-ahead strategy’ means to jump from one
well-conditioned section to the next one. In the case in which one has
only a few ill-conditioned sections one will obtain in this way an algorithm
which is fast and (weakly) stable. It is remarkable that the different au-
thors use different languages for the derivations of their algorithms. In
Cabay and Meleshko (1991), and Gutknecht (1992) the relation of Hankel
and Toeplitz matrices to the Padé approximation problem is utilized and
the language is “‘polynomial.”” In Freund and Zha (1992) formally orthog-
onal polynomials play a central role. Only in Chan and Hanson (1990) is
the derivation carried out in pure matrix language.

The motivation for this paper came from the paper by Chan and Hanson
(1990), which was probably the first attempt to produce a stable algorithm
for nonsymmetric structured systems of equations, and in which an inter-
esting look-ahead approach to stabilizing fast solvers for the case of Toe-
plitz matrices was presented. The algorithm offered can be considered as
a (weakly stable) generalization of the famous Levinson algorithm. In this
paper we apply the idea of Chan and Hanson in order to get fast and
weakly stable Hankel solvers. However, our algorithm is a Schur-type
algorithm rather then a Levinson-type algorithm. Recall that the Schur
algorithm computes the factors of the LDU decomposition of the matrix,
whereas the Levinson algorithm finds the factors of the inverse matrix.

Our approach is based on the algebraic properties of Schur comple-
ments of Hankel matrices. These properties are presented in Section 3. In
Section 2, which has preliminary character, we collect some well-known
material concerning inversion and factorization of Hankel matrices. In
Section 4 the look-ahead (multi-step) algorithm is described.

Let us remark that in Heinig (1992) a different (not look-ahead) ap-
proach to obtaining stable Hankel and Toeplitz solvers is described. The
approach is based on the idea of transforming Hankel or Toeplitz systems
into systems the coefficient matrix of which is a generalized Cauchy ma-
trix (or Loewner matrix). For such systems pivoting can be applied (how-
ever, extensive pivoting may slow down the algorithm).

Throughout this paper we use a MATLAB-type convention for denot-
ing submatrices. If A is an m X n matrix then A( : j, k : [) denotes a
submatrix of A obtained by removing from A rowsOto/— landj + 1 to
m — |,and columnsO0tok — land !+ [ ton — 1. Also, by the MATLAB
convention, A(i : j, k) = A(i:j,k:k)and AC, k: 1) =A0:m—1,k: ). In
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formulas we sometimes use an alternative notation for A(i : j, k : 1),
namely A;jz.

Let ¢; be a vector of length n with the ith component equal to 1 and 0
otherwise. We use the following special matrices:

0 1
JnEZ e.‘?ZHvi: : s (1.1a)
i=1
1 0
0 0
1 0 0 0
n 0 . o
anzeMel.T: . A (1.1b)
= ; 000
0 0o 1 0
The matrix J, is the reverse ordering while Z, is the shift-down operator
in C". Finally, if z = ({, . . .. {.-1)7 is a vector of dimension » then we
define
2| @(MU‘. R T T I

2. INVERSION AND TRIANGULARIZATION

In this section we recall some well-known facts concerning the inver-
sion and triangular factorization of a nonsingular Hankel matrix.

Let H = (17,~+j),1«v_j‘='0 denote a nonsingular N X N Hankel matrix, and g =
s MN+ts - - - » Men—1)7 be an N-dimensional vector (n;~-1 is an arbi-
trary scalar). That is,

m M ... MN-L NN

m m .. NN NN+1
[H gl = . .

NMN-1 NN -« MaN-2 ThN-I
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Together with H and g we find it convenient to consider an extended
~n-1, and an ex-

,,,,,,,,,,

No T e TIN-1 NN
T n2 nN nN-1
(H ¢] = ‘ S ' , Q.1
MNN-1 N oo MN-2 M2N-1
MmN-2 TN-1 - TIN-3 T3N-2
where v;, j = 2N, . . ., 3N ~ 2, are arbitrary scalars.

