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Abstract

We give a basic introduction to the properties of Gauss’ hypergeometric functions, with
an emphasis on the determination of the monodromy group of the Gaussian hyperegeo-
metric equation. Initially this document started as an informal introduction to Gauss’
hypergeometric functions for those who want to have a quick idea of some main facts on
hypergeometric functions. It is the startig of a book I intend to write on 1-variable hyper-
geometric functions. As time progressed this informal note attracted increasing attention.
Therefore I would like to add a point of WARNING here: right now the manuscript needs
to be double-checked on possible errors again. At the moment I do not want to consider
it as a solid reference. With this provision in mind you are welcome to read it (and let me
know if you find errors)

1 Definition, first properties

Let a, b, c ∈ R and c ̸∈ Z≤0. Define Gauss’ hypergeometric function by

F (a, b, c|z) =
∑ (a)n(b)n

(c)nn!
zn. (1)

The Pochhammer symbol (x)n is defined by (x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1).
The radius of convergence of (1) is 1 unless a or b is a non-positive integer, in which cases
we have a polynomial.

Examples.

(1− z)−a = F (a, 1, 1|z)

log
1 + z

1− z
= 2zF (1/2, 1, 3/2|z2)

arcsin z = zF (1/2, 1/2, 3/2|z2)

K(z) =
π

2
F (1/2, 1/2, 1, z2)

Pn(z) = 2nF (−n, n+ 1, 1|(1 + z)/2)

Tn(z) = (−1)nF (−n, n, 1/2|(1 + z)/2)

Here K(z) is the Jacobi’s elliptic integral of the first kind given by

K(z) =

∫ 1

0

dx√
(1− x2)(1− z2x2)

.
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The polynomials Pn, Tn given by Pn = (1/n!)(d/dz)n(1 − z2)n and Tn(cos z) = cos(nz)
are known as the Legendre and Chebyshev polynomials respectively. They are examples of
orthogonal polynomials.

One easily verifies that (1) satisfies the linear differential equation

z(D + a)(D + b)F = D(D + c− 1)F, D = z
d

dz
.

Written more explicitly,

z(z − 1)F ′′ + ((a+ b+ 1)z − c)F ′ + abF = 0. (2)

There exist various ways to study the analytic continuation of (1), via Euler integrals,
Kummer’s solutions and Riemann’s approach. The latter will be discussed in later sections.
The Euler integral reads

F (a, b, c|z) = Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt (c > b > 0)

and allows choices of z with |z| > 1. The restriction c > b > 0 is included to ensure con-
vergence of the integral at 0 and 1. We can drop this condition if we take the Pochhammer
contour γ given by

0 1

X

Y

as integration path. Notice that the integrand acquires the same value after analytic
continuation along γ.

It is a straightforward exercise to show that for any b, c− b ̸∈ Z we have

F (a, b, c|z) = Γ(c)

Γ(b)Γ(c− b)

1

(1− e2πib)(1− e2πi(c−b))

∫
γ

tb−1(1− t)c−b−1(1− tz)−adt

Kummer gave the following 24 solutions to (2)

F (a, b, c|z)
= (1− z)c−a−bF (c− a, c− b, c|z)
= (1− z)−aF (a, c− b, c|z/(z − 1))

= (1− z)−bF (a− c, b, c|z/(z − 1))

z1−cF (a− c+ 1, b− c+ 1, 2− c|z)
= z1−c(1− z)c−a−bF (1− a, 1− b, 2− c|z)
= z1−c(1− z)c−a−1F (a− c+ 1, 1− b, 2− c|z/(z − 1))

= z1−c(1− z)c−b−1F (1− a, b− c+ 1, 2− c|z/(z − 1))
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F (a, b, a+ b− c+ 1|1− z)

= x1−cF (a− c+ 1, b− c+ 1, a+ b− c+ 1|1− z)

= z−aF (a, a− c+ 1, a+ b− c+ 1|1− 1/z)

= z−bF (b− c+ 1, b, a+ b− c+ 1|1− 1/z)

(1− z)c−a−bF (c− a, c− b, c− a− b+ 1|1− z)

= (1− z)c−a−bz1−cF (1− a, 1− b, c− a− b+ 1|1− z)

= (1− z)c−a−bza−cF (1− a, c− a, c− a− b+ 1|1− 1/z)

= (1− z)c−a−bzb−cF (c− b, 1− b, c− a− b+ 1|1− 1/z)

z−aF (a, a− c+ 1, a− b+ 1|1/z)
= z−a(1− 1/z)c−a−bF (1− b, c− b, a− b+ 1|1/z)
= z−a(1− 1/z)c−a−1F (a− c+ 1, 1− b, 2− c|1/(1− z))

= z−a(1− 1/z)−aF (a, c− b, a− b+ 1|1/(1− z))

z−bF (b, b− c+ 1, b− a+ 1|1/z)
= z−b(1− 1/z)c−a−bF (1− a, c− a, b− a+ 1|1/z)
= z−b(1− 1/z)c−b−1F (b− c+ 1, 1− a, 2− c|1/(1− z))

= z−b(1− 1/z)−bF (b, c− a, b− a+ 1|1/(1− z))

Strictly speaking, the above six 4-tuples of functions are only distinct when c, c− a−
b, a − b ̸∈ Z. If one of these numbers is an integer we find that there are other solutions
containing logarithms. For example, when c = 1 we find that z1−c becomes log z and a
second solution near z = 0 reads

(log z)F (a, b, 1|z) +
∞∑

n=1

(a)n(bn)

(n!)2
zn

[
n∑

k=1

(
1

a+ k − 1
+

1

b+ k − 1
− 2

k

)]
.

Notice that this solution can be obtained by taking the difference of solutions z1−cF (a−
c+ 1, b− c+ 1, 2− c|z)− F (a, b, c|z), divide it by c− 1 and take the limit as c → 1.

Later it will turn out that Riemann’s approach to hypergeometric functions gives a
remarkably transparent insight into these formulas as well as the quadratic transformations
of Kummer and Goursat.

