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a b s t r a c t

This work initiates a systematic investigation into thematrix forms
of the Pascal triangle as mathematical objects in their own right.
The present paper is especially devoted to the so-calledG-matrices,
i.e. the set of the twelve (n+ 1)× (n+ 1) triangular matrix forms
that can be derived from the Pascal triangle expanded to the level
n (2 ≤ n ∈ N). For n = 1, the G-matrix set reduces to a set of
four distinct matrices. The twelve G-matrices are defined and the
classic Pascal recursion is reformulated for each of the twelve G-
matrices. Three sets of matrix transformations are then introduced
to highlight different relations between the twelve G-matrices and
for generating them from appropriately chosen subsets.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Various matrix forms of the Pascal triangle are encountered in the current literature. Doh [10]
proposes the following matrix formulation for the classic binomial theorem:
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Simple transposition of the above gives
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The foregoing exhibits two examples of triangular matrix forms of the Pascal triangle, namely G1,n
and G11,n as defined in Table 1. Other examples are encountered in [10,18,8,3,9,11,4,13]. In general,
authors refer to the particular form encountered simply as the Pascal matrix. Authors in [7,12,15,16,
2,17] refer to G1,n and G11 ,n respectively as the upper and lower triangular Pascal matrices.
In the sequel, the generic binomial coefficient

( a
b

)
is defined by the relation

(a
b

)
=


a!

b!(a− b)!
if b ≤ a

0 otherwise.

We now turn to the definition of the twelve (n+ 1)× (n+ 1) G-matrices

Gn =
{
Gk,n|(1 ≤ k ≤ 12), (2 ≤ n ∈ N)

}
and illustrate them for n = 3. We shall write

[
Gk,n

]
ij to denote the entry at the intersection of row i

and column j. In the sequel, row and column subscripts are assumed to run from 0 to n and the Pascal
triangle to comprise levels 0, . . . , n.

Definition 1. The Table 1 below presents the definitions of the twelve G-matrices in Gn.

Table 1
Definitions of the generic entries of the twelve G-matrices.[
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Explicit application of the above definitions for n = 3 yields the twelve 4× 4 G-matrices as follows

G1,3 =

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 G2,3 =

0 0 0 1
0 0 1 3
0 1 2 3
1 1 1 1

 G3,3 =

1 0 0 0
1 3 0 0
1 2 3 0
1 1 1 1


G4,3 =

1 3 3 1
1 2 1 0
1 1 0 0
1 0 0 0

 G5,3 =

1 3 3 1
0 1 2 1
0 0 1 1
0 0 0 1

 G6,3 =

0 0 0 1
0 0 3 1
0 3 2 1
1 1 1 1


G7,3 =

1 0 0 0
3 1 0 0
3 2 1 0
1 1 1 1

 G8,3 =

1 1 1 1
3 2 1 0
3 1 0 0
1 0 0 0

 G9,3 =

1 1 1 1
0 3 2 1
0 0 3 1
0 0 0 1


G10,3 =

0 0 0 1
0 0 1 1
0 1 2 1
1 3 3 1

 G11,3 =

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 G12,3 =

1 1 1 1
1 2 3 0
1 3 0 0
1 0 0 0


In [18,14], G4,n, is referred to as the binomial matrix. It is clear from the above definitions that G4,n is
just one of the three possible upper-left triangular matrix forms of the Pascal triangle. In [1], G7,n and
G11,n are rightly characterized as image pair by reflection in the anti-diagonal.
Starting with G1,n and G12,n, for instance, one can generate the eleven remaining G-matrices

through matrix transposition combined with left and right actions of the permutation matrix R as in
Definition 2. These matrix forms correspond to some reordering of the components of the polynomial
power basis vector, and hence of the polynomial space [10]. Forty-eight polynomial relations similar
to those in (1) and (2) can be associated with twelve G-matrices.
The paper is organized as follows. Section 2 reformulates the Pascal recursion(

i
j

)
=

(
i− 1
j− 1

)
+

(
i− 1
j

)
in terms of each of the twelve G-matrices along with associated Pascal-like lattices to show the
directions of propagation induced by the Pascal recursion. Section 3 introduces three sets of matrix
transformations: the T-group, the set of circulant transformations and the set of median symmetry
transformations. The T-group turns out to be a matrix transcription of the dihedral group D4. It is
shown that the action of the T-group on any of the G-matrix pairs in{