By rearranging the columns or rows, the Hankel matrix can be trans-
formed into a Toeplitz matrix. For example, we can reorder the columns
of H from the last to the first and obtain a Toeplitz matrix:

NN-1 MN-2 .- Mo
T= R YA Sl N _ n~ NN-1 ... ™
(nN+l*j)l.J:0 HIy = . . . . . 2.2)
MAN-2 MIN-3 .. TIN-L

Thus an Toeplitz linear solver like the Levinson (1946) or Bareiss (1969)
algorithms can be applied to Hankel linear systems. However, in some
applications it is necessary to solve intermediate Hankel linear systems
defined by the principal submatrices of H and hence algorithms dealing
with the Hankel structure directly are of interest.

The inverse of H is determined by the solutions of the two equations

Hx = ey Hy = g, 2.3)

where ey is the unit vector of the Nth coordinate in C¥. We call x and y
the fundamental solutions. Furthermore, the solvability of Eq. (2.3) im-
plies the nonsingularity of . Whenx = {&, &), . . ., &v—i]7and y = [,
P, . . ., by-1]T are known, one of the possible ways to represent the
inverse H~' is the Gohberg-Semencul-type formula
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§0 _l!l] “ee _lllN,| 1
& &o . '
H = S
: : ' Py
Enot En-2 ... & 1
Yo 0 & ... &1 O
1 o : L
+ ) ' . 2.4)
: e 01 éN

vy Ynz . W 0

The importance of formula (2.4) lies in the fact that it allows us to solve
a Hankel system of linear equations in O(N log N) operations if x and y
are given.

Together with H we consider the family of nested submatrices H, =
HO:n—1,0:n—1) = (m)5 2, vectors g™ = HO: n — 1, n) = [n,,
. . .+ Ma]?, and the corresponding fundamental solutions x” and y*.
Associated with the pair of the fundamental solutions {x” y'"} is a pair of

. N N-2 o IN-2
residual vectors p = (™22 #w = (p™)y 7277 defined as

—yin
pW=H(: 0:n— Dx» and Fo=H(G,0: n) ( ’] ) (2.5)

or componentwise

_ylni
7=y . Mienddx™, and ™ =, .. o, i ( 1 )
(2.6)
fori=0,...,2N—-2andn=20,. .., N — 1. Note that from the

definition (2.3), p” = 0fori<n, 7" =0fori<n— land 7\, = L.

The Berlekamp—Massey and related algorithms construct vectors {x'*
y®} and {p® 7™} recursively. The desired solutions of (2.3) are x = x'¥~!
and y = y™W-1), A possible way of deriving a recursive relationship be-

tween {x™ y®} and {x"*" y*1} js by considering the following (n + 1)-

dimensional vector,
0 _y(n) x(nb
y@/"\ 1 )"\ o /)
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Note that if H, i1s nonsingular then

Mn+1 0 0

0 —y(") X(") . . .
Hyy s 0 = N2n-1 0 0] 2.7)
Mn — PL") 0 1

(n) ( (n)
M2n+1 — Pn+i pn") 77,1"

If H,. is also nonsingular then p\" # 0. Now by postmultiplying (2.7) by a
3 x 3 elimination matrix W,,

l 0 0
W= Wi Wit o).

wi 0 1

where
(n) (n)_(n)
n _ Pntt T Pa T (n _ w _ 1
W(z'; - J“WL—L Wiy = pa, wih = pi
we obtain
Nn+1 0 0 M1 O 0
Man-1 0 0 W, = M-y 0 0 ] (2.8)
N2n — p(n"] 0 1 Mn 0 1
Man+1 — Pﬁ;"ll Pfu") i Nan+1 | 7

Thus the following relation holds true:

0 ._y(ni x(n)

(n}
i 1 0 W":(y(rwl)’ XD, (x ))
0

0 0 0

In other words,

_y(n)
xnth) = p}"‘ ( ), 2.9)
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(n) __ (ny__(n) /—yn) (n)
oot = (O} 4 e = ot (7Y Y T
y(ll) pL"J 1 0