Examples of such transformations are

F (a, b, a+ b+ 1/2|4z − 4z2) = F (2a, 2b, a+ b+ 1/2|z)

and
F (a, b, a+ b+ 1/2|z2/(4z − 4)) = (1− z)aF (2a, a+ b, 2a+ 2b|z).

Finally we mention the 6 contiguous functions

F (a± 1, b, c|z), F (a, b± 1, c|z), F (a, b, c± 1|z).

Gauss found that F (a, b, c|z) and any two contiguous functions satisfy a linear relation
with coefficients which are linear polynomials in z or constants, for example,

(c− a)F (a− 1, b, c|z) + (2a− c− az + bz)F (a, b, c|z) + a(z − 1)F (a+ 1, b, c|z) = 0.

Notice also that F ′(a, b, c|z) = (ab/c)F (a+ 1, b+ 1, c+ 1|z). These observations are part
of the following theorem.
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Theorem 1.1 Suppose a, b ̸≡ 0, c(mod Z) and c ̸∈ Z. Then any function F (a + k, b +
l, c+m|z) with k, l,m ∈ Z equals a linear combination of F, F ′ with rational functions as
coefficients.

Proof. One easily verifies that

F (a+ 1, b, c|z) =
1

a
(z

d

dz
+ a)F (a, b, c|z)

F (a− 1, b, c|z) =
1

c− a
(z(1− z)

d

dz
− bz + c− a)F (a, b, c|z)

and similarly for F (a, b+ 1, c|z), F (a, b− 1, c|z). Furthermore,

F (a, b, c+ 1|z) =
c

(c− a)(c− b)
(z(1− z)

d

dz
+ c− a− b)F (a, b, c|z)

F (a, b, c− 1|z) =
1

c− 1
(z

d

dz
+ c− 1)F (a, b, c|z)

Hence there exists a linear differential operator Lk,l,m ∈ C(z)[ d
dz ] such that F (a + k, b +

l, c+m|z) = Lk,l,mF (a, b, c|z). Since F satifies a second order linear differential equation,
Lk,l,mF can be written as a C(z)-linear combination of F and F ′. 2

In general we shall call any function F (a + k, b + l, c +m|z) with k, l,m ∈ Z contiguous
with F (a, b, c|z). Thus we see that, under the assumptions of Theorem 1.1, any three
contiguous functions satisfy a C(z)-linear relation.

For many more identities and formulas we refer to [AS] and [E].

2 Ordinary linear differential equations, local theory

Consider the linear differential equation of order n,

y(n) + p1(z)y
(n−1) + · · ·+ pn−1(z)y

′ + pn(z)y = 0, (3)

where the pi are analytic in a neighbourhood of z = 0, except for a possible pole at 0. In
this section we recall, without proof, a number of facts from the local theory of ordinary
linear differential equations. Most of it can be found in standard text books such as Poole,
Ince, Hille.

Lemma 2.1 (Wronski) Let f1, . . . , fm be meromorphic functions on some open subset
G ⊂ C. There exists a C-linear relation between these function if and only if W (f1, . . . , fm) =
0, where

W (f1, . . . , fm) =

∣∣∣∣∣∣∣∣
f1 . . . fm
f ′
1 . . . f ′

m
...

...
f
(m−1)
1 . . . f

(m−1)
m

∣∣∣∣∣∣∣∣
is the Wronskian determinant of f1, . . . , fm.

If z = 0 is not a pole of any pi it is called a regular point of (3), otherwise it is called
a singular point of (3). The point z = 0 is called a regular singularity if pi has a pole of
order at most i for i = 1, . . . , n.
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Theorem 2.2 (Cauchy) Suppose 0 is a regular point of (3). Then the vector space of
solutions of (3) is spanned by n C-linear independent Taylor series solutions f1, . . . , fn in
z with positive radius of convergence.

Moreover, the fi can be chosen such that fi(z)/z
i−1 has a non-zero limit as z → 0 for

i = 1, 2, . . . , n.
Finally, the Wronskian determinant W (f1, . . . , fn) satisfies the equation W ′ = −p1(z)W .

As an important remark we note that it may happen that there is a basis of holomorphic
solutions near z = 0 but 0 may still be a singular point. In that case we call 0 an apparent
singularity. An example is given by the differential equation (D − 1)(D − 3)y = 0 which
obviously has the holomorphic solutions z, z3. However, working (D−1)(D−3)y = 0 out,
we find y′′− 3

z y
′+ 3

z2 y = 0, hence z = 0 is a singularity. However, we do have the following
theorem which we shall repeatedly apply.

Theorem 2.3 Suppose there exists a basis of power series solutions f1, . . . , fn such that
fi/z

i−1 has a non-zero limit as z → 0 for i = 1, . . . , n. Then z = 0 is a regular point.

Suppose that z = 0 is regular or a regular singularity. We can rewrite (3) by multipli-
cation with zn and using the rule zr(d/dz)r = D(D − 1) · · · (D − r + 1) where D = z d

dz .
We obtain

Dny + q1(z)D
n−1y + · · ·+ qn−1(z)Dy + qn(z)y = 0. (4)

The condition of regular singularity sees to it that the functions qi(z) are holomorphic
near z = 0. The indicial equation of (3) at z = 0 is defined as

Xn + q1(0)X
n−1 + · · ·+ qn−1(0)X + qn(0) = 0.

Suppose we introduce a local parameter t at 0 given by z = c1t + c2t
2 + c3t

3 + · · · with
c1 ̸= 0. The differential equation can be rewritten in the new variable t. We obtain,
writing Dt = t d

dt ,

Dn
t y + q̃1(t)D

n−1
t y + · · ·+ q̃n−1(t)Dty + q̃n(t)y = 0.

with new functions q̃i(t) holomorphic at t = 0.
One can show that q̃i(0) = qi(0) for i = 1, . . . , n, hence the indicial equation does not

depend on the choice of local parameter at 0. The roots of the indicial equation are called
the local exponents at z = 0.