Gk,n|k ∈ {1, 2, 4, 5, 7, 8, 10, 11}
}
×
{
Gk,n|k ∈ {3, 6, 9, 12}

}
partitions Gn into two orbits of four and eight vertices (Fig. 2). The four circulant transformations
are referred to in the sequel as α-, β-, δ- and γ -circulant operators. Three iterations of any of
the compositions in {αγ δβ, βαγ δ, δβαγ , γ δβα} on the appropriate initial G-matrix is shown to
generate all the twelve matrices (see cyclic diagram in Fig. 4). The expansion of (αγ δβ)3 G1,n in
particular generates the twelve G-matrices in the order in which we number them. Every square
matrix has four characteristic triangular bipartitions (Fig. 5) each of which is invariant under three
of the median symmetry transformations (including reflections in the main diagonal and in the anti-
diagonal). Circulant transformations carry a given triangular bipartition into a specific bipartition.
Concluding Section 4 presents some of our findings and ongoing works.

2. Pascal recursion

Relations (3)–(14) below explicitly express the classic Pascal recursion in terms of the twelve G-
matrices.

R1,n :
[
G1,n

]
i,j =

[
G1,n

]
i−1,j−1 +

[
G1,n

]
i,j−1 (3)
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[
G5,n
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i+1,j+1 (7)
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i,j =

[
G6,n
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i+1,j +

[
G6,n

]
i,j+1 (8)
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i,j =

[
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i+1,j+1 +

[
G7,n
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i,j+1 (9)

R8,n :
[
G8,n

]
i,j =

[
G8,n

]
i−1,j+1 +

[
G8,n

]
i,j+1 (10)

R9,n :
[
G9,n

]
i,j =

[
G9,n

]
i−1,j +

[
G9,n

]
i,j+1 (11)

R10,n :
[
G10,n

]
i,j =

[
G10,n

]
i−1,j +

[
G10,n

]
i−1,j+1 (12)

R11,n :
[
G11,n

]
i,j =

[
G11,n

]
i−1,j−1 +

[
G11,n

]
i−1,j (13)

R12,n :
[
G12,n

]
i,j =

[
G12,n

]
i−1,j +

[
G12,n

]
i,j−1 . (14)

The twelve Pascal-like lattices of Fig. 1, where a circle stands for an entry of a G-matrix, highlight
the direction of propagation of the Pascal recursion for each of the twelve G-matrices ([6]). The four
columns of the figure also show the four characteristic bipartitions of a given square matrix into
complementary triangular sub-blocks. The connected sub-blocks represent the major triangular sub-
blocks and the unconnected sub-blocks the complementary minor sub-blocks.

3. Three sets of G-matrix transformations

3.1. The T-group

3.1.1. Basics

Definition 2 (The ReflectionMatrix). A reflectionmatrix of order (n+1) is the (n+1)×(n+1)matrix
R defined by

[R]i,j = δ
j
n−i i, j = 0, . . . , n

where δjn−i is the Kronecker symbol.

One can easily verify that R is a permutation matrix. Now, if the matrix A is of the same dimension
as R then the generic components of the two matrices AR and RA are related to those of A as follows

[AR]i,j = [A]i,n−j [RA]i,j = [A]n−i,j.

Referring to the table of G-matrix definitions, it takes little algebra to show in particular that

G2,n = RG1,n,
G7,n = RG1,nR,
G8,n = G1,nR.

3.1.2. Definition of the T-group

Definition 3. LetMn+1 be the set of (n+ 1)× (n+ 1)matrices and R the (n+ 1)× (n+ 1) reflection
matrix. The T-group is the set of the eight matrix transformations T = {Tk, k = 0, . . . , 7} defined on
Mn+1 as follows. ∀A ∈Mn+1



B. Birregah et al. / European Journal of Combinatorics 31 (2010) 1205–1216 1209

Fig. 1. Twelve Pascal-like lattices associated to the 12 matrix forms.

T0(A) = A
T1(A) = RA
T2(A) = RAR
T3(A) = AR
T4(A) = AT

T5(A) = ATR
T6(A) = RATR
T7(A) = RAT

where AT is the transpose of A.

Theorem 3.1. (T , ◦) is a group, where the symbol ◦ denotes function composition.

Proof. This is easily proved by constructing the Cayley table of (T , ◦).
For example: T1 ◦ T2(A) = T1(RAR) = R(RAR) = R2AR = AR = T3(A) �

Theorem 3.2 (Gn orbits under T-action). The T-group partitions the set Gn into two orbits:

Gn/T =
{
TG1,n , TG3,n

}
where TGi,n denotes the orbit of Gi,n under the action of T . More explicitly,

TGi,n =
{
T0Gi,n, T1Gi,n, T2Gi,n, T3Gi,n, T4Gi,n, T5Gi,n, T6Gi,n, T7Gi,n

}
.