Remark 1: Note that in the case when H,_, is also nonsingular, x'®
can be replaced by y~V. Indeed, according to (2.9) we have

o 1 _y(n—ll
AT pwh '
n-1 1

which implies

1
(n) _ (n—1)
T T a0 Pi
pir
Thus (2.10) goes over into
—yla—1
oty 0 —ylm )
—ylnt (n—1) (n) (n)

y Y N <Pn_] _pn+l) 1 + pnll 1

1 | e . sl o

2.11)

The relation (2.11) is the familiar three-term recurrence formula which
shows a connection between the Berlekamp-Massey algorithm, the
Lanczos-type computation, and the Chebyshev algorithm for generating
orthogonal polynomials from their moments (Householder, 1964; Kung,
1977).

From the relations (2.9) and (2.10) it is not difficult to derive the follow-

ing recursions for the vectors /@ and p®, n=0,. .. , N — 1,
(n) (n) __{n)
a | w
Fo = ZT o 4 L(%LJ_ rm — pMWpm, (2.12)
Pr
4+ 1) 1
prtl =~ P (2.13)
Py

The relations (2.9) and (2.10) together with (2.6) completely define the
recurrence for computing the fundamental solutions x and y. The compu-
tation of the elements of the residuals via formula (2.6) requires evalua-
tions of scalar products. This can be avoided by making use of the recur-
rences (2.12) and (2.13) which are more amenable for parallel computing.
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It is not difficult to see that the cost of either of these procedures is O(N?)
arithmetic operations for an n x n Hankel matrix H.

The vectors y and 7 are closely related to the triangular LDU factor-
ization of H and H'. Suppose that H is strongly nonsingular (that is, all
submatrices H, are nonsingular). Let

ylnl
-1
wlm = 0
0
be an N-dimensional vector. Then
U= [u® uM . u™h

is the upper triangular factor of the LDU decomposition of N~!. Further-
more, let

1

(n)
h

AT = —=10,. . .,0,p™, . . ., pkl]

be an N-dimensional vector. Then
L =[O O . [N-D]

is the lower triangular factor of the LDU decomposition of H. The diago-
nal factor is given by

D = diag(py’, p\", . - ., PR

Since H is symmetric, the other factors are obtained by transposition; that
is, we have

H'=UDU and H = LDL.

The quantities p* play a decisive role for the recursive algorithms. If
W = 0 then H,., is singular and the algorithm breaks down. Conversely,
the singularity of H,.., implies p!” = 0. Furthermore, a small in the magni-
tude p™ indicates that H,,, is ill-conditioned. This can be seen from the

formula
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H' 0\ [—y®
Hl = + (=y™ 1), (2.14)
0 0 Pn {
which is consequence of the Schur complement formula (3.2). From this

we get the estimation

2

_ _ Tn
[H = H + T (2.15)

)

This estimation shows that in order to judge about the condition number
of H,.,, one has also to take into account the magnitude of 7,. The
following example illustrates the case.

where

(=1).

ExaMpPLE 1. Suppose that n = 2 and

-y 1 0
Hn+l = 1 0 1 >
0 1 t+7y

where vy is of “‘moderate’” size and y? is ‘‘large.”” We have

0 1 1
H,'= , oy = . el =1.
Iy Y

The magnitude of p” seems to indicate that H,,, is well-conditioned, but
the (1,1)-element! of H,!, equals y2 + . Hence H,., is ill-conditioned.

The example is also instructive in another context. It shows that for the
construction of stable algorithms it does not suffice to use the quantities
p'P for step size regulation; it also shows that, unlike for positive definite
Toeplitz matrices (see [6]), the condition of the upper and lower triangular
factors of the LDU decomposition is not determined by the diagonal
factor.