Remark 2.4 Notice that if we replace y by zµw, the differential equation for w reads

(D + µ)nw + q1(z)(D + µ)n−1w + · · ·+ qn−1(z)(D + µ)w + qn(z)w = 0.

In particular, the local exponents have all decreased by µ.

Remark 2.5 Show that the local exponents at a regular point read 0, 1, . . . , n−1. Theorem
2.3 can be rephrased by saying that if there is a basis of holomorphic solutions around z = 0,
and if the local exponents are 0, 1, . . . , n− 1, then z = 0 is a regular point of (3).

In the following theorem we shall consider expressions of the form zA where A is a
constant n× n matrix. This is short hand for

zA = exp(A log z) =
∑
k≥0

1

k!
Ak(log z)k.
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In particular zA is an n× n matrix of multivalued functions around z = 0. Examples are,

z

(
1/2 0

0 −1/2

)
=

(
z1/2 0
0 z−1/2

)
, z

(
0 1

0 0

)
=

(
1 log z
0 1

)
.

Theorem 2.6 (Fuchs) Let z = 0 be a regular singularity of (3). Let ρ be a local exponent
at 0 such that none of the numbers ρ+1, ρ+2, . . . is a local exponent. Then there exists a
holomorphic power series g(z) with non-zero constant term such that zρg(z) is a solution
of (3).

Let ρ1, . . . , ρn be the set of local exponents ordered in such a way that exponents which
differ by an integer occur in decreasing order. Then there exists a nilpotent n×n matrix N ,
and functions g1, . . . , gn, analytic near z = 0 with gi(0) ̸= 0, such that (zρ1g1, . . . , z

ρngn)z
N

is a basis of solutions of (3). Moreover, Nij ̸= 0 implies i ̸= j and ρi − ρj ∈ Z≥0.

Example 2.7 Consider the linear differential equation

(z3 + 11z2 − z)y′′ + (3z2 + 22z − 1)y′ + (z + 3)y = 0

. The local exponents at z = 0 are 0, 0 and a basis for the local solutions is given by

f1(z) = 1 + 3z + 19z2 + 147z3 + 1251z4 + · · ·

f2(z) = f1(z) log z + 5z +
75

2
z2 +

1855

6
z3 +

10875

4
z4 + · · · .

3 Fuchsian linear differential equations

Consider the linear differential equation

y(n) + p1(z)y
(n−1) + · · ·+ pn−1(z)y

′ + pn(z)y = 0, pi(z) ∈ C(z) (5)

To study this differential equation near any point P ∈ P1 we choose a local parameter
t ∈ C(z) at this point (usually t = z − P if P ∈ C and t = 1/z if P = ∞), and rewrite
the equation with respect to the new variable t. We call the point P a regular point or a
regular singularity if this is so for the equation in t at t = 0. It is not difficult to verify that
a point P ∈ C is regular if and only if the pi have no pole at P . It is a regular point or a
regular singularity if and only if limz→P (z−P )ipi(z) exists for i = 1, . . . , n. The point ∞
is regular or a regular singularity if and only if limz→∞ zipi(z) exists for i = 1, . . . , n.

Let P ∈ P1 be any point which is regular or a regular singularity. Let t be a local
parameter around this point and rewrite the equation with respect to the variable t. The
corresponding indicial equation will be called the indicial equation of (5) at P . The roots
of the indicial equation at P are called the local exponents of (5) at P .

As a shortcut to compute indicial equations we use the following lemma.

Lemma 3.1 Let P ∈ C be a regular point or regular singularity of (5). Let

ai = lim
z→P

(z − P )ipi(z)

for i = 1, . . . , n. The indicial equation at P is given by

X(X − 1) · · · (X − n+ 1) + a1X(X − 1) · · · (X − n+ 2) + · · ·+ an−1X + an = 0.

When ∞ is regular or a regular singularity, let ai = limz→∞ zipi(z) for i = 1, . . . , n.
The indicial equation at ∞ is given by

X(X + 1) · · · (X + n− 1)− a1X(X + 1) · · · (X + n− 2) + · · ·
+(−1)n−1an−1X + (−1)nan = 0.
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Proof. Exercise

From Cauchy’s theorem of the previous section follows automatically

Theorem 3.2 (Cauchy) Suppose P ∈ C is a regular point of (5). Then there exist n
C-linear independent Taylor series solutions f1, . . . , fn in z − P with positive radius of
convergence. Moreover, any Taylor series solution of (5) is a C-linear combination of
f1, . . . , fn.

Corollary 3.3 Any analytic solution of (5) near a regular point can be continued analyt-
ically along any path in C not meeting any singularity.

Let S be the set of singularities of (5) and let z0 ∈ P1 \ S. Let f1, . . . , fn be an
independent set of analytic solutions around z0. Let γ ∈ π1(P

1 \ S, z0). After analytic
continuation of f1, . . . , fn along γ we obtain continuations f̃1, . . . , f̃n, which are again
solutions of our equation. Hence there exists a square matrix M(γ) ∈ GL(n,C) such
that (f̃1, . . . , f̃n)

t = M(γ)(f1, . . . , fn)
t. The map ρ : π1(P

1 \ S) → GL(n,C) given by
ρ : γ 7→ M(γ) is a group homomorphism and its image is called the monodromy group
of (3). Notice also that after analytic continuation along γ we have W (f1, . . . , fn) →
det(M(γ))W (f1, . . . , fn).

Definition 3.4 The equation (5) is called Fuchsian if all points on P1 are regular or a
regular singularity.

Theorem 3.5 (Fuchs’ relation) Suppose (5) is a Fuchsian equation. Let ρ1(P ), . . . , ρn(P )
the set of local exponents at any P ∈ P1. Then,∑

P∈P1

(ρ1(P ) + · · ·+ ρn(P )−
(
n

2

)
) = −2

(
n

2

)
Since the local exponents at a regular point are always 0, 1, . . . , n− 1 the terms in the

summation are zero when P is a regular point. So, in fact, the summation in this theorem
is a finite sum.