Proof. Direct calculation gives

TG1,n =
{
G1,n,G2,n,G7,n,G8,n,G11,n,G10,n,G5,n,G4,n

}
TG3,n =

{
G3,n,G12,n,G9,n,G6,n

}
. � (15)

As should be expected,

Gn = TG1,n ∪ TG3,n and TG1,n ∩ TG3,n = ∅.
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Fig. 2. Graph of the two orbits.

The T-group is simply a matrix transcription of the dihedral group D4. Barbé [5] applied the same
group using a different set of notations to formalize geometric transformations on binary difference
patterns.
Fig. 2 shows the two orbits determined by the action of the T-group on Gn. Evidently with the

T-group, one cannot attain all the twelve G-matrices starting from any particular one. Judicious
compositions of the circulant transformations defined in Section 3.2 achieve this.

3.2. The circulant transformations

Wedefine the circulant operators in terms of transformations of the genericmatrix subscript vector
(i, j) (0 ≤ i, j ≤ n).

Definition 4. The α-circulant operator(
i, j
) α
−→

(
i, i+ j

)
(mod n+ 1)

Definition 5. The β-circulant operator(
i, j
) β
−→

(
i− j− 1, j

)
(mod n+ 1)

Definition 6. The δ-circulant operator(
i, j
) δ
−→

(
i, i+ j+ 1

)
(mod n+ 1)

Definition 7. The γ -circulant operator(
i, j
) γ
−→

(
i− j, j

)
(mod n+ 1)

Fig. 3 illustrates the action of the α-circulant operator on a square matrix.

Theorem 3.3. Action of the circulant transformations on Gn

If i ∈ {1, 5, 9} then βGi,n = Gi+1,n
If i ∈ {2, 6, 10} then δGi,n = Gi+1,n
If i ∈ {3, 7, 11} then γGi,n = Gi+1,n
If i ∈ {4, 8, 12} then αGi,n = Gi+1,n

where by convention G13 = G1.
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Fig. 3. Action of the α-circulant operator.

Fig. 4. Circulant transformations and Gn .

Fig. 5. The four triangular bipartitions of a square matrix.

The diagram in Fig. 4 presents a dynamic application of Theorem3.3 to the generation of the twelve
G-matrices starting from any particular one. For example, startingwith any Gk,n ∈

{
G1,n,G5,n,G9,n

}
, it

takes a step-by-step expansion of (αγ δβ)3Gk,n which exhibits all the intermediate matrices to obtain
the twelve G-matrices in their cyclic order.
The circulant transformations provide a useful tool for relating other square matrices derived

from a Pascal-like Triangle whose entries are related by a generalized Pascal recursion of the form
fi,j = afi−1,j−1 + bfi−1,j ([10], p. 91).

3.3. Median symmetry transformations

The third set of transformations of interest formalizes reflections in themidpoints of sub-diagonals,
sub-rows and sub-columns of the complementary triangular sub-blocks of the four triangular
bipartitions of a given square matrix shown in Fig. 5. Since the midpoints are on the medians of
the relevant triangular sub-blocks, we refer to them for short as median symmetry transformations.
As reflections, median symmetry transformations are by definition self-inverse and fall into three
categories as follows.
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3.3.1. Diagonal median symmetry transformations
The first category of midpoint transformations is assigned the collective generic symbol σ . They

are reflections in the midpoints of sub-diagonals of triangular sub-blocks and therefore preserve the
diagonals of entry positions. They coincide with the T-group transformations T4 and T6 as follows

(i) σSe = σNw = T4
(ii) σNe = σSw = T6.

For this reason, little will be said about them in the sequel.

3.3.2. Row median symmetry transformations
These are reflections in the midpoints of the sub-rows of the two triangular sub-blocks of a given

bipartition (cf. Section 3.3.3). There are four such reflections all of which globally preserve the row of
matrix entries. They are defined as follows.

Definition 8. The ρSe operator(
i, j
) ρSe
−→

(
i,−1+ i− j

)
(mod n+ 1).

Definition 9. The ρNw operator(
i, j
) ρNw
−→

(
i, i− j

)
(mod n+ 1).

Definition 10. The ρSw operator(
i, j
) ρSw
−→

(
i,−1− i− j

)
(mod n+ 1).