In constructing the vectors x and y, in order to avoid problems with
singular and ill-conditioned submatrices H,, one can move from one well-

! We enumerate the entries of an n X n matrix fromQton — 1.
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conditioned submatrix to the next one. This type of procedure, which is
known as a look-ahead procedure, was first proposed in Chan and Hansen
(1990) for dealing with near singularities in the Levinson algorithm for
solving indefinite systems of Toeplitz equations. In this paper we consider
an analogous approach for solving indefinite Hankel systems of linear
equations. A basis for a such multi-step algorithm is derived and ex-
plained in the subsequent sections.

3. ALGEBRAIC PROPERTIES OF SCHUR COMPLEMENT
As a preliminary step for the construction of a multj-step algorithm we

study the algebraic properties of Schur complements for Hankel matrices.
Let A be a matrix partitioned in the form

Ay A
A= .
A; A;
If Ay is nonsingular then

(Ao A,)(I Aa'A,) (AO 0 )
A, AJ\0 1 A Ay — AAG'A)

The matrix § = A; — A;A( 'A, is called the Schur complement of Ay with
respect to A. From this definition it is easily seen that for ¥ = A5' and

W = A,Aq ",
I O0\/A, O\(l, Y
A= , 3.1
W LA S/\0 I

where Iy and /5 denote unit matrices of appropriate sizes, holds. The
relation (3.1) implies

Al 0 -
Al = 0 o + ; S (=W I) (3.2)
3

which gives a formula for the inverse of A when inverses of Ay and the
Schur complement S are known. The formula (3.2) can be used to com-
pute the solution to a linear system

Z =
Az A3 b'
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when the solution zyto Agzg = by is known. Indeed, the solution z; can be
updated to the solution z as follows

= (ZO) + (_Y> S_l(b| - AzZo). (33)
0 1

We specify now formulas (3.1) and (3.2) for Hankel matrices. In the
remainder of the section let # be fixed. So we may omit the superscript
“*n” for all quantities. Let H, = H(0 : n — 1,0 : n — 1) be nonsingular and
definegi=HO:n—1,n+i)fori=20,...,N—n— 1. Furthermore,
let H,.p = HO:n+ k—1,0:n+ k — 1) be partitioned as

Hn Gk
Hn+k = T L]
G. Fy

where Gy, = (go,. . .. &1 =HO:n—-1,n:n+k~—-1and F, = H(n :
n+k—1,n:n+ k—1). Define now an n X k matrix Y,,

Yi=G,.'Gi= (Yo. . - -, Y1) (3.4)

The equations H,y; = g; are called generalized Yule—Walker equations
and the vectors y; = H,'g;,i=10,. . ., N — n — 1, are their solutions.
The case i = 0 is the case of the classical Yule-Walker equation. The
Schur complement §; = (o—ij)fﬁ]lo of H, with respect to H, ., is then defined
as follows

, -Y
Sy =(Gy Fi) / = (50, . . . Sk)

k

The importance of the Schur complement is in its later use in the determi-
nation of the fundamental solutions corresponding to H, ..
It is convenient to consider together with S, the extended matrix Sy,

. . —Y
Ssz(:,Olk—l)( )
1

The columns of S, are residual vectors corresponding to the vectors y,,
o ooVi-r-Thus S, = Su(n:n+k—1,0:k—1),and also $(0 : n — 1,
0: k-1 =0

Our aim is now to construct recursions for the columns of ¥, and S,.
For this we use the vectors x = H, 'e, and y, = H, 'g, and the correspond-
ing residual vectors p and 7 defined by



MULTI-STEP ALGORITHM FOR HANKEL MATRICES 153

, " —Yo
p=H:0:n- Dx and f‘EH(:,O:n)( ) 3.5
1
Furthermore we utilize the following relations
HnZ - ZTHn = eng({ - gOeL (36)
giv1 = Z7g; + Mu+jen, (3.7)
Tien = glx = y[H,x = ely;, (3.8)
T Yo 7
Pitn = (8; Man+i) 1 = Non+i — Lo Vi (3.9)
THEOREM 1. Letg,=HO:n~-1,n+i),i=0,1,.. . , N—n~-1.
The vectors y; = H,'g, satisfy the recursion
Yist = LYt PurjX + TasiYo. (3.10)
Moreover, the matrix Y, can be computed by the global formula
o
£ & 0 pn Pu-i Pr+i-2
. . ’ 0 Pn Pn+k-3
Yk = ' . . .‘
& &2 éo )
: : : 0 Pn
gnfl gn*Z §n“k 0
Yo.0
o1 Yo,0 I o Tavk-2
. 1 Tn Ton+h-3
+ : : : ’
Yo k-1 Wo k-2 Yoo :
. : . l Ty
Yo.n-1 Wo.n-2 Yo, n-k 1
(3.11)

where x = ()14 and yo = (o) =0 .