Proof. From the explicit shape of the indicial equations, given in the Lemma above, we
infer that for P ∈ C,

ρ1(P ) + · · ·+ ρn(P ) =

(
n

2

)
− resP (p1(z)dz)

and

ρ1(∞) + · · ·+ ρn(∞) = −
(
n

2

)
− res∞(p1(z)dz).

Substract
(
n
2

)
on both sides and add over all P ∈ P1. Using the fact that

∑
P∈P1 resP (p1(z)dz) =

0 yields our theorem. 2

The hypergeometric equation (1) is an example of a Fuchsian equation. Its singularities
are 0, 1,∞ and the local exponents are given by the following scheme (Riemann scheme),

0 1 ∞
0 0 a

1− c c− a− b b

It also turns out that Fuchsian equations with three singular points can characterised
easily.
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Theorem 3.6 Let A,B,C ∈ P1 be distinct points. Let α, α′, β, β′, γ, γ′ be any complex
numbers which satisfy α+ α′ + β + β′ + γ + γ′ = 1. Then there exists a unique Fuchsian
equation of order two with rational function coefficients, no singularities other than A,B,C
and having local exponents given by the following Riemann scheme,

A B C
α β γ
α′ β′ γ′

Proof. Exercise

The solutions of this Fuchsian equation are related to the hypergeometric function as
follows. Via a Möbius transformation we can map A,B,C to any three distinct points of
P1. Let us take the mapping A,B,C → 0, 1,∞. So we have to deal with the Fuchsian
equation having Riemann scheme

0 1 ∞
α β γ
α′ β′ γ′

If we multiply the solutions of the latter equation by zµ we obtain a set of functions that
satisfy the Fuchsian equation with Riemann scheme

0 1 ∞
α+ µ β γ − µ
α′ + µ β′ γ′ − µ

A fortiori, after multiplication of the solutions with z−α′
(1− z)−β′

we obtain a Fuchsian
equation with a scheme of the form

0 1 ∞
α′′ β′′ γ′′

0 0 1− α′′ − β′′ − γ′′

This scheme corresponds to a hypergeometric equation with suitable parameters. The
24 solutions of Kummer can now be characterised very easily. Suppose we apply the
above procedure to the hypergeometric equation itself. There exist 6 ways to map the
set {0, 1,∞} to itself. Having chosen such a map, there exist four ways to multiply by
z−λ(1− z)−µ since there are four choices for the pair (λ,µ) of local exponents at 0 and 1.
Choose the hypergeometric function (with suitable parameters) as a solution of the final
equation, then we obtain the 4× 6 = 24 solutions given by Kummer.

It is also very simple to prove for example the quadratic relation

F (a, b, a+ b+ 1/2|t2/(4t− 4)) = (1− t)aF (2a, a+ b, 2a+ 2b|t).

Substitute z = t2/(4t−4) in the hypergeometric equation with parameters a, b, a+b+1/2.
we obtain a new Fuchsian equation. The map t → z = t2/(4t − 4) ramifies above 0, 1 in
t = 0, 2 respectively. Above z = 1 we have the point t = 2, above z = 0 the point t = 0
and above z = ∞ the two points t = 1,∞. Notice that our equation has local exponents
0, 1/2 in z = 1. Hence the new equation has local exponents 0, 1 in t = 2, with regular
solutions, and t = 2 turns out to be a regular point. At t = 0 we get the local exponents
0, 2(1/2 − a − b) and in t = 1,∞, the points above z = ∞, we have the local exponents
a, b and a, b. Thus our equation in t has again three singular points and Riemann scheme

0 1 ∞
0 a a

1− 2a− 2b b b
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By the method sketched above, one easily sees that (1 − t)aF (2a, a + b, 2a + 2b|t) is a
solution of this equation. Moreover, this is the unique (up to a constant factor) solution
holomorphic near t = 0. At the same time F (a, b, a+ b+1/2|t2/(4t−4)) is a solution, and
by the uniquess equality follows.

Example 3.7 In a similar way one can show the equality

F (a, b, a+ b+ 1/2|4z − 4z2) = F (2a, 2b, a+ b+ 1/2|z).

3.8 Monodromy of the hypergeometric function

Let us now turn to the monodromy of the hypergeometric equation. Consider the three
loops g0, g1, g∞ which satisfy the relation g0g1g∞ = 1.

0 1

z0

X

Y

We denote the corresponding monodromy matrices by M0,M1,M∞. They also satisfy
M0M1M∞ = 1 and M0,M∞ generate the monodromy group. Since the local exponents
at 0, 1,∞ are 0, 1 − c, 0, c − a − b and a, b respectively, the eigenvalues of the matrices
M0,M1 and M∞ are 1, exp(2πi(1 − c)), 1, exp(2πi(c − a − b)) and exp(2πia), exp(2πib)
respectively. The monodromy group can be considered as being generated by M0,M∞ and
we know that M∞M0 = M−1

1 has eigenvalue 1. This scant information already suffices to
draw some important conclusions.

Lemma 3.9 Let A,B ∈ GL(2,C). Suppose that AB−1 has eigenvalue 1. Then there
exists a common eigenvector of A,B if and only if A,B have a common eigenvalue.

Proof. Notice that ker(A−B) has dimension at least 1. If the dimension were 2 we would
have A = B and our lemma would be trivial. So we can assume dim(ker(A−B)) = 1. In
this proof we let v ∈ ker(A−B), v ̸= 0.

Suppose there exists a common eigenvector, w say, of A,B with eigenvalues λA, λB . If
these eigenvalues are equal, we are done. Suppose they are not equal. Then w, v span C2.
Choose α, β such that Av = αv+ βw. Since Av = Bv we also have Bv = αv+ βw. Hence
with respect to the basis v, w the matrices of A,B read(

α β
0 λA

) (
α β
0 λB

)
Hence they have the common eigenvalue α.