Definition 11. The ρNe operator(
i, j
) ρNe
−→

(
i,−2− i− j

)
(mod n+ 1).

3.3.3. Illustrating ρSe: Application to 4× 4 matrices
The definition of ρSe is based on the NE/sw bipartitioning of the initial 4 × 4 matrix A as shown

below. The entries of the major sub-block are in bold characters while those of the minor sub-block
are in normal characters.

A =

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 ρSe(A) =

a03 a02 a01 a00
a10 a13 a12 a11
a21 a20 a23 a22
a32 a31 a30 a33


The sub-row midpoints for the ρSe reflections in the major NE triangular sub-block are on the

median originating from the South-east entry position a33 and passing through the position a12. The
sub-row midpoints for the ρSe reflections in the minor sw triangular sub-block are on the median
through the entry positions a10 and a31.

3.3.4. Column median symmetry transformations
These are reflections in the midpoints of the sub-columns of the two triangular sub-blocks of

a given bipartition (see illustration in Fig. 6). There are four such reflections all of which globally
preserve the column of matrix entries. They are defined as follows.
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Fig. 6. Axis of reflection for the κNw operator.

Fig. 7. Graph of the actions of the three MST κNw, ρSe and σNe on the NE triangular G-matrices: the NE/sw triangular bipartition
is preserved.

Definition 12. The κNw operator(
i, j
) κNw
−→

(
−i+ j, j

)
(mod n+ 1).

Definition 13. The κNe operator(
i, j
) κNe
−→

(
−1− i− j, j

)
(mod n+ 1).

Definition 14. The κSw operator(
i, j
) κSw
−→

(
−2− i− j, j

)
(mod n+ 1).

Definition 15. The κSe operator(
i, j
) κSe
−→

(
−1− i+ j, j

)
(mod n+ 1).

3.3.5. Median symmetry transformations and canonical bipartitions of Gn
The major triangular sub-block of the canonical bipartition of a G-matrix coincides with the Pascal

triangle while the minor sub-block entries are all zero. Inspection shows that the definition of any
G-matrix coincides with that of its canonical bipartition. By definition every median symmetry trans-
formation (MST) carries a particular triangular bipartition into itself. Figs. 7–10 highlight the partition-
ing of Gn according to canonical bipartitions along with the median symmetry transformations that
preserve canonical bipartitions of the same structure. Fig. 7 for example shows that κNw, ρSe and σNe
carry a NE/sw canonical bipartition into another or the same NE/sw canonical bipartition. The three
remaining figures show the three median symmetry transformations that carry a SE/nw, a SW/ne or
NW/se canonical bipartition into another or the same SE/nw, SW/ne or NW/se canonical bipartition.
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Fig. 8. Graph of the actions of the three MST κSw, ρNe and σSe on the SE triangular G-matrices: the SE/nw triangular bipartition
is preserved.

Fig. 9. Graph of the actions of the threeMST κSe, ρNw and σSw on the SW triangular G-matrices: the SW/ne triangular bipartition
is preserved.

Fig. 10. Graph of the actions of the three MST κNe, ρSw and σNw on the NW triangular G-matrices: the NW/se triangular
bipartition is preserved.

The two T-group transformations T1 and T3 provide the link between the four graphs of Figs. 7–10
as shown in Fig. 11. The G-matrix at the vertex of a given triangle is invariant under the action of the
MST labeling the opposite edge, e.g., κNw(G1) = G1.

4. Conclusion

This work initiates a systematic investigation into matrix forms of the Pascal triangle as
mathematical objects in their own right. The present study focused on the G-matrix set comprising
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Fig. 11. The T-group linkage of the four graphs of Figs. 7–10.

the twelve triangular matrix forms that can be derived from the Pascal triangle expanded to the level
n ≥ 2. Three sets of transformations were introduced to capture and formalize different ways the
G-matrices relate to each other, transformations that readily extend to the space of arbitrary square
matrices.
The T-group was shown to structure the space of square matrices of a given dimension into orbits

of eight vertices. One interesting theoretical implication is that any isolated matrix identity is in fact
a pointer to an eight-vertex orbit of identities. In addition, both the set of circulant transformations
and of the median symmetry transformations can be shown to be closed under T-group conjugation.
Ongoing works include individual characterization and interpretation of the twelve G-matrices,

systematization of two-factor product calculations, full matrix forms of the Pascal triangle and
generalizations. Application areas of the mathematical tools developed include computational
geometry, automata and combinatorics on formal compositions of the transformations presented in
this paper.
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