Proof. From (3.6) we get
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Z7g; = ZTH,y; = H,Zy; — e,g4y; + goely;
and from (3.7)

Z7g; = gix1 — Man+j€an.
Comparing these relations and applying H,' we obtain
Yir1 = MansiX = Zy; = Xg4y; + Yoery;-
Taking into account (3.8) and (3.9) we get
Yiet = MnsiX = Zy; + (Pjen — Monsf)X + Tiando,

which is equivalent with (3.10). Applying now (3.10) successively we
obtain

Vi = Piin1 Xt pin2Zx t o+ p 2t m v+ T 2oy,
which is just another form of (3.11). @&

Now we show how to compute the Schur complement §S;. The follow-
ing remark is important.
Remark. 1f | > k then S, is a principal submatrix of S

Due to this remark it suffices to compute S where

& _ ¢ A _ 2N~1 N-n—I|
Snon=1(5 - - Snon-1) = (Ui,j)i:o j:o" .

S
THEOREM 2. The columns §; and S satisfy the recursion

S0 =F, §j+1 = ZT§j - inﬁ + 7Tn+jf» (3.12)

where 7 = ()22 and F = (p;)275 " are the residual vectors correspond-
ing to the fundamental solutions x andy. The matrix § = 8(n : N - 1,0 :

N — n — 1) can be expressed by the formula

IN-1

0 pn Pu-1 . pyn-2
Tn TTN-I 0 pn PN-3

§ = — T+l oo TN-1
Pn

TN
N-1 0
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1 7, Tp-1 ... TN-2
Pn ... cer  PN- 1 Tn . TN-3
N p"fl e PN- © . . (3.13)
Tn
PN-1 I

Proof. From (3.10) we conclude
glyier = glZy; + pajglx + moijglye.
Taking (3.7) into account we obtain
giT.Vj+1 = (g — n2n+i€r]n-)yj + Pn+jngX + 7Tn+jngy0.
Hence
_ _ T T -
Tivlj — Tij+1 = &iYj+1 — &i+1Yi = TiPn+j — PiTn+j.

This is equivalent to (3.12). Applying now (3.12) successively we get

05 = =pusjorp = 0 = paZTV p + gy 0+ 2TV
+(ZTYr,

which is another form of (3.13). =

Note that in particular

Pn Pn+1
Sy = pn and S3=( +).
Pn+1 Pa+2

Hence, in this case we have
IS = 1pal"t  and Sl = |papusz = pred Sl

We remark a slight modification of the formula (3.13).

CoroLLARY. The matrix S; can be represented as
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0 Tg
gy
Sk =
gg a1 ... Ok
Tn Tn+1 Tntk—2 0O 0 pn Pur oo Prrk—2
Tn+| o 0 Pn «r Pr+k-3
Tp+k-2 \ P
0 0
Pn Pn+1 <o Pnvk-2 0 i Tn Tn-1 . Tp+i-2
Pr+1 . | T vee Mynsh—3
+ : ; , (3.14)
Pr+k-2 Tn
0 |
where Tj = Op+k+j-10-
The formula (3.14) states that if p,, . . ., pn+x-2 are small compared
with ppii-1 = 04— 1, then S is a small perturbation of a lower triangular