Suppose A,B have a common eigenvalue λ. If v is an eigenvectore of A we are done,
since Av = Bv implies that it is also an eigenvector of B. So suppose v is not an eigenvector
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of A. Consider the vector w = (A − λ)v. Since A − λ has non-trivial kernel we have
< w >C= (A − λ)C2. In particular, (A − λ)w is a scalar multiple of w, i.e. w is an
eigenvector of A. We also have w = (B − λ)v and a similar argument shows that w is an
eigenvector of B. Hence A,B have a common eigenvector. 2

Corollary 3.10 The monodromy group of (2) acts reducibly on the space of solutions if
and only if at least one of the numbers a, b, c− a, c− b is integral.

Proof. This follows by application of the previous lemma to the case A = M∞, B = M−1
0 .

Since M−1
1 = M∞M0 the condition that AB−1 has eigenvalue 1 is fullfilled. Knowing the

eigenvalues of M0,M∞ one easily checks that equality of eigenvalues comes down to the
non-empty intersection of the sets {0, c} and {a, b} considered modulo Z.

Definition 3.11 A hypergeometric equation is called reducible if its monodromy group is
reducible. A hypergeometric equation is called abelian if its monodromy group is abelian.

Typical examples of abelian equations are (2) with a = c = 0 having solutions 1, (1−
z)−(b+1) and a = b = 1, c = 2 having solutions 1/z, log(1−z)/z. Here is a simple necessary
condition for abelian equations, which has the pleasant property that it depends only on
a, b, c(mod Z).

Lemma 3.12 If (2) is abelian then at least two of the numbers a, b, c−a, c−b are integral.

Proof. Abelian monodromy implies reducibility of the monodromy, hence at least one of
the four numbers is integral. Let us say a ∈ Z, the other cases can be dealt with similarly.
It suffices to show that in at least one of the points 0, 1,∞ the local exponent difference
of (2) is integral. Then clearly, 1− c ∈ Z implies c− a ∈ Z, c− a− b ∈ Z implies c− b ∈ Z
and a− b ∈ Z implies b ∈ Z.

Suppose that all local exponent differences are non-integral. In particular the eigen-
values of each of the generating monodromy elements M0,M1,M∞ are distinct. Then
abelian monodromy implies that the monodromy group acts on the solution space in a
completely reducible way as a sum of two one-dimensional representations. In particular
the generators of these representations are functions of the form

zλ(1− z)µq(z) zλ
′
(1− z)µ

′
p(z)

where p(z), q(z) are polynomials with the property that they do not vanish at z = 0
or 1. The local exponents can be read off immediately, λ, λ′ at 0, µ, µ′ at 1 and −λ −
µ − deg(q),−λ′ − µ′ − deg(p) at ∞. The sum of the local exponents must be 1, hence
−deg(p)− deg(q) = 1. Clearly this is a contradiction. 2

Lemma 3.13 Suppose that A,B ∈ GL(2,C) have disjoint sets of eigenvalues and suppose
that AB−1 has eigenvalue 1. Then, letting X2 + a1X + a2 and X2 + b1X + b2 be the
characteristic polynomials of A,B, we have up to common conjugation,

A =

(
0 −a2
1 −a1

)
, B =

(
0 −b2
1 −b1

)
.

Proof. Choose v ∈ ker(A − B) and w = Av = Bv. Since A,B have disjoint eigenvalue
sets, v is not an eigenvector of A and B. Hence w, v form a basis of C2. With respect to
this basis A,B automatically obtain the form given in our Lemma. 2
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Corollary 3.14 Suppose that (2) is irreducible. Then, up to conjugation, the monodromy
group depends only on the values of a, b, c modulo Z.

Let us now assume that a, b, c ∈ R, which is the case most frequently studied. The
eigenvalues of M0,M1,M∞ then lie on the unit circle.

Definition 3.15 Let R,S be two disjoint finite subsets of the unit circle of equal cardi-
nality. The sets R,S are said to interlace if every segment on the unit circle, connecting
two points of R, contains a point of S.

Lemma 3.16 Let A,B be non-commuting elements of GL(2,C). Suppose that the eigen-
values of A,B have absolute value 1 and that AB−1 has eigenvalue 1. Let G be the group
generated by A,B. Then there exists a unique (up to a constant factor) non-trivial her-
mitian form F on C2 such that F (g(x), g(y)) = F (x, y) for every g ∈ G and every pair
x, y ∈ C2. Moreover,

F degenerate ⇐⇒ A,B have common eigenvalues

Supposing A,B have disjoint eigenvalue sets, we have in addition,

F definite ⇐⇒ eigenvalues of A,B interlace

F indefinite ⇐⇒ eigenvalues of A,B do not interlace

We call these three cases the euclidean, spherical and hyperbolic case respectively.

Proof. Let v ∈ ker(A − B) and w = Av. Suppose first that v, w form a basis of C2. Of
course, with respect to this basis A and B have the form given in the previous lemma. In
particular we see that A,B cannot have the same characteristic equation, since this would
imply that A = B.

We have to find a hermitean form F such that

F (gv, gv) = F (v, v) F (gv, gw) = F (v, w)

F (gw, gv) = F (w, v), F (gw, gw) = F (w,w)

for every g ∈ G. It suffices to take g = A,B. Let X2 + a1X + a2 and X2 + b1X + b2
be the characteristic polynomials of A,B. Since the roots are on the unit circle we have
a2ā2 = 1, a2ā1 = a1 and similarly for b1, b2.

Let us first take g = A. Then F (Av,Av) = F (v, v) implies

F (w,w) = F (v, v).

The conditions F (Av,Aw) = F (v, w) and F (Aw,Av) = F (w, v) imply F (w,A2v) =
F (v, w) and F (A2v, w) = F (w, v). Hence, using A2 = −a1A− a2,

−ā1F (w,w)− ā2F (w, v) = F (v, w) (6)

−a1F (w,w)− a2F (v, w) = F (w, v) (7)

Because of the relations a2 = ā−1
2 and a2ā1 = a1 these equations are actually the same.

The condition F (Aw,Aw) = F (w,w) yields F (A2v,A2v) = F (w,w) and hence

|a1|2F (w,w) + a1ā2F (w, v) + ā1a2F (v, w) + |a2|2F (v, v) = F (w,w).

Using |a2|2 = 1, a2ā1 = a1 and F (w,w) = F (v, v) this is equivalent to

a1ā1F (w,w) + a1ā2F (w, v) + a1F (v, w) = 0

11



which is precisely (6) times a1. Hence A-invariance of F is equivalent to

F (v, v) = F (w,w), F (w, v) + a1F (w,w) + a2F (v, w) = 0.

Invariance of F with respect to B yields the additional condition

F (w, v) + b1F (w,w) + b2F (v, w) = 0.

Since A and B do not have the same characteristic equation the solutionspace for F is
one-dimensional. When a2 = b2 a solution is given by

F (w,w) = F (v, v) = 0, F (w, v) = (−a2)
1/2, F (v, w) = (−a2)

−1/2,

when a2 ̸= b2 a solution is given by

F (w,w) = F (v, v) = 1, F (w, v) = ϵ, F (v, w) = ϵ̄, ϵ =
a1 − b1
b2 − a2

.

We formally take ϵ = ∞ if a2 = b2. In both cases cases we see that F is definite,
degenerate, indefinite according to the conditions |ϵ| < 1, |ϵ| = 1, |ϵ| > 1. It now a
straightforward excercise to see that these inequalities correspond to interlacing, coinciding
or non-interlacing of the eigenvalues of A and B.

We are left with the case when v is an eigenvector of A and B. Let α be the eigenvalue.
If both A and B have only eigenvalues α they automatically commute, which case is
excluded. So either A or B has an eigenvalue different from α. Let us say that A has
the distinct eigenvalues α, α′. Let w be an eigenvector corresponding to α′. Then, with
respect to v, w the matrix of B must have the form(

α b12
0 β

)
.

with b12 ̸= 0. It is now straightforward to verify that

(
0 0
0 1

)
is the unique invariant

hermitean matrix. Moreover it is degenerate, which it should be as A,B have a common
eigenvector. 2

Definition 3.17 With the assumptions as in the previous lemma let G be the group gen-
erated by A and B. Then G is called hyperbolic, euclidean, spheric if F is indefinite,
degenerate, definite respectively.

Corollary 3.18 Let {x} denote the fractional part of x (x minus largest integer ≤ x).
Suppose that (2) is irreducible. Let F be the invariant hermitean form for the monodromy
group. In particular, the sets {{a}, {b}} and {0, {c}} are disjoint. If {c} is between {a}
and {b} then F is positive definite (spherical case). If {c} is not between {a} and {b} then
F is indefinite (hyperbolic case).

The most pittoresque way to describe the monodromy group is by using Schwarz’
triangles.

First a little geometry.

Definition 3.19 A curvilinear triangle is a connected open subset of C ∪∞ = P1 whose
boundary is the union of three open segments of a circle or straight line and three points.
The segments are called the edges of the triangles, the points are called the vertices.
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It is an exercise to prove that, given the vertices and the corresponding angles (< π),
a curvilinear triangle exists and is uniquely determined This can be seen best by taking
the vertices to be 0, 1,∞. Then the edges connected to ∞ are actually straight lines.

More generally, a curvilinear triangle in C ∪ ∞ = P1 is determined by its angles (in
clockwise ordering) up to a Möbius transformation.

Let z0 be a point in the upper half plane H = {z ∈ C|ℑ(z) > 0} and let f, g be two
independent solutions of the hypergeometric equation near z0. The quotient D(z) = f/g,
considered as a map from H to P1, is called the Schwarz map and we have the following
picture and theorem.

1 ∝0 D(0)

D(1)

D(∝ )

 D(z)  

Theorem 3.20 (Schwarz) Let λ = |1 − c|, µ = |c − a − b|, ν = |a − b| and Suppose
0 ≤ λ, µ, ν < 1. Then the map D(z) = f/g maps H ∪ R one-to-one onto a curvilinear
triangle. The vertices correspond to the points D(0), D(1), D(∞) and the corresponding
angles are λπ, µπ, νπ.

As to the proof of Schwarz’ theorem, the following three ingredients are important.

– The map D(z) is locally bijective in every point of H. Notice that D′(z) = (f ′g −
fg′)/g2. The determinant f ′g − fg′ is the Wronskian determinant of our equation
and equals z−c(1− z)c−a−b−1. In particular it is non-zero in H. When g has a zero
at some point z1 we simply consider 1/D(z) instead. Since f and g cannot vanish at
the same time in a regular point, we have f(z1) ̸= 0.

– The map D(z) maps the segments (∞, 0), (0, 1), (1,∞) to segments of circles or
straight lines. For example, since a, b, c ∈ R we have two real solutions on (0, 1)
(see Kummer’s solutions). Call them f̃ , g̃. Clearly, the function D̃(z) = f̃/g̃ maps
(0, 1) on a segment of R. Since f, g are C-linear combinations of f̃ , g̃ we see that
D(z) is a Möbius transform of D̃(z). Hence D(z) maps (0, 1) to a segment of a circle
or a straight line.

– The map D(z) maps a small neighbourhood of 0 to a sector with angle |1 − c| = λ
and similarly for 1,∞. This follows from the fact that near z = 0 the functions f, g
are C-linear combinations of F (a, b, c|z) and z1−cF (a− c+ 1, b− c+ 1, 2− c|z).

For the exact determination of the image of the Schwarz map we need the following
additional result.

Proposition 3.21 (Gauss) Suppose that a, b, c ∈ R, c ̸∈ Z≤0 and c > a+ b. Prove that

F (a, b, c|1) = Γ(c− a)Γ(c− b)

Γ(c)Γ(c− a− b)
.
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This can be proven by evaluation of Euler’s integral using the Euler Beta-function.
To study the analytic continuation of D(z) we use Schwarz’ reflection principle. Hope-

fully, the following picture illustrates how this works.