Hankel matrix. This observation is a basis for an inexact version of the
Berlekamp-Messy algorithm [3] where the Schur complement §; is re-
placed by a lower triangular Hankel matrix wheneverp,, . . ., pyx—2 are
small compared with p,, (-1 = u+k—10. Such a modified algorithm pro-
duces an approximate decomposition of the original matrix H. Then the
fundamental solutions x and y can be obtained by means of iterative
refinement. This is at first glance very attractive. However, two things
can go wrong. First, the approximation to S, can be very ill-conditioned.
Second, even if the approximation to §; ts well conditioned, the matrix
H,., does not have to be; see Example 1. Thus the resulting approximate
decomposition of H can have a very poor accuracy. Hence many steps of
iterative refinement may be needed to obtain a good approximation of the
fundamental solutions increasing the cost of such an approach to possibly
unacceptable levels. In extreme cases the iterative refinement can fail to
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produce any accurate digit in the computed x and y. For details see
Bojanczyk et al. (1991).

4. MULTISTEP ALGORITHM

We present now the multistep algorithm for computing the fundamental
solutions x and y. First we explain the algebraic setting and after that we
discuss criteria for choosing step sizes.

Suppose we are given x = H'e, and y{" = H,'g{" and the corre-
sponding residual vectors g and 7. Further, let & be a convenient step
size, i.e., an integer such that H,,, is well-conditioned.

As the first step we compute the first & + 1 columns of $™ according to
Theorem 2 and the vectors y{”, . . ., y{” by Theorem 1. Since H,.; is
assumed to be well-conditioned the matrix $ = $™(n:n + k- 1,0:
k — 1) is nonsingular.

Our aim is to compute x#*+4_ y&t8 50 and f*0_ This can be done
by the following updating formulas.

THEOREM 3. Let s = S™n:n+k— 1, k)and Y = [y, . . .,

yi21l. Suppose that u'" and v{" are the solutions of the equations

SPu™ =¢, and SV = s, 4.1)
Then
_ Y}\.")
xHh) = ( ) ul, 4.2)
I

-y y‘,"’
o= (e ),

L 0

(n) —Ui’”
POtk = Sv(m( (’)‘ )’ poork = S [, (4.4)
0

where 0 denotes a zero vector of appropriate length.

Proof. By the definition (3.4) of Y{" we have

0

- _Yl(kn) (n)
H:,0:n+ k-1 =151,
I )



158 BOJANCZYK AND HEINIG
from which the formula for x*¥ easily follows. Similarly, by noting that
s =g Pnin+ k-1 —-Hn:n+k-10:n- 1Dy,

one obtains the formula for y§**. The formulas for p"*% and #*% are
direct consequences of the formulas for x"*% and y{"**.

The transition from {x®, y® pr_ el (o {x(n+h yntk = glark - pinrkly g
illustrated below. First note that

( (n)
-y =Y Y
Hn Gk H[):n—l.n+k:N-l 1 0 0
T
G Fy Hyniktntken-1 0 I 0
Hn+k:2N—2,0:nfl Hn+/\:2N—2.n:n+k*I Hn+k:2N72,n+k:N—l 0 0 1
0 0 0
0 0 0 0 0
0 0 0 0 0
i 7(n) alm - S(n) )
riﬁlﬁk—l S(n':1n+k~l,l:k—l skn Skn 51‘"
~(n) S‘(n} S"(n) Sv(n) S"(n)
Fn+kIN-2 n+k2N-2.1:k—-1 n+k2N-2k n+k:IN=2,1:k—1 n+k2N-2 k
Thus
— Y(n) y(n)
k k _ (my—1¢(n)
(S Ter (S7) sy
0 = (x(nH\l v(nﬂ.})_ (45)
0 1 i
1 0

This can be summarized as follows:

Qutline of a Single Step of Inversion Algorithm

Given the stepsize k and the vectors {x", y» p_ pei}.

1. Compute y;, { = 0, . . ., k, by the recurrence (3.10). Cost is
O(k - n) operations.
2. Compute §;, i = 0, . . ., k, by the recurrence (3.12). Cost is

O(k - (N — n)) operations.