1 ∝0

D(0)

D(1)

D(∝ )

 D(z)  

The monodromy group modulo scalars arises as follows. Let W be the group generated
by the reflections in the edges of the curvilinear triangle. The monodromy group is the
subgroup ofW consisting of all elements which are product of an even number of reflections.
In the following section we shall study precisely such groups.

3.22 Triangle groups

In this section we let S be either the Poincaré disk {z ∈ C| |z| < 1}, C or P1. equipped
with the hyperbolic, euclidean and spherical metric respectively.

Definition 3.23 A (geodesic) triangle is an connected open subset of S, of finite volume,
whose boundary in S is a union of three open segments of a geodesic and at most three
points. The segments are called the edges of the triangles, the points are called the vertices.

We first point out that under very mild conditions any curvilinear triangle can be
thought of as a geodesic triangle.

Lemma 3.24 Let λ, µ, ν be real numbers in the interval [0, 1). There exists a geodesic
triangle with angles λπ, µπ, νπ if and only if λ+ µ+ ν < 1 + 2min(λ, µ, ν).

Proof. Suppose first that λ + µ + ν < 1. Our condition is then trivially satisfied. For
any such curvilinear triangle we can take the common orthogonal circle of the three edges,
which will become the boundary of a Poincaré disk. The edges are then automatically
geodesics.

Suppose that λ + µ+ ν = 1. Our condition is equivalent to saying that all angles are
positive. In this case geodesic triangles are planar triangles in the euclidean geometry with
finite area. The latter property is equivalent to positivity of all angles.

Suppose that λ+µ+ν > 1. From spherical geometry it follows that a spherical triangle
exists if and only if our condition is satisfied.

We let W (∆) be the group of isometries of S generated by the 3 reflections through
the edges of a geodesic triangle ∆. First we look at subgroups generated by reflection in
two intersecting geodesics.
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Lemma 3.25 Let ρ, σ be two geodesics intersecting in a point P with an angle πλ. Let
r, s be the reflections in ρ, σ respectively. Then the group D generated by r, s is a dihedral
group consisting of rotations (rs)n around P with angles 2nπλ, n ∈ Z and reflections in
the lines (rs)n(ρ), (rs)n(σ). In particular D is finite of order 2m if and only if λ = q/m
for some q ∈ Z with q ̸= 0 and gcd(m, q) = 1. Furthermore, D is discrete if and only if λ
is either zero or a rational number.

Theorem 3.26 For any geodesic triangle ∆ we have S = ∪γ∈W (∆)γ(∆), where ∆ denotes
the closure of ∆ in S.

Proof. First of all we note that there exists a positive d0 with the following property.
For any point P whose distance to ∆ is less than d0 there exists γ ∈ W (∆) such that
P ∈ γ(∆). For γ we can simply take a suitable element from one of the dihedral reflection
groups around the vertices.

A fortiori, any point P with distance less than d0 from ∪γ∈W (∆)γ(∆) belongs to this
set.

As a consequence the set ∪γ∈W (∆)γ(∆) is open and closed in S, hence our theorem
follows. 2

Definition 3.27 An elementary triangle is a geodesic triangle whose vertex angles are all
of the form π/n, n ∈ Z≥2 ∪∞.

Theorem 3.28 Let ∆ be an elementary triangle. Then, for any γ ∈ W (∆), γ ̸= Id we
have γ(∆) ∩∆ = ∅.

Proof. This is a special case of the theorem of Coxeter-Tits on representations of Coxeter
groups. See Humphreys book on Reflection groups and Coxeter groups [H].

A group G of isometries acting on S is said to act discretely if there exists a point
P ∈ S and a positive d0 such that distance(P, g(P ))> d0 whenever g ̸= Id. In particular it
follows from the previous theorem that triangle groups generated by elementary triangles
act discretely. The following theorem characterises all groups W (∆) which act discretely
on the symmetric space S.

Theorem 3.29 Suppose W = W (∆) acts discretely. Then there exists an elementary
triangle ∆el such that W (∆) = W (∆el). Moreover, ∆ is a finite union of copies of ∆el

under elements of W .

Proof. First of all note that the vertex angles must be either 0 or rational multiples of π,
otherwise the corresponding dihedral group is not discrete.

We shall show that if ∆ is not elementary, then there exists a geodesic triangle ∆′

such that W (∆) = W (∆′) and Vol(∆′) ≤ Vol(∆)/2. If ∆′ is not elementary we repeat
the process and so on. However, there is a limit to these processes since, by discreteness,
there is a positive lower bound to Vol(∆′′) for any ∆′′ satisfying W (∆) = W (∆′′). Hence
we must hit upon an elementary triangle ∆el such that W (∆) = W (∆el).

Let α, β, γ be the edges of ∆ and rα, rβ , rγ the corresponding reflections. Suppose that
the vertex angle between α and β is of the form mπ/n with gcd(m,n) = 1, but m > 1.
Let δ be the geodesic between α and β whose angle with α is π/n. Let rδ be the reflection
in δ. Then the dihedral group generated by rα and rβ is the same as the one generated by
rα and rδ. Let ∆

′ be the triangle with edges α, δ, γ. Then, clearly, W (∆) = W (∆′). If the
volume of ∆′ is larger than half the volume of ∆ we simply perform the above construction
with α and β interchanged. 2
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Below we give a list of non-elementary triangles ∆ = (λ, µ, ν) with vertex angles
λπ, µπ, νπ which allow a dissection with elementary triangles ∆el such that W (∆) =
W (∆el). In the spherical case discreteness of W (∆) implies finiteness. The list of spheri-
cal cases was already found by H.A.Schwarz and F.Klein (see [Kl]). In the following table
N denotes the number of congruent elementary triangles needed to cover ∆.

λ µ ν N elementary
2/n 1/m 1/m 2 × (1/2, 1/n, 1/m) n odd
1/2 2/n 1/n 3 × (1/2, 1/3, 1/n) n odd
1/3 3/n 1/n 4 × (1/2, 1/3, 1/n) n ̸≡ 0 mod 3
2/n 2/n 2/n 6 × (1/2, 1/3, 1/n) n odd
4/n 1/n 1/n 6 × (1/2, 1/3, 1/n) n odd
2/3 1/3 1/5 6 × (1/2, 1/3, 1/5)
1/2 2/3 1/5 7 × (1/2, 1/3, 1/5)
3/5 2/5 1/3 10 × (1/2, 1/3, 1/5)
1/3 2/7 1/7 10 × (1/2, 1/3, 1/7)

As an application we construct a hypergeometric function which is algebraic over C(z).
Take the triangle (4/5, 1/5, 1/5), which is spherical. Corresponding values for a, b, c can
be taken to be 1/10,−1/10, 1/5. Hence the quotient of any two solutions f, g of the
corresponding hypergeometric is algebraic. Its derivative (f ′g − fg′)/g2 is algebraic and
so is the Wronskian determinant f ′g − fg′ = z−c(1− z)c−a−b−1. Hence g and, a fortiori,
f are algebraic. In particular, F (1/10,−1/10, 1/5|z) is an algebraic function.

In many cases it is also possible to find elementary triangles ∆el which can be dissected
into isometric copies of a smaller elementary triangle ∆′

el. Hence W (∆el) ⊂ W (∆′
el). The

most spectacular example is the dissection of the triangle (1/7, 1/7, 1/7) into 24 copies of
(1/2, 1/3, 1/7). As a corollary of this dissection we find the remarkable identity

2F1

(
2

7
,
3

7
,
6

7

∣∣∣∣ z) = b(z)−1/28
2F1

(
1

84
,
29

84
,
6

7

∣∣∣∣ 123 z(z − 1)(z3 − 8z2 + 5 ∗ z + 1)

b(z)3

)
where b(z) = 1 − 236z + 1666z2 − 3360z3 + 3395z4 − 1736z5 + 42z6 + 228z7 + z8. For a
complete list of such dissections and the corresponding identities we refer to [V].

3.30 Some loose ends

In the Schwarz map we have assumed that the parameters a, b, c are such that λ = |1 −
c|, µ = |c − a − b|, ν = |a − b| are all less than 1. It turns out that in the irreducible case
this is no restriction, since we can shift a, b, c by integers without affecting the monodromy
group. In fact,

Lemma 3.31 Assume that none of the numbers a, b, c − a, c − b is integral. There exist
a′ ∈ a(mod Z), b′ ∈ b(mod Z), c′ ∈ c(mod Z) such that

0 ≤ λ, µ, ν < 1 λ+ µ+ ν < 1 + 2min(λ, µ, ν)

where λ = |1 − c′|, µ = |c′ − a′ − b′|, ν = |a′ − b′|. In the case λ + µ + ν < 1 there exists
only one choice for a′, b′, c′ and in the case λ+ µ+ ν > 1 there exist four possible choices.

Proof. First of all let us suppose that 0 ≤ a, b, c < 1. Without loss of generality we can
assume that a ≤ b. We consider the following cases.

Case i) 0 < a < c < b < 1. We take a′ = a, b′ = b, c′ = c. Then, λ = 1 − c, µ =
a+ b− c, ν = b−a and the inequalities are satisfied. Moreover, λ+µ+ν = 1+2b−2c > 1.
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Case ii) 0 < a ≤ b < c < 1. We take a′ = a, b′ = b, c′ = c. When c ≥ a + b we get
λ = 1−c, µ = c−a−b, ν = b−a and the inequalities hold. Moreover, λ+µ+ν = 1−2a < 1.
When c ≤ a+b we get λ = 1−c, µ = a+b−c, ν = b−a and the inequalities hold. Moreover,
λ+ µ+ ν = 1 + 2b− 2c < 1.

Case iii) 0 ≤ c < a ≤ b < 1. We take a′ = a, b′ = b, c′ = c+1. Then, λ = c, µ = c+1−
a−b, ν = b−a and the inequalities are readily verified. Moreover, λ+µ+ν = 1+2c−2a < 1.

As to uniqueness we note that an integral shift in the a, b, c such that the corresponding
values of λ, µ, ν stay below 1 necessarily gives the substitutions of the form λ → 1−λ, µ →
1− µ, ν → ν and similar ones where two of the parameters are replaced by 1 minus their
value. In casethe condition λ+µ+ν < 1+2min(λ, µ, ν) is violated by such a substitution.
For example, λ+ µ+ ν ≤ 1 implies 1− λ+ 1− µ+ ν = 2− (λ+ µ+ ν) + 2ν ≥ 1 + 2ν. In
the spherical case the condition is not violated.

When we have obtained a geodesic Schwarz triangle in our construction we automati-
cally have a metric which is invariant under the projective monodromy group. This closely
reflects the nature of the natural hermitian form on the monodromy group itself.

Theorem 3.32 Let a, b, c ∈ R be such that

0 ≤ λ, µ, ν < 1 λ+ µ+ ν < 1 + 2min(λ, µ, ν)

where λ = |1− c|, µ = |c−a− b|, ν = |a− b|. Let M be the monodromy group of (2). Then,

M is spheric ⇐⇒ λ+ µ+ ν > 1

M is euclidean ⇐⇒ λ+ µ+ ν = 1

M is hyperbolic ⇐⇒ λ+ µ+ ν < 1.

Proof. In the case when none of the numbers a, b, c − a, c − b is integral, this statement
can already be inferred from the proof of the previous lemma (we get only the hyperbolic
and spheric case). It remains to show that if one of the numbers a, b, c−a, c− b is integral,
we have λ + µ + ν = 1. Let us suppose for example that a ∈ Z. Notice that |a − b| < 1
and |a+ b| < |c|+ 1 < 3. Hence |a| ≤ |a− b|/2 + |a+ b|/2 < 2. So, a = 0,±1. A case by
case analysis using the inequalities for λ, µ, ν yields our statement. 2
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