3. Solve for u, and v, in (4.1). Cost is O(k®) operations.

4. Update the fundamental solutions and the corresponding residuals
using (4.2)-(4.4). Cost is O((n + k) - k).
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Remark 2. Suppose now that one also wants to solve a linear system
of equations

Hz = b.

The multi-step algorithm can be extended easily to cover this case. As-
sume that z, the solution of the subsystem of dimension n X n,

H, 2 =50:n - 1),
and the residual vector o™,
bW =b—-HO:N~-1,0:n— 1)z™,

are known. Suppose that we want to solve the system of dimension
n+kxn+k

Hyuz"P =b0:n+ k- 1).

The updating formula (3.3) implies that

n _yn
(n+h) — z Y (n)
z = + w (4.6)
0 1,

where w® is the solution of the system
SPwm =pn:n+k-1D~-~Hn:n+k—1,0:n~ 1)z,
Also, in view of (4.6) the residual 5*% can be updated as
binthy = pim 4 fi")“’{")-

Remark 3. The multistep algorithm also provides a block triangular
decomposition of the matrix H. Let {H,,} .1 be a sequence of succesive
well-condmoned prmc:pal submatrices of H. Set k; = niey — n;, i = 1,

— 1. Then {S ‘""} is the sequence of the corresponding Schur
complemems and {Y"' ’}, ; are the matrices composed of the solutions of
the corresponding generallzed Yule-Walker equatlons Let us define
(N = 1) x (N ~ 1) upper triangular metrices {U},_,,

L, Y& 0
Uiz 0 Ik' 0
0 0 Inoion,,
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Then a repeated use of (3.1) gives the following decomposition
Hy_ = Uk~ - - Ul diag(S{", . . ., S{MU, - - - Uk,

which is a block triangular decomposition of Hx_; in a factored form.

S. NuUMERICAL CONSIDERATIONS

In the previous section we assumed that the matrix S{" is well-condi-
tioned (relative to H) and u, and v, are determined by a numerically stable
method. These assumptions are critical for the accuracy of the multi-step
method. Thus the major issue for the multi-step method and all other
look-ahead methods is the determination of the stepsize & (Cabay and
Meleshko, 1991; Chan and Hansen, 1990; Freund and Zha, 1992).

The accuracy of the fundamental solutions x® and y ™ is determined by
the size of the condition number cond of H,,, cond(H,) = |[H, |, - |H; ||,
The purpose of a multistep is to skip the computation of all x®? and y for
which the condition number of H, is significantly larger that that of H =
Hy . If the condition number of H is known then one wants to form only
those fundamental solutions x’ for which the corresponding matrix H;
has the condition number comparable to that of H. Hence one wants to
perform a multistep which takes as data the fundamental solutions x¥ and
vy corresponding to a well-conditioned submatrix H, and produces the
fundamental solutions x"*% and y"*% corresponding to the next well-
conditioned submatrix H,,,. This idea was first proposed in Chan and
Hansen (1990).

Starting with H,, x'”, and y™, one way of determining the size of & is
by computing or estimating the condition number of H,.;, i =0,1,. . .,
k, and picking H,., for which the estimate is deemed satisfactory. First,
an estimate of || H,.,||, is readily available. By letting

Antj-1)
def

Vnvi = l”f)j!,
j=0

we have
“Hn+i“1 S V=3 ”Hnw‘i”l-

In order to get an estimate for || H,{;| some kind of knowledge of H,!; is
necessary. For a Hankel matrix H,.;, due to the inversion formula (2.4),
the inverse is determined by the fundamental solutions x®*? and y+9,
Given x“*? and y**? the norm of the inverse of H,,; can be easily esti-
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mated. Let

n) def n n
O Ayl YT

"
p L max e\ g ) gl
o1
w L max o\ g ) ot

are upper bounds on [x*¥|| and || y***?||, respectively. Thus

Then due to (4.5),

and

def (n+i)
Cpvi = Vpsi® My )

TR 5.1
provides an upper bound on cond(H, ).

For the calculation of the estimate (5.1) it is necessary to solve systems
of linear equations (4.1). These can be solved either via LU decomposi-
tion with pivoting or via QR decomposition. The LU decomposition re-
quires fewer operations but as the matrices S!" are indefinite, updating of
the LU decomposition can be unstable. Thus, the cost of solving & sys-
tems of linear equations (4.1) via LU decomposition is O(k*) operations.
On the other hand, if the QR factorization of §!” is known it can be used
to compute the QR factorization of § ™ in O(i?) operations. Thus, the cost
of solving k systems of linear equations via QR decomposition is O(k?)
operations. Which of the two methods is less expensive depends on the
exact size of .

Of course, it is easier to estimate the condition number of the generi-
cally small matrix §. However, as Example 1 shows, the smallness of
this number is only necessary for smallness of the condition number of
Hn+i .

A possible difficulty with the estimate (5.1) lies in the fact that «!” and
v!™ are obtained as solutions of possibly ill-conditioned systems of linear
equations. However, ill-conditioningof $™,i=1,. . ., k — 1, will most
certainly be reflected in large norms of #!” and v!™, giving rise to a large
value of the estimate c,.;. Thus a large condition number of H, ., will be
discovered. Let us give a to some extent pathological but instructive
example.
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ExaMPLE 2. Suppose that H = Hy is given by

1 o ... ... 0 1 -c
0 1 -c
H = ,. L)
0 1 —c¢
| —C
-C 0

where ¢ > 1 and of moderate size. Then H, and Hy are well-conditioned
and the matrices H; are singularfori=2,. . ., N — 2. Hy_, is nonsingu-
lar but ill-conditioned. We put n = 1 and kK = N — 2. Then the Schur
complement S := S% , and its inverse is given by

0 1 e e

Hence the condition number of § is of order O(c¥~2). That means it may
become large if N is large. It is interesting to remark that the vector %,
is just the first unit vector; i.e., it does not indicate the ill conditioning of
S. On the other hand, we have v, = — [¢V2, . . ., ]

Confidence in the estimate c,; can be increased by monitoring the
condition numbers of the matrices S, i = 1, . . . , k. These can be
obtained by a number of available condition estimators. The additional
cost of using a condition estimater will be low as long as some form of a
decomposition of the matrix S!” is available. As we already argued, such
a decomposition may be needed anyhow for updating the QR factoriza-
tion of §\”. If an estimate of the norm of the inverse of S is available
then (3.2) provides an alternative way of estimating the condition number
of H,;. Such an estimation scheme which takes into account not only
(S )~ 1|| but also ||Y{| was originally proposed in Chan and Hansen (1990)
in the context of solving indefinite Toeplitz linear systems.

In the case when an estimate ¢ of cond(#) is know the multistep algo-
rithm can be summarized as follows.
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Algorithm
initialization
Find the first well-conditioned H;, i = N — 1. Setn = i.

Factorize H, and solve for x™ and y™. Compute p, and #,.
If n = N — 1 then stop.

loop:
Factorize S{".
Calculate u{” and v{".
Calculate cpi4.
e >c, k—k+ 1.
Calculate y{” and §{”. Go to loop.
If c,.x =< c, calculate x*®0 and yn*h,
Setn «n + k. If n = N — 1 then stop.

Calculate p, and #,. Go to loop.

1t is easily seen that in the worst case the cost of the algorithm is O(N?)
arithmetic operations but the accuracy of the algorithms is guaranteed.

In a situation where an estimate of cond(H) is not available, the algo-
rithm has to be modified in the part where the decision for accepting the
stepsize k is made. One possible heuristic is to set an upper bound on the
step size k, that is, to restrict the range for searching for the next well-
conditioned submatrix Chan and Hansen (1990). By setting the maximal
range to kmax the cost of the algorithm can be controlled, however, the
accuracy cannot. The accuracy can be checked by computing the residual
vectors and if needed a step of iterative refinement can be applied to
improve the accuracy of the fundamental solutions.

In conclusion, it appears that it is possible to control the accuracy or
the cost of the multistep Hankel solver. It remains to be seen whether
there exists a stable Hankel solver with O(N?2) complexity.
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